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Introduction
Quantisation of gravity is an interesting area in physics. In terms

of spacetime, general relativity and quantum theory do not fit to-
gether. Noncommutative geometry (NCG) might provide a framework
to combine the two theories. It turns out that NCG arises very naturally
in string theory. Spacetime as well as momentum space can become
noncommutative. Physical consequences of NCG are interesting to
study.

Strings and D-branes
Strings are one dimensional objects. They
come in 2 kinds: closed and open. Closed
strings can move anywhere in spacetime,
but in general open strings cannot. An
open string’s endpoint can be attached to
an extended object called D-brane or Dp-
brane if it has p spatial dimensions.

D-branes impose boundary conditions on strings. A string’s end-
point can move freely in the coordinates along a Dp-brane. After
quantising, the coordinates of the endpoint satisfy the commutation
relation

[x̂i, p̂ j] = ih̄δ
i j, [x̂i, x̂ j] = [p̂i, p̂ j] = 0 for i, j = 0, . . . , p.

Here, x̂i and p̂ j are operators associated with coordinate xi and mo-
mentum pi of the string endpoint.

D-brane with constant NS-NS B-field
NS-NS B-fields are antisymmetric spin 2 massless fields. They

arise when quantising closed strings. Charged strings can couple to
the constant B-field living on the D-brane. The boundary conditions
and the commutation relation of the string are modified by the B-field.
We have

[x̂i, p̂ j] = ih̄δ
i j, [x̂i, x̂ j] = iθ i j, [p̂i, p̂ j] = 0 for i, j = 0, . . . , p,

where θ i j is related to the B-field.
This leads to the study of quantum field theory in noncommuta-

tive spacetime. Some interesting topics are UV/IR mixing, noncom-
mutative gauge field theory, Morita equivalence, etc.

Generalisation
A D-brane in pp-wave backgrond in the presence of constant B-

field has the commutation relations [2]

[x̂i, p̂ j] = ih̄δ
i j, [x̂i, x̂ j] = iθ i j, [p̂i, p̂ j] = iφ i j for i, j = 0, . . . , p.

It is now interesting to study quantum theories in this noncom-
mutative phase space.

Phase Space Quantisation
Phase space quantisation is the quantisation method that allows us to

view quantum operators and states as functions in phase space. Functions
describing states are called Wigner distribution functions.

Consider a Poisson bracket of any two phase space functions g(~η)
and h(~η):

{g(~η),h(~η)}= Λ
i j

∂ig(~η)∂ jh(~η),

where ~η is a phase space vector: ~η = (x1,x2, . . . ,xd , p1, p2, . . . , pd), and
Λi j is antisymmetric. To quantise, we define a star product so that

g(~η)∗h(~η) = g(~η)exp
(

i
2
←−
∂i Θ

i j−→
∂ j

)
h(~η),

where Θi j = h̄Λi j. We replace the multiplication between any two func-
tions by a symmetrised star product (parameters omitted for brevity):
gh → (g ∗ h + h ∗ g)/2. Poisson bracket is replaced by Moyal bracket:
{g,h}→ g∗h−h∗g.

Two Dimensional Simple Harmonic Oscillator
Consider a two dimensional simple harmonic oscillator (SHO) with

the Hamiltonian

H =
x2 + y2 + p2

x + p2
y

2
,

where we scale the phase space coordinates to be dimensionless and h̄ = 1.
The Poisson brackets are given by

{x, px}= {y, py}= 1, {x1,x2}= θ , {px, py}= φ .

Quantum SHO
Let us first study the case θ = φ = 0. Bayen et al.[1] used spectral

theory to get the Wigner distribution function as

πn,m(H,L3) = 4(−1)ne−2H L(n+m)/2(2(H +L3))L(n−m)/2(2(H−L3)),

where Lr(a) is Laguerre polynomial, L3 = xpy− ypx (not to be confused
with Laguerre polynomial), n = 0,1,2, . . .and m =−n,−n−2, . . . ,n. This
function is the star eigenfunction of H and L3, i.e.

H ∗πn,m(H,L3) = πn,m(H,L3)∗H = En,mπn,m(H,L3).

L3 ∗πn,m(H,L3) = πn,m(H,L3)∗L3 = mπn,m(H,L3).

The energy is En,m = n+1. It is degenerate as expected.
Alternatively, it is useful to study group theory. We notice that

Jz = H/2,Jx = (xpx + ypy)/2, and Jy = (x2 + y2 − p2
x − p2

y)/4 form a
closed SO(1,2) Moyal bracket with Casimir function

C = Jz ∗ Jz− Jx ∗ Jx− Jy ∗ Jy =
(

L3

2
− 1

2

)
∗
(

L3

2
+

1
2

)
.

Quantum SHO in a noncommutative phase space
For the general case, the Moyal brackets of the set {Jx,Jy,Jz,C}

are complicated. Nevertheless, we can make a shift transformation of
Jx,Jy,Jz, and C to get SO(1,2) group. This is true only when θφ < 1.
The functions πn,m with the parameters shifted are the star eigenfunc-
tion of Hamiltonian. The energy is En,m = (n+1)

√
4+(θ −φ)2/2−

(θ +φ)m/2. It is nondegenerate except when θ =−φ .
Naı̈vely, when θφ = 1, the vacuum energy is degenerate with the

value of (θ +φ)/2 for m = n. When θφ > 1, the energy is not bounded
from below: The vacuum is then unstable.

The graph shows energy of two dimensional SHO in noncommutative
phase space with φ = 1 and n = 2. Energy is degenerate when θ =−1.
The values in the region θφ ≥ 1 are not included in the graph.

What’s Next?
It is interesting to study the region θφ ≥ 1 properly. We would

like to see if the vacuum actually becomes degenerate when θφ = 1,
and if the vacuum becomes unstable when θφ > 1.

It is also interesting to see the relationship between the SO(1,2)
group and the star eigenfunctions.

When we have the full picture of two dimensional SHO, the next
task would be to study higher dimensional SHO. It might also be pos-
sible to study quantum field theory in noncommutative phase space.
This is because SHO was used in order to study quantum field the-
ory. So we hope that noncommutative SHO would allow us to study
quantum field theory in noncommutative phase space.
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