
D-Branes and Noncommutative Geometry

in String Theory

Pichet Vanichchapongjaroen

April 28, 2010



Abstract

We discuss the simplest systems in string theory that noncommutative geometry arises.
We discuss the cases of noncommutative spacetime and totally noncommutative phase
space. Physical consequences of noncommutativity are discussed. The work in progress
on physics in totally noncommutative phase space is also discussed. We constructed phase
space quantisation to study quantum theory in totally noncommutative phase space. We
also discuss two dimensional simple harmonic oscillator in totally noncommutative phase
space and find that the energy spectrum is generally nondegenerate. This is because the
Sp(4) algebra is deformed. We also find two separate sets of ladder operators.
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Chapter 1

Introduction

1.1 Motivations

In physics, there are two big theories that describe motions and physical properties of
particles. Quantum theory is used to describe particles in a very small region while
general relativity is used to describe a system with highly gravitating objects. Normally,
quantum theory is used to describe atoms or smaller objects while general relativity is
used to describe big stars. So it seems that we do not need to combine these two theories.
However, there exists objects that are small but highly gravitating. The first example
is black hole. Its singularity is believed to contain all the matters of the black hole. So
we have to use quantum theory. Additionally, black hole is highly gravitating. Another
example is big bang. Around the time of big bang, the matters of universe are contained
in a very small region.

So in order to describe black hole singularity or big bang, we will need to combine
quantum theory with general relativity. However the problem arises if we try to directly
combine quantum theory with general relativity. The key idea in general relativity is
that spacetime is a smooth manifold. So in order to quantise gravity we may need a new
model of spacetime.

String theory suggests a new model that is described by noncommutative geometry.
When a D-brane is put in a background of constant B-field, its worldvolume becomes non-
commutative. This suggests a model called noncommutative spacetime. In this spacetime
we cannot simultaneously measure the position of a particle along any two axes. In other
words, we cannot determine an exact position of a particle. Some physical consequences
of noncommutative spacetime are discussed in literatures. For example noncommutative
quantum field theory is constructed and is found that, unlike the usual quantum field
theory, the interaction becomes nonlocal.

There is another suggestion from string theory. When a D-brane is put in a pp-wave
background with a constant B-field, the whole spacetime of D-brane becomes noncommu-
tative. In this case, we are also unable to determine an exact position of a particle. We
now want to see the physical consequences of this kind of noncommutative phase space.
We may try to construct quantum field theory in totally noncommutative phase space.
However, this is difficult. Let us briefly discuss this. Quantum field is a quantisation of
classical function of spacetime. In smooth spacetime, we are allowed to construct such
functions. We are also allowed to use momentum space representation. In fact, the two
representations are Fourier transform of each other. In noncommutative spacetime, the
situation is more difficult. However, even if the spacetime is noncommutative we are still
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allowed to use momentum space representation. However, in the totally noncommuta-
tive phase space, we are not allowed to use either coordinate space or momentum space
representation.

Nevertheless, it might be possible to deal with this issue by considering phase space
quantisation. Its first construction was to study quantum phase space which is already
noncommutative. So the generalisation to phase space quantisation might allow us to
describe the totally noncommutative phase space.

We will see in this report that it is possible to generalisation phase space quantisation.
We also try to study a simple quantum system in totally noncommutative phase space
to get some ideas. We hope that this might be a good first step for the construction of
quantum field theory in totally noncommutative phase space.

1.2 Contents

This report is divided into two parts. In Part I, we discuss necessary basics to the report.
The readers are expected to know most of the stuffs in this part. In part II we discuss
some works in scientific papers. We also discess some works in progress.

In Part I, we begin with the discussion of classical and quantum theories of point
particles in chapter 2. This chapter gives the basic for the rest of the report. We now
move on to discuss basics of string theory in chapter 3.

In Part II, we start by discussing how noncommutative geometry arises in string theory
in chapter 4. We then generalise phase space quantisation in chapter 5 to prepare for the
study of physical systems with noncommutative geometry. In chapter 6, we review some
features of quantum field theory in noncommutative spacetime. Phase space quantisation
was adapted to construct the theory. In chapter 7, we discuss two dimensional simple
harmonic oscillator in totally noncommutative phase space.

1.3 Conventions

• In this report, some Greek indices for example µ, ν are spacetime indices. The
exceptions are the two indices α and β which are worldsheet indices. Roman indices
for example i, j, k are multi-purposed. In each context, we normally define what
they represent.

• We use Einstein summation convention. Repeated indices are summed over.

• The signature of spacetime is (−,+, . . . ,+).

• When the limit of integration is not put on an integral sign
∫
, we mean that the

integration is carried out over the whole domain.
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Part I

Basics
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Chapter 2

Theories of Point Particles

In this chapter we present a quick reminder for classical and quantum theory of point
particles. The materials are standard. However, they are important basics for the rest of
the report. In particular, the material on canonical transformation and simple harmonic
oscillator will be related to the main results.

The materials in this chapter are based on and inspired by [1], [2], [3], [4], [5], [6], [7],
[8].

2.1 Classical Mechanics

2.1.1 Lagrangian Formalism

A system of point particles with d degrees of freedom is described by d coordinates
q1, q2, . . . , qd. The differentiate with respect to time of the coordinates is called velocity
q̇1, q̇2, . . . , q̇d. The function called Lagrangian L(q1, q2, . . . , qd, q̇1, q̇2, . . . , q̇d, t) ≡ L(~q, ~̇q, t)
is used to describe the motion of the system. Hamilton’s principle states that, between
two given positions ~q(1), ~q(2) and times t1, t2, the action

S =

∫ t2

t1

L(~q, ~̇q, t) (2.1)

for physical motion is extremised. This requirement gives Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, . . . , d, (2.2)

which are equations of motion.
Let us consider a nonrelativistic point particle of mass m moving in one dimension

under a potential V (q). The Lagrangian is given by

L =
1

2
mq̇2 − V (q). (2.3)

The equation of motion is then
mq̈ = −V ′(q), (2.4)

which is Newton’s second law of motion.
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2.1.2 Hamiltonian Formalism

Given a Lagrangian L(~q, ~̇q; t), we define a conjugate momentum ~p by

pi :=
∂L

∂q̇i
. (2.5)

We define Hamiltonain H(~p, ~q; t) as a Legendre transformation of the Lagrangian:

H(~p, ~q; t) ≡ ~p · ~̇q − L. (2.6)

The equations of motion are given by

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , d. (2.7)

In Hamiltonian formalism, we have, as equations of motion, 2d first order differential
equations for d degrees of freedom. This is simpler than Lagrangian formalism which has
d second order differential equations.

Consider a phase space function g(~p, ~q, t). Its total time derivative is

dg

dt
=
∂g

∂t
+

d∑

i=1

(
∂g

∂qi
q̇i +

∂g

∂pi
ṗi
)
. (2.8)

Using the equations of motion, we have

dg

dt
=
∂g

∂t
+ {g,H}, (2.9)

where

{g,H} ≡
d∑

i=1

(
∂g

∂qi
∂H

∂pi
− ∂g

∂pi
∂H

∂qi

)
(2.10)

is the Poisson bracket of g and H.
From definition, we have the following properties for Poisson bracket for any phase

space functions g, h, l and a number a:

1. Antisymmetry {g, h} = −{h, g}

2. Linearity {g + h, l} = {g, l}+ {h, l}

3. Multiplication by a number {ag, h} = a{g, h}

4. Jacobi identity {g, {h, l}+ {h, {l, g}+ {l, {g, h} = 0

If a function g is a constant of motion, then dg/dt = 0. Additionally, if the constant
of motion does not depend explicitly on time, then we have

{g,H} = 0. (2.11)

For example, consider a point particle of mass m moving in a plane under central force:

H =
p2

1 + p2
2

2m
+ V (x2

1 + x2
2). (2.12)
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We can check that the angular momentum L = m(x1p2 − x2p1) is a constant of motion.
One of the important results in this report is relating to two dimensional simple

harmonic oscillator (SHO). So it is useful to get some visualisations. The Hamiltonian of
two dimensional SHO is given by

H =
p2

1 + p2
2

2m
+

1

2
mω2(x2

1 + x2
2), (2.13)

where m is the mass, and ω is the angular velocity of the SHO. Obviously, as discussed
earlier, Lz = m(x1p2 − x2p1) is a constant of motion. This will be more important in
quantum case. For now, let us consider a hypersurface of constant energy H = E in
phase space. From the equation, this hypersurface is the 3-dimensional hypersurface of
hyper-ellipsoid centred at the origin. The larger the hyper-ellipsoid, the more energy the
system has. The lowest energy of the system is E = 0, when the hypersurface shrinks
into the point at the origin. We will see that in quantum case, not all the values of energy
are allowed.

2.1.3 Canonical Transformation

Canonical transformation is the transformation on phase space coordinate so that the
Poisson bracket is preserved. This transformation is also useful in quantum mechanics and
in one of the main results of this report. We first start by writing formalisms compactly.

We define ~ξ as a vector in phase space. It is given by

~ξ = (q1, q2, . . . , qd, p1, p2, . . . , pd), (2.14)

where d is the dimension of space. We will call the dimension of phase space as n = 2d.
We define Poisson bracket via

{ξi, ξj} = Λij, (2.15)

so that
{g(~ξ), h(~ξ)} = ∂ig(~ξ)Λ

ij∂jh(~ξ). (2.16)

Let us now discuss canonical transformation. Consider a coordinate transformation

ξi → ξ′i = ξ′i(~ξ). (2.17)

The Poisson bracket is given by

{ξ′i(~ξ), ξ′j(~ξ)} = ∂kξ
iΛkl∂lξ

j. (2.18)

For canonical transformation, we require {ξ′i(~ξ), ξ′j(~ξ)} = Λij. Therefore

MΛMT = Λ, (2.19)

where M is the matrix with elements ∂jξ
i, and MT is the transpose of M, and Λ is a

matrix with elements Λij. We require that Λ is non-singular.
Let us consider an infinitesimal transformation

ξi → ξi + ηi. (2.20)
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We are interested in the transformation on a phase space function g(~ξ). We take the
active view: the transformed function evaluated at the new coordinates is given by the
old function evaluated at the old coordinates. i.e.

gnew(~ξ) = g(~ξ − ~η)
≈ g(~ξ)− ηi∂ig(~ξ)
= g(~ξ)− ǫΛij∂jG(~ξ)∂ig(~ξ)

= g(~ξ)− ǫ{g(~ξ), G(~ξ)},

where G(~ξ) is defined via ηi = ǫΛij∂jG(~ξ). We see that the generator G(~ξ) defined here

generates the infinitesimal transformation on g(~ξ) via Poisson bracket. Now consider a
transformation of the form

ηi = −iǫG̃i
jξ
j. (2.21)

Now we have
− iǫG̃i

jξ
j = ǫΛij∂jG(~ξ). (2.22)

Therefore, the generator G(~ξ) is of the form

G(~ξ) =
1

2
ξiGijξ

j. (2.23)

Now we define G as a matrix with elements G̃i
j, and define G as a matrix with elements

Gij. Then the generator in matrix form G is related to the generator in function form

G(~ξ) via
G = iΛG. (2.24)

Let us now discuss an example which will also be used in our main results.

Example 1 (Homogeneous Linear Canonical Transformation in Four-Dimensional Phase
Space). The infinitesimal homogeneous linear canonical transformation is the transfor-
mation of the form

ηi = −iǫG̃i
jξ
j. (2.25)

We relate the infinitesimal transformation with the matrix M by

M = exp(−iαG). (2.26)

For a four dimensional phase space with ~ξ = (x, y, px, py) and

Λ =

(
0 I
−I 0

)
, (2.27)

there are ten generators forming the symplectic group Sp(4). The generators are [1]

J1 =
i

2

(
0 σ1

−σ1 0

)
, J2 =

1

2

(
σ2 0
0 σ2

)
, J3 =

i

2

(
0 σ3

−σ3 0

)
, J0 =

i

2

(
0 I
−I 0

)
, (2.28)

K1 =
i

2

(
0 σ3

σ3 0

)
, K2 =

i

2

(
I 0
0 −I

)
, K3 = − i

2

(
0 σ1

σ1 0

)
, (2.29)

Q1 = − i
2

(
σ3 0
0 −σ3

)
, Q2 =

i

2

(
0 I
I 0

)
, Q3 =

i

2

(
σ1 0
0 −σ1

)
, (2.30)
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where I is the 2× 2 identity matrix, and σ1, σ2, σ3 are Pauli spin matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.31)

The generators satisfy the commutation relations:

[Ji, Jj] = iǫijkJk, [Ji, J0] = 0, (2.32)

[Ji, Kj] = iǫijkKk, [Ji, Qj] = iǫijkQk, (2.33)

[Ki, Kj] = [Qi, Qj] = −iǫijkJk, (2.34)

[Ki, Qj] = iδijJ0, (2.35)

[Ki, J0] = iQi, [Qi, J0] = −iKi. (2.36)

The corresponding generators in function form are

J1 =
1

2
(xy+pxpy), J2 =

1

2
(xpy−ypx), J3 =

1

4
(x2+p2

x−y2−p2
y), J0 =

1

4
(x2+y2+p2

x+p
2
y),

(2.37)

K1 = −1

4
(x2 − p2

x − y2 + p2
y), K2 =

1

2
(xpx + ypy), K3 =

1

2
(xy − pxpy), (2.38)

Q1 = −1

2
(xpx − ypy), Q2 = −1

4
(x2 − p2

x + y2 − p2
y), Q3 =

1

2
(xpy + ypx). (2.39)

2.1.4 Classical Fields

So far we have discussed the systems of finite degrees of freedom. However, there are
many systems that are continuous. These systems are described by fields. Fields are
usually written as a function φa(t, ~x) of spacetime. Here a, and (t, ~x) are labels of the
field. For each a, the field at each point in spacetime is treated as coordinates. Therefore
the system has uncountably many degrees of freedom.

The Lagrangian of field is usually written in the form

L(t) =

∫
dd~xL(φa, ∂µφa), (2.40)

where xµ ∈ (t, ~x) = (t, x1, x2, . . . , xd) is the spacetime coordinates, and L is called La-
grangian density. The action integral now is in the form

S =

∫
dd+1xL. (2.41)

Applying Hamilton’s principle, we have the Euler-Lagrange’s equation for fields:

∂µ

(
∂L

∂(∂µφa)

)
− ∂L
∂φa

= 0. (2.42)

As an example, consider a free real scalar field φ(t, ~x) with Lagrangian density

L = −1

2
ηµν∂µφ∂νφ−

1

2
m2φ2, (2.43)
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where ηµν is the flat metric defined by ηµν = diag(−1, 1, . . . , 1), and its inverse is ηµν =
ηµν . Solving Euler-Lagrange’s equation gives Klein-Gordon equation

− ηµν∂µ∂νφ+m2φ = 0. (2.44)

A plane wave e±iηµνkµxν

is the solution if for kµ = (k0, ~k), we have k0 = ±
√
~k2 +m2. Let

us denote k0 = E~k =
√
~k2 +m2. The general solution can be obtained by superposition:

φ(t, ~x) =

∫
dd~k

(2π)d
√

2E~k
(a~ke

ikµxµ

+ a∗~ke
−ikµxµ

)
∣∣∣
k0=E~k

. (2.45)

We see that the positive energy modes are given by a~k while the negative energy modes
are given by a∗~k. This is to ensure that the field is real.

Given a Lagrangian density, we can also define Hamiltonian density by

H =
∑

a

Πφa∂0φa − L, (2.46)

where the conjugate momentum Πφa of the field φa is given by

Πφa =
∂L

∂(∂0φa)
. (2.47)

The Hamiltonian is given by

H =

∫
dd~xH. (2.48)

For the case of free real scalar field, the Hamiltonian density is

H =
1

2
(Π2

φ + (~∇φ)2 +m2φ2), (2.49)

where the conjugate momentum is

Πφ = ∂0φ = −i
∫

dd~k

(2π)d

√
E~k
2

(a~ke
ikµxµ − a∗~ke

−ikµxµ

)
∣∣∣
k0=E~k

. (2.50)

After a long calculation, we get the Hamiltonian

H =

∫
dd~k

(2π)d
E~k|a~k|2. (2.51)

It is also useful to discuss Poisson bracket for the fields. The Poisson bracket of two
functions G(φa,Πa, t), K(φa,Πa, t) is defined at equal time by

{G,K} ≡
∑

a

∫
dd~x

(
δG

δφa

δK

δΠa

− δK

δφa

δG

δΠa

)
(2.52)

For scalar field we have

{φ(t, ~x),Π(t, ~y)} = δ(d)(~x− ~y), {φ(t, ~x), φ(t, ~y)} = 0, {Π(t, ~x),Π(t, ~y)} = 0. (2.53)
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where δ(d)(~x− ~y) is Dirac delta function defined via

∫
dd~xg(~x)δ(d)(~x− ~y) = g(~y), (2.54)

for any function g(~x).
Let us now discuss about symmetry. Noether’s theorem states that for each transfor-

mation that leaves the action invariant, there is always a conserved current jµi (t, ~x) which
satisfies

∂µj
µ
i = 0. (2.55)

For a conserved current, we have conserved charge Qi defined by

Qi ≡
∫
dd~xj0

i (t, ~x). (2.56)

It is conserved in the sense that ∂0Qi = 0.
When constructing relativistic field theories, we want the action to be invariant be-

cause it is a scalar. The conserved current for this symmetry is the energy-momentum
tensor jµ(ν) = T µν which is given by

T µν =
∑

a

∂L
∂(∂µφa)

∂νφa − ηµνL. (2.57)

The conserved charge is called momentum

P ν ≡
∫
dd~xT ν0. (2.58)

The free scalar field is also a relativistic field. Its energy-momentum tensor is given by

T µν = −∂µφ∂νφ− ηµνL. (2.59)

The zeroth component of the momentum is just the Hamiltonian H. The spatial compo-
nent of the momentum is

P l =

∫
dn~k

(2π)n
kl|a~k|2. (2.60)

2.2 Quantum Mechanics

2.2.1 States and Observables

A state in quantum mechanics can be described by a ket |ψ〉 living in a vector space V .
For the given vector space V, there is a dual vector space V̄ such that its element 〈χ|
maps the vector space into complex number. i.e.

〈χ| : V → C (2.61)

|ψ〉 7→ 〈χ|ψ〉. (2.62)

This element 〈χ| is called a bra. Given a ket |u〉, there is always an associated bra 〈u|.
For example, if |ψ〉 is a column vector of complex numbers: |ψ〉 = (a1, a2, . . .)

T , then the
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bra is given by 〈ψ| = (a∗1, a
∗
2, . . .). The bra acts on the ket by the matrix multiplication.

So
〈ψ|ψ〉 = |a1|2 + |a2|2 + . . . . (2.63)

A linear operator Â maps the vector space into itself. i.e.

Â : V → V. (2.64)

As an example, we can see that an outer product |u〉〈v| can be treated as an operator. For
any linear operators Â, B̂, Ĉ any ket |ψ〉, |φ〉, and any (complex) number a, the properties

1. Linearity in operators: (Â+ B̂)|ψ〉 = Â|ψ〉+ B̂|ψ〉 and (aÂ)|ψ〉 = a(Â|ψ〉)

2. Linearity in kets: Â(|ψ〉+ |φ〉) = Â|ψ〉+ Â|φ〉

3. Associativity: Â(B̂Ĉ) = (ÂB̂)Ĉ

are satisfied. However, note that the operators do not commute. For any linear operators
Â, B̂ we define the commutator [Â, B̂] as

[Â, B̂] = ÂB̂ − B̂Â. (2.65)

Given an operator Â, we define its hermitian conjugate Â† via

〈u|Â†|v〉 = 〈u|Â|v〉∗. (2.66)

We have the properties for hermitian conjugate:

• (ÂB̂)† = B̂†Â†,

• (aÂ)† = a∗Â†,

• (Â+ B̂)† = Â† + B̂†,

• (|u〉〈v|)† = |v〉〈u|.
An operator Â is called hermitian if Â = Â†.

Given an operator Â, we are interested in the states |a〉 such that

Â|a〉 = a|a〉, (2.67)

where a ∈ C. This equation is called an eigenvalue equation. The ket |a〉 is called an
eigenket, and the number a is called an eigenvalue. If two operators Â, B̂ commutes, then
they share the same eigenket |a, b〉. Then there is a degeneracy, e.g. the kets |a, b〉, and
|a, b′〉 shares the same eigenvalue a of Â.

In quantum mechanics, operators are used to measure states. Hermitian operators Â
are important in quantum mechanics because the average 〈u|Â|u〉 is real. When we make
a measurement in a state |u〉, we expect to get the average value to be real. Therefore
the hermitian operators can be used as observables in quantum mechanics.

A state that can be described by a single ket |u〉 is called a pure state. However, it
is also the case that we want to measure a system, called mixed state, containing many
pure states |ψi〉 with probability pi of getting each state. In this situation, we cannot
define the average as above. Instead, we define a density matrix

ρ̂ =
∑

i

pi|ψi〉〈ψi|. (2.68)
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Now the average can be written as

〈Â〉 = Tr(ρ̂Â) = Tr

(
∑

i

pi|ψi〉〈ψi|Â
)
≡
∑

i

pi〈ψi|Â|ψi〉. (2.69)

Note that the density matrix can also be used in a pure state |ψ〉 where ρ̂ = |ψ〉〈ψ|.

2.2.2 Canonical Quantisation

The very common measurement in quantum mechanics is the measurement of position
and momentum. Therefore we want the phase space position ~ξ to become hermitian

operators ~̂ξ = (x̂1, x̂2, . . . , p̂1, p̂2, . . .). The Poisson bracket is made to be a commutator.
i.e.

{ξi, ξj} → [ξ̂i, ξ̂j]

i~
, (2.70)

where ~ is a Planck constant. We then have the following commutation relations

[x̂i, p̂j] = i~δij, [x̂i, x̂j] = [p̂i, p̂j] = 0. (2.71)

From the commutation relation, since x̂i commutes with x̂j, there is a shared eigenket
|x1, x2, . . .〉. The eigenket satisfies the completeness relation. i.e. any ket |ψ〉 can be
expressed as

|ψ〉 =

∫
dd~x|~x〉〈~x|ψ〉. (2.72)

In this way, we can represent |ψ〉 as a wavefunction ψ(~x) ≡ 〈~x|ψ〉. We call this coordinate
space representation. Similarly, we also have a shared eigenket |p1, p2, . . .〉 for momentum
operators, and we can define momentum space representation accordingly.

In coordinate space representation, the momentum operator is represented as a dif-
ferential operator. Let us focus on the case of two dimensional phase space. We consider
the operation e−iαp̂/~ which translates |x〉 to a different eigenket:

x̂e−iαp̂/~|x〉 = (e−iαp̂/~x̂+ [x̂, e−iαp̂/~])|x〉
= (x+ α)e−iαp̂/~|x〉,

where we used the fact that [Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ, so that, iteratively, [x̂, (p̂)n] =
ni~(p̂)n−1, and this implies [x̂, e−iαp̂/~] = αe−iαp̂/~. Therefore

e−iαp̂/~|x〉 = |x+ α〉, (2.73)

since (e−iαp̂/~)†e−iαp̂/~ = 1, the norm of the ket does not change. Now we consider

〈x|eiαp̂/~|ψ〉 = 〈x+ α|ψ〉
= ψ(x+ α)

=
∞∑

i=0

αn

n!

dn

dxn
ψ(x)

= eα
d

dxψ(x).

By comparison, we conclude that the coordinate space representation of p̂ is −i~d/dx.
Generally, the coordinate space representation of a momentum operator p̂i is −i~∂/∂xi.
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The classical Hamiltonian which is a phase space function is quantised to become an
operator. Let us now discuss the time evolution of states. A time dependent ket |ψ, t〉
satisfies the Schrödinger’s equation

i~
∂

∂t
|ψ, t〉 = Ĥ|ψ, t〉. (2.74)

Since the Hamiltonian Ĥ is hermitian, we can obtain the time dependence of density
matrix as

i~
∂

∂t
ρ̂ = −[ρ̂, Ĥ]. (2.75)

In practice, the Planck’s constant is normally scaled down to 1. Therefore, from this
point on, we will take ~ = 1.

2.2.3 Simple Harmonic Oscillator

As an illustration of quantum systems, we quantise a system of simple harmonic oscillator.
The energy spectrum of quantum simple harmonic oscillator is discrete. This is not what
we would predict from classical mechanics.

We consider the Hamiltonian of a one dimensional simple harmonic oscillator

Ĥ =
1

2
mω2x̂2 +

p̂2

2m
, (2.76)

with commutation relation
[x̂, p̂] = i. (2.77)

For convenient, we define ladder operators

â = (

√
mω

2
x̂+ i

p̂√
2mω

), â† = (

√
mω

2
x̂− i p̂√

2mω
). (2.78)

The commutation relation is [â, â†] = 1. We also define a number operator

N̂ = â†â. (2.79)

It is easy to show that Ĥ = ω(N̂ + 1/2). Therefore the number operator shares the
eigenket with Hamiltonian. Let us denote the eigenket |n〉 where

N̂ |n〉 = n|n〉. (2.80)

Let us consider the commutation relations

[N̂ , â] = −â, [N̂ , â†] = â† (2.81)

which can easily be proved. These commutation relations imply that

N̂ â†|n〉 = (n+ 1)â|n〉, (2.82)

N̂ â|n〉 = (n− 1)â|n〉. (2.83)

Therefore â†(â) increase (lower) the energy eigenvalue by one. For this reason we call â†

and â as creation and annihilation operator respectively. We make a normalisation by
requiring that the norm of â|n〉, â†|n〉, and |n〉 are the same. Therefore, we have

â|n〉 =
√
n|n− 1〉, â†|n〉 =

√
n+ 1|n+ 1〉. (2.84)
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Therefore, given an eigenket |n〉, we can create the other states by applying repeatedly
by â or â†. Actually, the energy is bounded from below because

n = 〈n|N̂ |n〉 = (〈n|â†)(a|n〉) ≥ 0. (2.85)

The ground state must be annihilated by â. Therefore, the ground state is |0〉. Its energy
is E0 = ω/2. We create the other states by â†. Therefore, the energy eigenvalues are (for
Ĥ|n〉 = En|n〉)

En = ω

(
n+

1

2

)
, n = 0, 1, 2, . . . . (2.86)

Let us now discuss the system of N noninteracting SHOs with equal mass. The
Hamiltonian is written as

Ĥ =
N∑

i=1

ωi(â
†
i âi +

1

2
), (2.87)

where

âi =

(√
mωi
2
x̂i + i

p̂i√
2mωi

)
, â†i =

(√
mωi
2
x̂i − i p̂i√

2mωi

)
, (2.88)

with commutation relations [âi, â
†
j] = δij. The eigenstates of the Hamiltonian form Fock

space. The states in Fock space are given generally in the form

|n1, n2, . . . , nN 〉, (2.89)

which represents the state created from the ground state |0〉 = |0, 0, . . . , 0〉 by acting ni
times with â†i , for i = 1, 2, . . . ,N .

2.2.4 Quantisation of Fields

In canonical quantisation, we make the coordinates and their conjugate momenta to
become hermitian operators, and we impose commutation relations. We can also do
the canonical quantisation for fields. Given a field φ(t, ~x) and its conjugate momentum
Π(t, ~x), we make them become φ̂(t, ~x), and Π̂(t, ~x). The equal time commutation relations
are

[φ̂(t, ~x), Π̂(t, ~y)] = iδ(d)(~x− ~y), [φ̂(t, ~x), φ̂(t, ~y)] = 0, [Π̂(t, ~x), Π̂(t, ~y)] = 0. (2.90)

Let us now quantise the real scalar field given in equation (2.45). We promote the
amplitudes a~k to operators â~k, and promote a∗~k to become â†~k. This ensures that the field

operator φ̂(t, ~x) is hermitian. Therefore we have

φ̂(t, ~x) =

∫
dd~k

(2π)d
√

2E~k
(â~ke

−ikµxµ

+ â∗~ke
ikµxµ

)
∣∣∣
k0=E~k

.

We can obtain conjugate momentum accordingly. From the commutation relation we
have

[â~k, â
†
~k′

] = (2π)dδ(d)(~k − ~k′), [â~k, â~k′ ] = 0, [â†~k, â
†
~k′

] = 0. (2.91)

To quantise the Hamiltonian given in the equation (2.51), we write |a~k|2 = (a~ka
∗
~k
+a∗~ka~k)/2.

The Hamiltonian is then

Ĥ =

∫
dd~k

(2π)d
E~k(â

†
~k
â~k +

1

2
[â~k, â

†
~k
]). (2.92)
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From the commutation relations, we realise that the second term is infinite. However, we
can just ignore this term because it is the vacuum energy, and in experiments we only
measure energy differences from vacuum. Therefore we rewrite the Hamiltonian as

Ĥ =

∫
dd~k

(2π)d
E~kâ

†
~k
â~k. (2.93)

Similarly, the spatial momentum is

~̂P =

∫
dd~k

(2π)d
~kâ†~kâ~k. (2.94)

Looking at the Hamiltonian and the commutation relations, we realise that the system
can be considered as having infinitely many SHOs. A Fock state

|ψ〉 = ~a†~k1
~a†~k2
· · ·~a†~kn

|0〉 (2.95)

is an eigenstate for Hamiltonian and spatial momentum with eigenvalues
∑n

i=1E~ki
and∑n

i=1
~ki respectively. Therefore we may interpret the state |ψ〉 as the state containing n

particles with momentum (E~ki
, ~ki) for i = 1, . . . , n.

In the next chapter, free massless vector and tensor fields will emerge from string
theory. Fock states can also be constructed similar to the case of free scalar field. However,
the creation and annihilation operators will carry vector or tensor index. We also have
to be careful about the gauge freedom.
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Chapter 3

String Theory

The materials in this chapter are also standard. The purpose of this chapter is to remind
the readers about the basic of string theory. We start this chapter by considering classical
string. We then quantise the string, and will find that particle states are coming from
the quantised string. We will also discuss about the string in background field. We end
this chapter by a brief discussion on superstring theory.

The materials in this chapter are based on [9], [10], [11], [12], [5], [13].

3.1 Classical String

Let us first consider the case of relativistic point particle. The coordinates of a particle
xµ(τ) are described using one parameter which is proper time τ. By construction we need
the action to be invariant under reparameterisation τ → τ̃(τ). The action can be written
as

S = −m
∫
dτ
√
−ηµν ẋµẋν , (3.1)

where ẋµ ≡ dxµ/dτ.
Let us now consider a string in d + 1 dimensional flat spacetime. We need two

parameters to describe string coordinates Xµ(τ, σ). We need proper time τ and the
parameter along the string σ. Let us denote the end points of the string by σL and σR.
If the string is closed, then σL = σR, otherwise the string is open. The space of the
parameters τ and σ is called worldsheet. We require the action to be invariant under
reparameterisation. So we have

SNG =
1

2πα′

∫
d2σ
√
ηαβ∂αXµ∂βXµ, (3.2)

where α′ is a constant; µ is the Lorentz index; α and β are worldsheet indices; ηαβ =
diag(−1, 1); d2σ ≡ dσdτ ; ∂α ≡ ∂/∂σα with σα = (τ, σ). This action is called Nambu-Goto
action. Because of the square root in the action, the calculations will become messy. The
trick is to write the action as

SPoly = − 1

4πα′

∫
d2σ
√
−hhαβ∂αXµ∂βX

νηµν , (3.3)

where hαβ is an inverse of the metric hαβ, and h ≡ dethαβ. This action is called Polyakov
action. If we vary the action with respect to hαβ we get constraint conditions. Solving
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these conditions for hαβ and pluging hαβ into the Polyakov action gives us the Nambu-
Goto action.

The Polyakov action has the following symmetries

1. (d+ 1)−dimensional Poincaré invariant

X ′µ(τ, σ) = Λµ
νX

ν(τ, σ) + aµ, (3.4)

h′αβ(τ, σ) = hαβ(τ, σ), (3.5)

where Λµ
ν is the Lorentz transformation matrix and aµ is a constant.

2. Diffeomorphism invariant (reparameterisation)

X ′µ(τ ′, σ′) = Xµ(τ, σ), (3.6)

∂σ′α

∂σγ
∂σ′β

∂σδ
hαβ(τ

′, σ′) = hγδ(τ, σ). (3.7)

3. Weyl invariant
X ′µ(τ, σ) = Xµ(τ, σ), (3.8)

h′αβ(τ, σ) = exp (2ω(τ, σ))hαβ(τ, σ). (3.9)

Using the diffeomorphism invariant and Weyl invariant, we can choose

hαβ = ηαβ. (3.10)

This choice is called flat gauge. Varying the Polyakov action with respect to string
coordinates gives the equations of motions and boundary conditions. Furthermore, there
are constraints obtained from δS/δhαβ = 0. Let us first consider the equations of motion

(
∂2

∂τ 2
− ∂2

∂σ2

)
Xµ(τ, σ) = 0. (3.11)

The equations of motion are just wave equations with general solutions in the form

Xµ(τ, σ) = Xµ
R(τ − σ) +Xµ

L(τ + σ). (3.12)

We call Xµ
R(τ − σ), and Xµ

L(τ + σ) as right-moving part and left-moving part, respec-
tively. Let us now discuss about constraints and boundary conditions. In flat gauge, the
constraints read

ẊµẊµ +X ′µX ′
µ = 0, ẊµX ′

µ = 0. (3.13)

The boundary term from the variation of S in flat gauge is

− 1

2πα′

∫
dτ∂σX

µδXµ

∣∣∣
σ=σR

σ=σL

. (3.14)

Setting this term equals to zero gives the boundary condition. Obviously, there is no
boundary condition for closed strings. So let us consider an open string. At endpoints,
for each Lorentz index µ, we have either ∂σX

µ = 0 or δXµ = 0. These boundary conditions
are called Neumann boundary condition and Dirichlet boundary condition, respectively.
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Let us now study the string coordinates. For closed string, we take the interval to
be σ ∈ [0, 2π]. The solutions Xµ(τ, σ) of equations of motion are in the general form
Xµ(τ, σ) = Xµ

R(τ − σ) +Xµ
L(τ + σ) with

Xµ
R(τ − σ) =

1

2
xµ +

α′

2
(τ − σ)pµ + i

√
α′

2

∑

n6=0

1

n
αµne

−in(τ−σ), (3.15)

Xµ
L(τ + σ) =

1

2
xµ +

α′

2
(τ + σ)pµ + i

√
α′

2

∑

n6=0

1

n
α̃µne

−in(τ+σ), (3.16)

where xµ, pµ, αµn, and α̃µn are constant. We also require

(αµn)
∗ = αµ−n, (α̃µn)

∗ = α̃µ−n. (3.17)

For open string, we take σ ∈ [0, π]. If the direction Xa has the Dirichlet boundary
condition, the solutions are given by

Xa = xa +
√

2α′
∑

n6=0

1

n
αane

−inτ sinnσ. (3.18)

If the direction X i has the Neumann boundary condition, the solutions are given by

X i = xi + 2α′piτ + i
√

2α′
∑

n6=0

1

n
αine

−inτ cosnσ. (3.19)

For now let us focus on the case where the open string satisfies Neumann boundary
condition for the whole spacetime.

Having got the string coordinates, we may start quantising the strings using covariant
quantisation. However, we can also choose some gauge before start quantising. Let us
introduce the coordinates

σ± ≡ τ ± σ. (3.20)

After imposing the flat gauge, we are still allowed to make a further transformation which
preserves the symmetries. The transformation is of the form

σ+ → σ̃+(σ+), σ− → σ̃−(σ−), (3.21)

or

τ̃ =
1

2
(σ̃+(τ + σ) + σ̃−(τ − σ)), (3.22)

σ̃ =
1

2
(σ̃+(τ + σ)− σ̃−(τ − σ)). (3.23)

We see immediately that τ̃ satisfies the wave equation (3.11). We can therefore set τ
equal to a linear combination of string coordinates. We take τ ∼ (X0 +X1)/

√
2 ≡ X+.

This choice is called light-cone gauge. Explicitly, for closed strings we choose

X+ = α′p+τ, (3.24)

and for open strings (with Neumann boundary condition for X0 and X1) we choose

X+ = 2α′p+τ. (3.25)
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For other components we define X− = (X0 − X1)/
√

2, and the components XI for
I = 2, . . . d remain the same. We can also write X− as a mode expansion. Explicitly, for
closed string, we have

X−
R (τ − σ) =

1

2
x− +

α′

2
(τ − σ)p− + i

√
α′

2

∑

n6=0

1

n
α−
n e

−in(τ−σ), (3.26)

X−
L (τ + σ) =

1

2
x− +

α′

2
(τ + σ)p− + i

√
α′

2

∑

n6=0

1

n
α̃−
n e

−in(τ+σ). (3.27)

For open strings (with Neumann boundary condition for X0 and X1) we have

X− = x− + 2α′p−τ + i
√

2α′
∑

n6=0

1

n
α−
n e

−inτ cosnσ. (3.28)

There is a useful quantity arising from constraint equations (3.13). We study the
Fourier components of the constraint equations. We take each component equals zero.
The most important condition from this is

∫ σ0

0

dσ(ẊµẊµ +X ′µX ′
µ) = 0, (3.29)

where σ0 = π for a closed string but σ0 = 2π for an open string. We evaluate this equation
at τ = 0, and we work in light-cone gauge. For closed string, the condition implies

M2 = −2p+p− +
d∑

i=2

pIpI =
2

α′

(
N⊥ + Ñ⊥

)
, (3.30)

where

N⊥ ≡
d∑

I=2

∞∑

n=1

αInα
I
−n, Ñ⊥ ≡

d∑

I=2

∞∑

n=1

α̃Inα̃
I
−n. (3.31)

The quantity M2 is realised as mass square of a relativistic particle in light-cone guage.
There is also another useful condition from constraint equations. From

∫ 2π

0

dσ(Ẋµ +X ′µ)(Ẋµ +X ′
µ) =

∫ 2π

0

dσ(Ẋµ −X ′µ)(Ẋµ −X ′
µ) = 0, (3.32)

we have
N⊥ = Ñ⊥. (3.33)

Similarly, for open string (with Neumann boundary condition in the whole spacetime),
we have

M2 =
1

α′N
⊥, (3.34)

where M2 and N⊥ are defined similarly to closed string’s.
We can treat string coordinates Xµ(τ, σ) as one-dimensional fields with ‘time’ τ and

‘space’ σ. For flat gauge the conjugate momentum for Xµ(τ, σ) is

Pµ(τ, σ) =
∂L

∂Ẋµ(τ, σ)
=

1

2πα′ Ẋµ(τ, σ), (3.35)
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where the Lagrangian density is

L = − 1

4πα′ (−Ẋ
µẊµ +X ′µX ′

µ). (3.36)

We use Poisson bracket as defined in equation (2.52). In this case

{G,K} ≡
∫ σ0

0

dσ

(
δG

δXµ

δK

δPµ
− δK

δXµ

δG

δPµ

)
,

for functions G(Xµ, P µ), K(Xµ, P µ). We have

{Xµ(τ, σ), P ν(τ, σ′)} = ηµνδ(σ−σ′), {Xµ(τ, σ), Xµ(τ, σ′)} = 0, {P µ(τ, σ), P ν(τ, σ′)} = 0.
(3.37)

For usual fields, we are normally not worried about the spatial boundaries because they
are at infinity. It is also safe for closed strings, because they have no boundary. For open
strings however, the boundaries are not at infinity but at the end points. Therefore we
need to be careful1. It turns out that, because of the Neumann and Dirichlet boundary
conditions, the Poisson bracket for string end points also satisfy the equation (3.37). In
Part II, when the string is put in a background, the boundary conditions are changed.
The Poisson bracket at the end points will no longer satisfy the equation (3.37).

3.2 Quantum String

We are now ready to quantise strings. The main quantisation methods are canonical
quantisation, which we have already encountered, and path integral quantisation, which
will be discussed later. In canonical quantisation, we may either quantise the Poisson
brackets (3.37) directly or transform the coordinates into light-cone gauge before quan-
tising. In the former case, there are ghost states arising, but they can be decoupled
from physical states after fixing spacetime dimensions. In the light-cone gauge, all states
are physical but we lose Lorentz symmetry; however, we can recover this after fixing
spacetime dimensions. Let us discuss light-cone gauge quantisation in a bit more details.

The Poisson brackets (3.37) are modified in light cone gauge. When quantising, we
promote the string coordinates and momenta to be operators. The Poisson brackets
become commutators. The non-zero commutation relations are

[X̂−(τ, σ), P̂+(τ, σ′)] = −iδ(σ − σ′), (3.38)

[X̂+(τ, σ), P̂−(τ, σ′)] = −iδ(σ − σ′), (3.39)

[X̂I(τ, σ), P̂ J(τ, σ′)] = iδIJδ(σ − σ′), (3.40)

where we label transverse coordinates by I, J = 2, 3, . . . , d. We also promote the mode
expansions of string coordinates to operators. Important commutation relations for closed
string are

[x̂I , p̂J ] = iδIJ , [x̂−, p̂+] = −i. (3.41)

[ˆ̃α
I

m,
ˆ̃α
J

n] = mδm+nδ
IJ , [α̂Im, α̂

J
n] = mδm+nδ

IJ , [ˆ̃α
I

m, α̂
J
n] = 0, (3.42)

1As an aside, some references for example [14] deal formally with Poisson bracket for fields on a
manifold with boundaries. Equivalently, we can also use Dirac bracket which is a generalisation to
Poisson bracket.
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For open string with Neumann boundary condition for whole spacetime the commutation
relations are similar. See for example [5] for calculations.

The reality conditions (3.17) are promoted to

(α̂µn)
† = α̂µ−n, (ˆ̃α

µ

n)
† = ˆ̃α

µ

−n. (3.43)

The commutation relations for the modes suggest that for m = 1, 2, . . .

1√
m
α̂Im,

1√
m

ˆ̃α
I

m (3.44)

are annihilation operators, and

1√
m

(α̂Im)†,
1√
m

(ˆ̃α
I

m)† (3.45)

are creation operators. The quantities N⊥, and Ñ⊥ for classic strings are promoted to

be number operators N̂⊥, and
ˆ̃
N

⊥
. It is natural to write number operators as

N̂⊥ =
d∑

I=2

∞∑

n=1

(
α̂I−nα̂

I
n +

1

2
[α̂In, α̂

I
−n]

)
(3.46)

and similar for
ˆ̃
N

⊥
. We see that the second term blows up. This problem is similar to

the case of quantising the scalar field. Therefore, we expect that there is a reasonable
way to deal with infinity. It turns out that if we require Lorentz symmetry, we get the
spacetime dimension d+ 1 = 26 and the mass square operator

M̂2 =
2

α′ (N̂ +
ˆ̃
N − 2) (3.47)

for closed string, and

M̂2 =
1

α′ (N̂ − 1) (3.48)

for open string. Here we redefine the number operators as

N̂⊥ =
d∑

I=2

∞∑

n=1

α̂I−nα̂
I
n,

ˆ̃
N

⊥
=

d∑

I=2

∞∑

n=1

ˆ̃α
I

−n
ˆ̃α
I

n. (3.49)

Let us consider the states for closed string. From equation (3.33) we have a level

matching constraint N̂⊥ =
ˆ̃
N

⊥
. So we see that the right-moving and left-moving modes

are separate, but not completely. The number operators for right-moving and left-moving
mode have the same eigenstates and eigenvalues. We denote the ground state by

|p+, ~pT 〉. (3.50)

This state is annihilated by all annihilation operators. Therefore

N̂⊥|p+, ~pT 〉 =
ˆ̃
N

⊥
|p+, ~pT 〉 = 0. (3.51)
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The mass-square of this state is then

M̂2|p+, ~pT 〉 = − 4

α′ |p
+, ~pT 〉. (3.52)

We interpret the particle associated to this state as tachyon which has a negative mass-
square. The tachyon travels faster than speed of light. Therefore we do not expect the
tachyon to enter into the theory. Another interpretation of tachyon is that it represents
the unstable vacuum. The issue about tachyon is solved in superstring theory.

As usual the excited states are generated by creation operators. The first excited
state is in the form

α̂I−1
ˆ̃α
J

−1|p+, ~pT 〉 (3.53)

which satisfies level matching constraint. Explicitly

N̂α̂I−1
ˆ̃α
J

−1|p+, ~pT 〉 =
ˆ̃
N

⊥
α̂I−1

ˆ̃α
J

−1|p+, ~pT 〉 = α̂I−1
ˆ̃α
J

−1|p+, ~pT 〉. (3.54)

These states are massless
M̂2α̂I−1

ˆ̃α
J

−1|p+, ~pT 〉 = 0. (3.55)

In order to realise the states as particles, we make linear combinations of these states.
The symmetric traceless part is graviton which is massless symmetric spin 2. The an-
tisymmetric part is called B-field (in superstring theory the B-fields are called NS-NS
B-fields) which is massless antisymmetric spin 2. The trace part is called dilaton which
is a massless scalar. We can also get these massless states in superstring theory. Higher
states can also be constructed. They are all massive. However, we can ignore these states
if we work in low energy limit.

The states for open string are constructed similarly. The ground state |p+, ~pT 〉 is
tachyon. The first excited state α̂J−1|p+, ~pT 〉 is a massless spin 1 particle called photon
which is a particle corresponding to electromagnetic field. Higher states are all massive.

So far when considering open string, we have only restricted ourselves to open string
with Neumann boundary condition in the whole spacetime. We now consider open string
with both Neumann and Dirichlet boundary conditions. In classical string we see that the
Dirichlet boundary condition requires string position to be fixed in some direction. This
is interpreted as open string attached to extended dynamical objects called ‘D-branes’.

Let us consider the simplest case where two end points attached to the same D-brane.
Let the coordinates X i, i = 0, 1, . . . , p satisfy Neumann boundary conditions

X ′i(τ, σ)
∣∣∣
σ=0

= X ′i(τ, σ)
∣∣∣
σ=π

= 0, (3.56)

and the coordinates Xa, a = p+ 1, p+ 2, . . . , d satisfy Dirichlet boundary conditions

Xa(τ, σ)
∣∣∣
σ=0

= Xa(τ, σ)
∣∣∣
σ=π

= 0. (3.57)

This is interpreted as an open string with both end points attached to the same Dp-brane.
Here the Dp-brane is an extended object having p spatial dimensions. The coordinates
along the Dp-brane are X i, and the coordinates normal to the Dp-brane are Xa.

When quantising the string attached to D-brane, we do as previous. We change
the coordinates into light-cone gauge. Then we quantise, and the Fourier modes become
creation and annihilation operators. We then consider the eigenstates of number operator.
The ground state is tachyon. The first excited states are massless and consist of two parts.
The first part α̂m−1|p+, ~pT 〉,m = 2, . . . , p is interpreted as electromagnetic field living on
the D-brane. The second part α̂a−1|p+, ~pT 〉 is interpreted as (d− p) massless scalars living
on D-brane.
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3.3 Strings in Background

Alternative to canonical quantisation, there is another quantisation method which is
called ‘path integral quantisation’ . Let us review the idea of path integral quantisation
in the case of point particle. Given two points ~qi, ti, and ~qf , tf in spacetime. We want
to find the transition probability from initial state |~qi, ti〉 at initial position to the final
state |~qf , tf〉 at final position. In order to do so we calculate the transition amplitude
〈~qf , tf |~qi, ti〉 and find its modulus square.

To find the transition amplitude we note that a quantum particle can choose any
path between the two points. There is an amplitude associated to each path, and there
is an associated phase which is related to action S of that path. From superposition
principle, the total transition amplitude is the sum of amplitudes for all paths. Therefore
the transition amplitude is in the form

〈~qf , tf |~qi, ti〉 =
∑

all paths

eiS[~q(t)]. (3.58)

In the case of field theory the idea is similar. We usually consider the transition from
vacuum at x → −∞ to vacuum at x → ∞ (we consider one dimensional space). The
amplitude is

Z =

∫
DφeiS[φ(x,t)], (3.59)

where Dφ is the integration measure for integrating the field φ over all paths. If there is
an interaction, the source J(x) is usually added into the action. The amplitude Z can
now be used to generate correlation functions which describe interaction.

This can also be applied to string. We see that in order to describe classical string,
we only need Polyakov action S. When we want to path-integral quantise the string we
write the amplitude Z and compute important quantities. For free string we have the
action

S0 =
1

4πα′

∫
d2σ
√
ggαβ∂αX

µ∂βX
νηµν . (3.60)

So

Z0 =

∫
DXDge−S0[X,g]. (3.61)

Here we have made Wick rotation τ → iτ, S → iS in the definitions. Note also that
from Wick rotation the worldsheet metric transforms as hαβ → gαβ. We have discussed
that free string action have 3 symmetries: Poincaré, diffeomorphism, and Weyl. These
symmetries also remain after quantisation. Actually, the integral in the amplitude (3.61)
is over counted. Because of the symmetry, some different values of Xµ and hαβ give the
same path. There is a way to cure this by using Faddeev-Popov technique. The over-
counting terms are factored out at the expense of introducing ghost fields. We will not
discuss the details of this issue.

Let us now try to put some backgrounds in. The most obvious generalisation would
be

S =
1

4πα′

∫
d2σ
√
ggαβ∂αX

µ∂βX
νGµν(X), (3.62)

where Gµν is metric for curved spacetime. This action actually describes the interaction
between string and graviton. Consider a small gravity limit Gµν ≈ ηµν + Gµν . The
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integrand of the amplitude Z is approximately

e−S ≈ e−S0(1 + V ), (3.63)

where

V = − 1

4πα′

∫
d2σ
√
ggαβ∂αX

µ∂βX
νGµν(X) (3.64)

is realised as the quantity describing the interaction between string and graviton. We
can also include other massless backgrounds by writing the action as

S =
1

4πα′

∫
d2σ
√
g
[(
gαβGµν(X) + iǫαβBµν(X)

)
∂αX

µ∂βX
ν + α′RΦ(X)

]
, (3.65)

where ǫαβ is antisymmetric with ǫ01 = 1; Bµν(X) is an antisymmetric tensor; Φ(X) is a
scalar; R is Ricci scalar of string worldsheet. If we expand Gµν(X), Bµν(X), and Φ(X)
around the flat background Gµν(X) = ηµν , Bµν(X) = 0,Φ(X) = 0 we will see the term
of interaction between string and massless backgrounds which are graviton, B-field, and
dilation. The dilaton term (the term involving Φ(X)) depends on local worldsheet topol-
ogy. Explicitly, in this term, the dilaton couples to Euler characteristic χ = 1

4π

∫
d2σ
√
gR

of the worldsheet. For example, at the tree level of oriented open string, the worldsheet
is topologically equivalent to a sheet [0, 1] × R, and the Euler characteristic is χ = 1.
At one-loop level of oriented open string, the worldsheet is topologically equivalent to
[0, 1]× R with an open disk removed. The Euler characteristic is then χ = 0.

We require that the theory is symmeric under Poincaré, diffeomorphism, and Weyl
transformation. The Poincaré and diffeomorphism symmetry are easy to get. For Weyl
symmetry, it requires Tαα = 0, where

Tαβ ≡ − 2π√
g

δS

δgαβ
. (3.66)

The calculation actually requires details and interpretations. However, we will state only
the result. For quantum string we have

Tαα = − 1

2α′β
G
µνg

αβ∂αX
µ∂βX

ν − i

2α′β
B
µνǫ

αβ∂αX
µ∂βX

ν − 1

2
βΦR, (3.67)

where βGµν , β
B
µν , and βΦ are called β−functions (not to be confused with index β). In

order to have Weyl symmetry, the β−functions must be set to zero. For small energy
limit α′ << 1, the β−functions are

βGµν = α′
(
Rµν + 2∇µ∇νΦ−

1

4
HµκσH

κσ
ν

)
+O(α′2), (3.68)

βBµν = α′
(
−1

2
∇κHκµν +∇κΦHκµν

)
+O(α′2), (3.69)

βΦ
µν = α′

(
d+ 1− 26

6α′ − 1

2
∇2Φ +∇κΦ∇κΦ− 1

24
HκµνH

κµν

)
+O(α′2), (3.70)

where ∇µ is a covariant derivative in spacetime; Rµν is Ricci tensor; Hµνκ ≡ ∇µBνκ +
∇νBκµ +∇κBµν . In fact, these equations can be derived from the effective action

Seff =
1

2κ2
0

∫
dd+1x

√
−Ge−2Φ

[
R + 4∇µΦ∇µΦ− 1

12
HµνλH

µνλ − 2(d+ 1− 26)

3α′ +O(α′)

]
,

(3.71)
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where κ0 is a constant, and G is the determinant of Gµν . We can check that this action
is invariant since dd+1x

√
−G is invariant hypervolume, and the integrands are invariant.

This means that, at low energy limit, the string can only move in the massless
backgrounds satisfying βGµν = βBµν = βΦ = 0. Immediately, we see the requirement
for spacetime dimension d + 1 = 26. We can also see that the requirement βGµν = 0
gives the quantum correction to vacuum Einstein equation. The very obvious back-
ground is Rµν = 0,Φ = constant, and Hκµν = 0. From Poincaré’s lemma, the equation
Hκµν = 0 implies that Bµν has a gauge freedom: therefore in contractible spacetime
manifold Bµν = ∂µΛν + ∂νΛµ for any function Λµ(X).

3.4 A Very Brief Introduction To Superstring The-

ory

So far we have been discussing bosonic string theory. This theory requires 26 dimensional
spacetime. The particles arising in this theory are all boson. The bosonic states are
symmetric under an exchange of any two bosons. There is another kind of particle which
is fermion. Fermionic states are antisymmetric under an exchange of any two fermions.
Fermionic worldsheet variables are anticommuting. This implies that two fermions cannot
have the same state. Bosons and fermions can be produced from superstring theory
which is a shorthand for supersymmetric string theory. In superstring theory, there is a
symmetry between bosons and fermions.

Since there are also fermionic worldsheet variables in superstring theory, there must
be a modification in the calculation of spacetime dimension. It turns out that superstring
theory requires 10 dimensional spacetime.

There are two kinds of boundary conditions for fermion: periodic and anti-periodic.
A fermionic sector having periodic boundary condition is called Ramond (R) sector while
the sector having anti-periodic boundary conditions is called Neveu-Schwarz (NS) sector.
For closed strings there are right-moving and left-moving sectors. Each sector can either
be Ramond or Neveu-Schwarz sector. All possible combinations are NS-NS, NS-R, R-NS,
and R-R sectors. States from NS-NS and R-R sectors are bosonic. There are no tachyonic
states in superstring theory. Massless bosonic states are graviton, B-field, dilaton, and
potentials coupled to D-brane charge. States from NS-R and R-NS are fermions.

Having briefly reviewed the basics, let us now move on to study more advanced stuffs.
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Part II

SOME PHYSICS OF

NONCOMMUTATIVE

GEOMETRY
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Chapter 4

Noncommutative Geometry from

String Theory

One of the interesting developments in string theory is the realisation of noncommutative
geometry. The simplest situation is the noncommutative worldvolume on D-brane in a
constant B-field. Many physical consequences have been studied.

Actually, it is also possible to have noncommutativity in momentum space so that the
whole phase space becomes noncommutative. This happens when we consider D-brane
in pp-wave background with a constant B-field. Physical consequences have not yet been
studied. So we may try this in later chapters

We will discuss the two situations in this chapter. The discussions are based on [15],
[16], [17]

4.1 D-branes and Noncommutative Spacetime

We have seen that strings can live in some certain backgrounds, and it is very obvious
that the background

Gµν(X) = ηµν , Hµνκ(X) = 0, Φ(X) = constant (4.1)

is allowed. We consider an open string attached to a Dp-brane living in this background.
Let X i, for i = 0, . . . , p be the coordinates along the Dp-brane. We have also seen that
electromagnetic field can live on Dp-brane. This field couples with charged open string’s
endpoints as the endpoints behave like point particles. This interaction is given by

1

2πα′

∮

∂Σ

dτAi(X)∂τX
i (4.2)

where ∂Σ is the boundary of the string worldsheet Σ. In this case ∂Σ represents string
endpoints at any time. Note that we have put the endpoint charge q = 1 at σ = π
and q = −1 at σ = 0. The full action in bosonic string theory or the bosonic part in
superstring theory is given by (cf. before Wick rotation of equation (3.65))

SB = − 1

4πα′

∫

Σ

d2σ
(
ηαβηµν + ǫαβBµν(X)

)
∂αX

µ∂βX
ν +

1

2πα′

∮

∂Σ

dτAi(X)∂τX
i. (4.3)

Note that the dilaton part is just a constant since Φ(X) = constant, and we only consider
one type of worldsheet topology. Therefore the dilaton part makes no contribution to the
theory, and we can just ignore them.
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There is an important relation between B-field and electromagnetic potential Ai(X).
Let Fij(X) = ∂iAj(X)− ∂jAi(X) be electromagnetic field strength. Consider

1

4πα′

∫

Σ

d2σǫαβFij(X)∂αX
i∂βX

j =
1

4πα′

∫

Σ

d2σǫαβ(∂iAj(X)− ∂jAi(X))∂αX
i∂βX

j

=
2

4πα′

∫

Σ

d2σǫαβ∂iAj(X)∂αX
i∂βX

j

=
2

4πα′

∫

Σ

d2σǫαβ∂αA
j(X)∂βX

j

=
1

2πα′

∫

Σ

d2σ[∂τAj(X)∂σX
j − ∂σAj(X)∂τX

j]

=
1

2πα′

∫

Σ

d2σ[∂τ (Aj(X)∂σX
j)− ∂σ(Aj(X)∂τX

j)]

=0− 1

2πα′

∫

∂Σ

dτAj(X)∂τX
j,

(4.4)

where in the third step we used chain rule, and in the final step we assume that Aj(X)
vanishes at initial and final time τ. If we set the component of B-field to be parallel to
the D-brane, we see that the action becomes

SB = − 1

4πα′

∫

Σ

d2σ
(
ηαβηµν∂αX

µ∂βX
ν + ǫαβFij(X)∂αX

i∂βX
j
)
, (4.5)

where Fij = Bij + Fij. Let us now interpret this result. The B-field and field strength
Fij(X) appears together in the action. The resulting field Fij is invariant under guage
transformation of potential Ai :

Ai → Ai + ∂iK, Bij → Bij, (4.6)

and under gauge transformation of B-field:

Ai → Ai − Λi, Bij → Bij + ∂iΛj − ∂jΛi, (4.7)

for any functions K and Λi. These gauge transformations are allowed because they keep
the conditions

Hijk = 0, and ∂iFjk + ∂jFki + ∂kFij = 0 (4.8)

satisfied.
Let us now vary the action. The variation of the first part is

δ

(
− 1

4πα′

∫

Σ

d2σηαβηµν∂αX
µ∂βX

ν

)
= − 1

2πα′

∫

Σ

d2σ[−∂τXµ∂τδXµ + ∂σX
µ∂σδXµ]

=− 1

2πα′

[

�
�

�
�

�
�

�
�

�
�

�:0∫
dσ(−∂τXµδXµ)

∣∣∣∣
τ

+

∫

Σ

d2σ(∂2
τ − ∂2

σ)X
µδXµ +

∫

∂Σ

dτ∂σX
µδXµ

]
.

(4.9)

The first term vanishes due to the requirement that δXµ = 0 at initial and final time τ.
Now we want to vary the B-field part of the action. Inspired by the equation (4.4) we
instead vary

1

2πα′

∫

∂Σ

dτωi(X)∂τX
i, (4.10)
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for Fij = ∂iωj − ∂jωi. Applying chain rule and the requirement that δXµ = 0 at initial
and final time, we have

δ

(
1

2πα′

∫

∂Σ

dτωi(X)∂τX
i

)
=

1

2πα′

∫

∂Σ

dτFij(X)δX i∂τX
j. (4.11)

The requirement δSB = 0 gives the equation of motion

(∂2
τ − ∂2

σ)X
µ = 0, (4.12)

and boundary conditions at σ = 0, π

∂σX
i + ∂τX

jF i
j = 0, i, j = 0, 1, . . . , p, (4.13)

Xa = xa0, a = p+ 1, . . . d. (4.14)

In Part I, we have discussed that the general solution to the equation of motion is of the
form

Xµ(τ, σ) = Xµ
R(τ − σ) +Xµ

L(τ + σ). (4.15)

We can as well write the solution using Fourier expansion. We therefore have

Xµ = xµ0 + (aµ0τ + bµ0σ) +
∑

n6=0

e−inτ

n
(iaµn cosnσ + bµn sinnσ). (4.16)

Imposing the boundary condition (4.13) along D-brane, we have

bkn + ajnF k
j = 0, all n. (4.17)

Therefore the solution along the D-brane is

Xk = xk0 + (pk0τ − pj0F k
j σ) +

∑

n6=0

e−inτ

n
(iakn cosnσ − ajnF k

j sinnσ). (4.18)

Here we denoted ak0 = pk0. Imposing the boundary condition (4.14), we have

aan = 0, ba0 = 0. (4.19)

Therefore

Xa = xa0 +
∑

n6=0

e−inτ

n
aan sinnσ, (4.20)

where we have renamed ban → aan. Notice that in the presence of the field Fij, the coordi-
nates along the D-brane are modified.

As discussed in Part I, we can treat, with care, string theory as a one dimensional
quantum field theory. From the action SB the conjugate momentum is

P k(τ, σ) =
1

2πα′ (∂τX
k + ∂σX

jF k
j ), (4.21)

P a(τ, σ) =
1

2πα′ (∂τX
a). (4.22)
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The mode expansion for momentum is then

P k(τ, σ) =
1

2πα′ (p
l
0 +

∑

n6=0

alne
−inτ cosnσ)M k

l , (4.23)

P a(τ, σ) = − i

2πα′

∑

n6=0

aane
−inτ sinnσ, (4.24)

where Mij = ηij−F k
i Fkj. Since the spacetime manifold is different from the case of usual

field theory, we cannot use the usual definition of Poisson bracket. The direct calculation
is quite involved. Alternatively, we can do this by using symplectic form. We first follow
the analysis in [18]. Let ~ξ = (q1, q2, . . . , qd, p1, p2, . . . , pd) be a vector in phase space. We
consider the action of the form

S =

∫
dt

{
Ai(~ξ)

dξi

dt
+ (terms without time derivatives)

}
. (4.25)

When computing Poisson bracket, we ignore the second term. Consider the change of S
under infinitesimal variation ξi → ξi + δξi :

δS =

∫
dt

(
∂Ai
∂ξj

δξj
dξi

dt
+Ai

d

dt
δξi
)

=

∫
dt

(
∂Ai
∂ξj

δξj
dξi

dt
− dAi

dt
δξi
)

=

∫
dt

(
∂Aj
∂ξi
− ∂Ai
∂ξj

)
δξi

dξj

dt
.

(4.26)

In the second step, we used chain rule and the requirement that δξi vanishes at initial
and final time. In the last step, we used chain rule. Let us introduce Ωij = ∂iAj − ∂jAi,
and let Ωij be the inverse of Ωij. We define Poisson bracket between functions G and K
as

{G,K} = Ωij ∂G

∂ξi
∂K

∂ξj
. (4.27)

In the case where ~A = (~0, ~p), the Poisson bracket reduces to the usual definition. Define
a symplectic form

Ω ≡ 1

2
Ωijdξ

i ∧ dξj, (4.28)

where dξi ∧ dξj forms a basis for Ω, and dξi ∧ dξj = −dξj ∧ dξi. The Poisson bracket is
obtained from the inverse of Ω. For usual field theory with fields φa(t, ~x), we have

Ω =

∫
dd~x dΠa(t, ~x) ∧ dφa(t, ~x). (4.29)

The Poisson bracket is found to agree with the equation (2.52). We can also apply this
method to our discussion. The symplectic form is given by

Ω =

∫ π

0

dσdPµ ∧ dXµ. (4.30)

This symplectic form gives a correct Poisson bracket as long as we ignore boundaries.
However, the modification to Poisson bracket only occurs at end points which have mea-
sure zero. Therefore, we can still use the given symplectic form. The modification to the
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Poisson bracket at the boundaries will be seen from mode expansions. For consistency,
we require that

dΩ

dτ
= 0. (4.31)

Using equation of motion and boundary conditions, we see that this is actually the case.
Working out explicityly, we have

Ω =
1

2α′

{
Mijdp

i
0 ∧ (dxj0 +

π

2
F jkdpk0) +

∑

n>0

−i
n

(Mijda
i
n ∧ daj−n + daan ∧ daa−n)

}
. (4.32)

Here we have used symmetric property of Mij, antisymmetric property of wedge product
∧, and the following formulas

∫ π

0

dσ cosmσ = πδm,0, (4.33)

∫ π

0

dσ cosnσ cosmσ =
π

2
(δn,m + δn,−m), (4.34)

∫ π

0

dσ cosnσ sinnσ = 0, (4.35)

∫ π

0

dσ sinnσ sinmσ =
π

2
(δn,m − δn,−m). (4.36)

The Poisson bracket is obtained from inverse of Ω. We now do the canonical quantisation
by promoting all modes to operators, and make the Poisson bracket become commutator
{ , } → [ , ]/i. The commutation relations for the modes are therefore

[âin, x̂
j
0] = [âin, p̂

j
0] = 0, [âim, â

j
n] = 2α′mM−1ijδm,−n, (4.37)

[p̂i0, p̂
j
0] = 0, [x̂i0, p̂

j
0] = i2α′M−1ij, [x̂i0, x̂

j
0] = i2πα′(M−1F)ij. (4.38)

We now calculate the commutation relations for string coordinates and momenta. We
use commutation relations for the modes and note that

∑

n6=0

f(n) = 0, for f(n) = −f(−n), (4.39)

and that
∑

n6=0(sinnx)/n is anti-periodic extension to π − x, i.e., over the range [0, 2π],

∑

n6=0

1

n
sinnx =

{
0, x = 0, 2π,

π − x x ∈ (0, 2π).
(4.40)

We obtain
[P̂ i(τ, σ), P̂ j(τ, σ′)] = 0, (4.41)

[X̂k(τ, σ), X̂ l(τ, σ′)] =





2πiα′(M−1F)kl, σ = σ′ = 0,

−2πiα′(M−1F)kl, σ = σ′ = π,

0 otherwise,

(4.42)

[X̂ i(τ, σ), P̂ j(τ, σ′)] = iηijδ(σ, σ′), (4.43)
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where δ(σ, σ′) = (1 +
∑

n6=0 cosnσ cosnσ′)/π is a periodically extended Dirac delta func-
tion from [0, π].

From the result, we see that the string coordinates become noncommutative at string
end points. Since the end points live on D-brane, this means the D-brane becomes
noncommutative. This leads to the study of physics on noncommutative spacetime.
Normally, in the case of quantum mechanics on commutative spacetime, coordinate space
representation can be used. This means that states are represented as wavefunction ψ(~x).
The position operator x̂i acts on the wavefunction by multiplication x̂iψ(~x) = xiψ(~x). The
momentum operator p̂j acts on the wavefunction by differentiation p̂jψ(~x) = −i∂jψ(~x).
However, in the case of noncommutative spacetime, the operators x̂i no longer commute
among themselves. Therefore the action of position operator on wavefunction can no
longer be represented by multiplication.

The situation is even worse in quantum field theory where field operators depend on
spacetime which is now noncommutative. The idea to solve this problem is by adapting
phase space quantisation method to the noncommutative spacetime. Originally, phase
space quantisation was used in order to describe the phase space which is noncommu-
tative in quantum mechanics. Despite the noncommutativity, states and operators are
represented by phase space functions. The star-product, which is the product between
two functions, is noncommutative but associative, and is used to encode the noncommu-
tativity. For the case of classical field theory on noncommutative spacetime, the adapted
phase space quantisation method allows us to view fields as functions on spacetime. How-
ever, the (commutative) product between fields becomes star-product. After this step,
we can get quantum field theory in noncommutative spacetime by using path integral
quantisation.

We will discuss phase space quantisation in details in chapter 5. For the discussion of
quantum field theory in noncommutative spacetime see for example [19].

4.2 D-branes and Totally Noncommutative Phase Space

In superstring theory, pp-wave background is given by a plane wave metric supported by
RR 5-form field strength

ds2 = −f 2

8∑

i=1

xixi(dx+)2 + 2dx+dx− +
8∑

i=1

dxidxi, (4.44)

F5 = fdx+ ∧ (dx1 ∧ dx2 ∧ . . . ∧ dx8). (4.45)

This background is allowed in superstring theory because it preserves symmetries of the
theory [20]. We notice that the Ricci scalar for the metric is zero: R = 0. So the first
term in the action Seff is zero. As in the case of previous section, we may also try to put

Hµνκ(X) = 0, Φ(X) = constant. (4.46)

We can ignore Φ(X) as before. We can see that by introducing the constant B-field in
the pp-wave background, the symmetries of superstring theory are still preserved [17].
If we put a Dp-brane in this background and imposing some gauge choices, the bosonic
part and fermionic part can be separated. Furthermore, the RR 5-form field strength will
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not play the role. So the bosonic action for open string ending on Dp-brane in pp-wave
background with constant B-field is

S = − 1

4πα′

∫
d2σ[gij(η

αβ∂αX
i∂βX

j +m2X iXj) + ǫαβ∂αX
i∂βX

jBij], (4.47)

for i, j = 2, . . . , p, and B is turned on only in the directions 2 . . . , p. Note that we ignored
the part that is normal to the D-brane since it does not change from the case of D-brane
in flat spacetime. In order to get this action, we used the pp-wave metric in light-cone
gauge with X+ = α′p+τ, and we choose the gauge Fij = Bij Furthermore, we have
introduced

m := α′p+f. (4.48)

We have also introduced the Euclidean metric gij which essentially comes from the scaling
of X i. In our normalisation, Bij and m are dimensionless. The equation of motion is

(−∂2
τ + ∂2

σ −m2)X i = 0, (4.49)

and the boundary condition at σ = 0, π is

∂σX
i + ∂τX

jB i
j = 0, (4.50)

where gij is used to lower indices. The conjugate momentum is given by

2πα′P k = ∂τX
k + ∂σX

jB k
j . (4.51)

Without loss of generality, we can take

gij = λδij, (4.52)

and

Bij =

(
0 B
−B 0

)
, (4.53)

and focus on X2, X3. Let

σ± =
1√
2
(τ ± σ), (4.54)

so the equation of motion becomes

2∂+∂−X
k = −m2Xk. (4.55)

Assuming Xk is in the form Xk = Xk
+(σ+)Xk

−(σ−) (no summation on k), we have

Xk = e±i
√
c2+m2τe±icσ. (4.56)

The equation of motion is linear, so we can use superposition principle. Let us consider
the solution

Xk = ei
√
c2+m2τ (Ak+ cos cσ +Dk

+ sin cσ) + e−i
√
c2+m2τ (Ak− cos cσ +Dk

− sin cσ), (4.57)

where Ak±, D
k
± are constant. Explicitly, the boundary condition at σ = 0, π is given by

∂σX
2 − ∂τX3B̄ = 0, (4.58)
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∂σX
3 + ∂τX

2B̄ = 0, (4.59)

where B̄ = B/λ. This implies

∂2
σX

k + ∂2
τX

kB̄2 = 0 at σ = 0, π. (4.60)

This implies
− c2 − (c2 +m2)B̄2 = 0 or Xk = 0 at σ = 0, π. (4.61)

For the first case we have

c = ± im√
1 + B̄2

. (4.62)

Applying the full boundary conditions, some constants are eliminated. With some rear-
rangements, we have

Xk
(0) = (xk0 cosω0τ+2α′pk0

sinω0τ

ω0

) coshω0B̄σ+(−2α′pj0 cosω0τ+x
j
0ω0 sinω0τ)B

k
j

sinhω0B̄σ

ω0B̄
,

(4.63)
where xk0, p

k
0 are constants, and ω0 = m/

√
1 + B̄2 > 0. Now the condition Xk = 0 at

σ = 0, π implies
sin cπ = 0, (4.64)

which in turn implies c = 0,±1,±2, . . . . Applying the full boundary conditions and using
superposition principle, the solution for this case is

Xk
(1) =

√
2α′
∑

n6=0

e−iωnτ

(
i
αkn
ωn

cosnσ − iα
j
n

n
B k
j sinnσ

)
, (4.65)

where ωn = sign(n
√
n2 +m2), n 6= 0, and αkn are constants. By superposition, the full

solution is given by
Xk = Xk

(0) +Xk
(1). (4.66)

The momentum is given by
P k = P k

(0) + P k
(1), (4.67)

with

2πα′P k
(0) = (−xj0ω0 sinω0τ + 2α′pj0 cosω0τ)M

k
j coshω0B̄σ

+ (2α′pj0 sinω0τ + xj0ω0 cosω0τ)(Bg
−1M) k

j

sinhω0B̄σ

B̄
,

(4.68)

and

2πα′P k
(1) =

√
2α′
∑

n6=0

e−iωnτ

(
αjnM

k
j cosnσ + i

m2

nωn
αjnB

k
j sinnσ

)
, (4.69)

where
M i

k = δ i
k −B j

k B
i
j . (4.70)

As usual, in order to calculate Poisson bracket, we consider the symplectic form

Ω =

∫ π

0

dσgijdP
i ∧ dXj. (4.71)
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Using equation of motion and boundary conditions, we can check that dΩ/dτ = 0. Ex-
plicitly, by expanding Xk and P k, finding the inverse of Ω, and quantising, the result
is

[x̂i0, p̂
j
0] = i(M−1)ij

πω0B̄

tanhπω0B̄
, (4.72)

[x̂i0, x̂
j
0] = i2πα′(g−1BM−1)ij. (4.73)

[p̂i0, p̂
j
0] = i

πω2
0

2α′ (g
−1BM−1)ij, (4.74)

[α̂in, α̂
j
s] = ωnM

ij
n δn,−s, (4.75)

where

M ij
n =

(
1

g + ωn

n
B
g

1

g − ωn

n
B

)ij
. (4.76)

This implies

[X̂k(τ, σ), X̂ l(τ, σ′)] = i2πα′(g−1BM−1)ij ×





1, σ = σ′ = 0,

−1, σ = σ′ = π,

0 otherwise,

(4.77)

[P̂ i(τ, σ), P̂ j(τ, σ′)] =
im2

2πα′B
ij ×





1, σ = σ′ = 0,

−1, σ = σ′ = π,

0 otherwise,

(4.78)

[X̂ i(τ, σ), P̂ j(τ, σ′)] = igijδ(σ, σ′). (4.79)

We see that on the D-brane the whole phase space becomes noncommutative. In
this report we call this kind of noncommutativiy as totally noncommutative phase space.
This situation is even more difficult than the case of noncommutative spacetime where
we were allowed to view momentum operators as differential operators. Equivalently, we
were allowed to use momentum space representation because the momentum space was
commutative. However, in totally noncommutative phase space, neither coordinate space
representation nor momentum space representations are allowed.

So in order to study physics on totally noncommutative phase space, we may propose
to use the generalisation of phase space quantisation. This is fine in the case of quantum
mechanics as we will soon see. However, it is difficult to construct a quantum field
theory on totally noncommutative phase space. This is because we normally view fields
as functions on either spacetime or momentum space. However, we are now forced to
use phase space functions. We might need to first construct quantum field theory in
usual phase space. Then the next step will by easy: as the fields are already functions
of phase space, we may use star-product to give the details of totally noncommutative
phase space. Alternatively, we may first try to understand some physics by studying
quantum mechanics in totally noncommutative phase space. This might provide some
useful insights into constructing quantum field theory in totally noncommutative phase
space.

Let us now discuss about phase space quantisation which will be used as a framework
for quantum mechanics in totally noncommutative phase space.
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Chapter 5

Phase Space Quantisation

Phase space quantisation was developed by several authors for example Weyl, Wigner,
Moyal and Groenewold. This method was successful in order to describe quantum me-
chanics. It was also a success in describing quantum field theory in noncommutative
spacetime (see e.g. [19]). Actually, it can also be used to describe more general situa-
tions. In this chapter, we will discuss the case of the simplest kind of noncommutative
phase space where commutators of phase space coordinates are constant.

5.1 Weyl quantisation and Wigner transformation

Definition 1. We define ~ξ as a vector in phase space. If the coordinates and conjugate
momenta are given by {qi}, {pi}, then the vector ~ξ is given by

~ξ = (q1, q2, . . . , qd, p1, p2, . . . , pd), (5.1)

where d is the dimension of space. We will call the dimension of phase space as n = 2d.

We can also define a collection of phase space operators ~̂ξ in the similar way. The general
commutation relations is then written as

[ξ̂i, ξ̂j] = iΘij, (5.2)

where Θij is constant.

Definition 2 (Weyl Quantisation). Given a well-behaved function (i.e. the function

that derivatives of any order vanish at infinity) g(~ξ), we can get the corresponding operator
Ĝ by (see e.g. [19])

Ĝ = Ŵ [g] =

∫
dn~k

(2π)n
g̃(~k)ei

~k·~̂ξ, (5.3)

where g̃(~k) is the Fourier transform of g(~ξ). That is

g̃(~k) =

∫
dn~ξe−i

~k·~ξg(~ξ). (5.4)

We can also write g(~ξ) as a Fourier inverse of g̃(~k) :

g(~ξ) =

∫
dn~k

(2π)n
ei
~k·~ξg̃(~k). (5.5)
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For convenient, we define a function [21], [19]

∆̂(~ξ) =

∫
dn~k

(2π)n
ei
~k·~̂ξe−i

~k·~ξ. (5.6)

The Weyl operator can now be written as

Ŵ [g] =

∫
dn~ξg(~ξ)∆̂(~ξ). (5.7)

Before we move on, let us remark a useful result from Fourier transform. It is

∫
dn~k

(2π)n
ei
~k·~ξ = δn(~ξ), (5.8)

or similarly, ∫
dn~ξei

~k·~ξ = (2π)nδn(~k). (5.9)

We can verify the result quickly by applying Fourier transform followed by inverse Fourier
transform or vice versa.

We have seen that for a given phase space function, the corresponding operator can
be written. We now define an inverse of this transformation.

Definition 3 (Wigner Transformation). Given an operator Ĝ, we get, by Wigner
transformation, a corresponding function

g(~ξ) = tr(Ĝ∆̂(~ξ)), (5.10)

where (from [21])

trR̂ = | det(2πΘ)|
∫

dn~k

(2π)n
e−i

~k·~̂ξR̂ei
~k·~̂ξ, (5.11)

for any operator R̂. Note that for this definition of trace tr we require Θ to be nonsingular.
That is det Θ 6= 0.

To get some insight, it will be useful to discuss the properties of trace, tr.

Theorem 1 (Properties of trace). The trace has the following properties for any operators
Â, B̂ and numbers a, b :

1. tr(Â†) = (tr(Â))†.

2. tr(Â†Â) ≥ 0 and tr(Â†Â) = 0 iff Â = 0.

3. tr(aÂ+ bB̂) = atr(Â) + btr(B̂).

4. tr(∆̂(ζ)) = 1.

5. tr(∆̂(ξ)∆̂(ζ)) = δn(~ξ − ~ζ).

39



Proof. The properties 1, 2, and 3 are easy to prove. We use the properties (ÂB̂)† =

B̂†Â†, Â†Â ≥ 0 and Â†Â = 0 iff Â = 0, and we note that the operators ~̂ξ are Hermitian.
We now prove property 4. Let us first consider

tr(ei
~k′·~̂ξ) = | det(2πΘ)|

∫
dn~k

(2π)n
e−i

~k·~̂ξei
~k′·~̂ξei

~k·~̂ξ

= | det(2πΘ)|
∫

dn~k

(2π)n
e−i

~k·~̂ξei(
~k′+~k)·~̂ξe

i
2
Θijk′ikj

= | det(2πΘ)|
∫

dn~k

(2π)n
ei
~k′·~̂ξeiΘ

ijk′ikj

= | det(2πΘ)|δn(Θijk′j)e
i~k′·~̂ξ

= (2π)nδn(~k′),

where in the second step we used Baker-Campbell-Hausdorff formula for [Â, B̂] = constant :

exp(Â) exp(B̂) = exp(Â + B̂) exp
(
[Â, B̂]/2

)
. In the last step, we eliminate ei

~k′·~̂ξ be-

cause ~k′ will be set to 0 after an integration. We also use the fact that δn(Θijk′j) =

δn(~k′)/| det Θ|. Now since

∆̂(~ξ) =

∫
dn~k′

(2π)n
ei
~k′·~̂ξe−i

~k′·~ξ, (5.12)

we have

tr(∆̂(~ξ)) = (2π)n
∫

dn~k′

(2π)n
δn(~k′)e−i

~k′·~ξ

= 1.

We now prove property 5. First consider

∆̂(~ξ)∆̂(~ζ) =

∫
dn~k′

(2π)n

∫
dn~k′′

(2π)n
ei
~k′·~̂ξei

~k′′·~̂ξe−i
~k′·~ξe−i

~k′′·~ζ

=

∫
dn~k′

(2π)n

∫
dn~k′′

(2π)n
ei(

~k′+~k′′)·~̂ξe
i
2
Θijk′ik

′′

j e−i
~k′·~ξe−i

~k′′·~ζ .

Therefore

tr(∆̂(~ξ)∆̂(~ζ)) =

∫
dn~k′

(2π)n

∫
dn~k′′

(2π)n
(2π)nδn(~k′ + ~k′′)e

i
2
Θijk′ik

′′

j e−i
~k′·~ξe−i

~k′′·~ζ

= | det(2πΘ)|
∫

dn~k

(2π)n

∫
dn~k′

(2π)n

∫
dn~k′′

(2π)n
e−i

~k·~̂ξei
~k′·~̂ξei

~k′′·~̂ξei
~k·~̂ξ ×

e−i
~k′·~ξe−i

~k′′·~ζ

=

∫
dn~k′

(2π)n
e−i

~k′·(~ξ−~ζ)

= δn(~ξ − ~ζ).
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There is an important correspondence between canonical quantisation and phase space
quantisation.

Theorem 2 (Weyl-Wigner Correspondence). Weyl quantisation and Wigner quantisa-
tion are inverse of each other. That is

g(~ξ) = tr(Ŵ [g]∆̂(~ξ)), (5.13)

where

Ŵ [g] =

∫
dn~ξg(~ξ)∆̂(ξ). (5.14)

Proof. Using the property 5 of trace we have

tr(Ŵ [g]∆(~ξ)) =

∫
dn~ζg(~ζ)tr(∆̂(~ζ)∆̂(~ξ))

=

∫
dn~ζg(~ζ)δn(~ζ − ~ξ)

= g(~ξ),

as required.

Let us denote Weyl-Wigner correspondence by
WW←→ . Therefore

g(~ξ)
WW←→ Ŵ [g].

Before we move on let us make some remarks. From property 4 of trace, we immedi-
ately get

tr(Ŵ [g]) =

∫
dn~ξg(~ξ) (5.15)

which means that the trace of an operator is the integration of its corresponding func-
tion over phase space. Furthermore, in the case of the usual quantum mechanics with
commutation relation [q̂i, p̂j] = iδij, we have

trR̂ = (2π)n/2 TrR̂, (5.16)

where Tr is the operator trace. Let us prove this for the case of 2 dimensional phase
space. Higher dimensional cases can be treated in the same way. Let us first consider

e−i(k1q̂+k2p̂) = e−i
k2

2
p̂e−ik1q̂e−i

k2

2
p̂

=

∫
dxdx′e−i

k2

2
p̂|x〉〈x|e−ik1q̂|x′〉〈x′|e−i k2

2
p̂

=

∫
dx|x− k2

2
〉e−ik1x〈x+

k2

2
|,

(5.17)

where we applied Baker-Campbell-Hausdorff formula twice in the first step, and we used
eiap̂|x〉 = |x + a〉, and 〈x|e−iap̂ = 〈x + a|, for real number a, in the last step. Now from
definition, we have

trR̂ =

∫
dk1dk2e

−i(k1q̂+k2p̂)R̂ei(k1q̂+k2p̂)

=

∫
dk1dk2

∫
dxdx′|x− k2/2〉e−ik1x〈x+ k2/2|R̂|x′ + k2/2〉eik1x

′〈x′ − k2/2|

= 2π

∫
dk2

∫
dxdx′|x− k2/2〉〈x+ k2/2|R̂|x′ + k2/2〉〈x′ − k2/2|δ(x− x′)

= 2π

∫
dxdk2|x− k2/2〉〈x+ k2/2|R̂|x+ k2/2〉〈x− k2/2|.

(5.18)
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We now make a change of variables u = x + k2/2, v = x − k2/2 so that dudv = dxdk2.
Then we have

trR̂ = 2π

∫
dudv|v〉〈u|R̂|u〉〈v|

= 2πTr

(
R̂

∫
du|u〉〈u|

)

= 2πTr(R̂).

(5.19)

5.2 Star Product

In phase space quantisation, star product is very important. It encodes the noncommuta-
tive property of phase space. We will also see that star product corresponds to operator
product in canonical quantisation formalism.

We motivate this by writing a Poisson bracket in the general form:

{g(~ξ), h(~ξ)} = g(~ξ)
←−
∂iΛ

ij−→∂jh(~ξ), (5.20)

where
←−
∂i operates on the left by differentiating with respect to ξi, and similar for

−→
∂i . We

now define a star product.

Definition 4 (Star Product). The ∗-product between 2 phase space functions g(~ξ) and

h(~ξ) is given by

g(~ξ) ∗ h(~ξ) = g(~ξ) exp

(
i

2

←−
∂ iΘ

ij~∂j

)
h(~ξ), (5.21)

where Θij = ~Λij.

There is another useful form of ∗-product:

Theorem 3. The ∗-product can also be written as

g(~ξ) ∗ h(~ξ) =

∫ ∫
dn~k

(2π)n
dn~k′

(2π)n
g̃(~k)h̃(~k′ − ~k) exp

(
− i

2
Θijkik

′
j

)
ei
~k′·~ξ. (5.22)
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Proof.
∫ ∫

dn~k

(2π)n
dn~k′

(2π)n
g̃(~k)h̃(~k′ − ~k) exp

(
− i

2
Θijkik

′
j

)
ei
~k′·~ξ

=

∫ ∫
dn~k

(2π)n
dn~k′

(2π)n

∫
dn~yg̃(~k)h(~y)exp

(
− i

2
Θijkik

′
j

)
ei
~k′·~ξe−i

~k′·~yei
~k·~y

=

∫
dn~k

(2π)n

∫
dn~yg̃(~k)h(~y)δn

(
−1

2
Θijki + ξj − yj

)
ei
~k·~y

=

∫
dn~k

(2π)n
g̃(~k)h(ξi − 1

2
Θijki)e

i~k·~ξ

=

∫
dn~k

(2π)n
g̃(~k)ei

~k·~ξ exp

(
−1

2
Θijki∂j

)
h(~ξ)

= g(ξi +
i

2
Θij∂j)h(~ξ)

= g(~ξ) exp

(
i

2

←−
∂iΘ

ij−→∂j
)
h(~ξ)

= g(~ξ) ∗ h(~ξ),
where the underlines are to emphasise the quantities integrated.

We now have a useful property.

Theorem 4. Ŵ [g]Ŵ [h] = Ŵ [g ∗ h].
Proof. Consider

Ŵ [g]Ŵ [h] =

∫ ∫
dn~k

(2π)n
dn~k′

(2π)n
g̃(~k)h̃(~k′)ei

~k·~̂ξei
~k′·~̂ξ

=

∫ ∫
dn~k

(2π)n
dn~k′

(2π)n
g̃(~k)h̃(~k′) exp

(
− i

2
Θijkik

′
j

)
ei(

~k+~k′)·~̂ξ

=

∫ ∫
dn~k

(2π)n
dn~k′′

(2π)n
g̃(~k)h̃(~k′′ − ~k) exp

(
− i

2
Θijkik

′′
j

)
ei
~k′′·~̂ξ.

In the second step, we used the Baker-Campbell-Hausdorff formula. In the last step, we
make the transformation

~k′′ = ~k′ + ~k, (5.23)

~k = ~k. (5.24)

Since the Jacobi of the transformation is 1, the integration measure remains the same.
Now consider

Ŵ [g ∗ h] =

∫∫
dn~k′′′

(2π)n
dn~ξe−i

~k′′′·~ξg(~ξ) ∗ h(~ξ)ei~k′′′·~̂ξ

=

∫∫
dn~k′′′

(2π)n
dn~ξ

∫∫
dn~k

(2π)n
dn~k′

(2π)n
e−i

~k′′′·~ξg̃(~k)h̃(~k′ − ~k)e− i
2
Θijkik

′

jei
~k′·~ξei

~k′′′·~̂ξ

=

∫∫
dn~k

(2π)n
dn~k′

(2π)n
g̃(~k)h̃(~k′ − ~k)e− i

2
Θijkik

′

jei
~k′·~̂ξ

= Ŵ [g]Ŵ [h],

43



as required.

From this theorem, we get the Weyl-Wigner correspondence between ∗-product and
operator product:

g(~ξ) ∗ h(~ξ) WW←→ Ŵ [g]Ŵ [h]. (5.25)

Since operator product is associative, we can deduce that the ∗-product is also associative.
We now define a Moyal bracket as a quantisation of Poisson bracket:

Definition 5 (Moyal Bracket). A Moyal bracket between two phase space functions is
given by

{{g(~ξ), h(~ξ)}} = g(~ξ) ∗ h(~ξ)− h(~ξ) ∗ g(~ξ). (5.26)

We immediately see the Weyl-Wigner correspondence between Moyal bracket and
commutator:

{{g(~ξ), h(~ξ)}} WW←→ [Ŵ [g], Ŵ [h]]. (5.27)

5.3 Wigner Function

So far, we have made a correspondence between phase space functions and operators.
Actually, states can also be made corresponding to phase space functions called ‘Wigner
functions’.

Definition 6 (Wigner Function). Given a density matrix ρ̂, we call the corresponding

function ‘the Wigner function’, fρ̂(~ξ) = tr(ρ̂∆(~ξ)) .

We can also get a Wigner function from any outer product. So

f|ψ〉〈φ|(~ξ)
WW←→ |ψ〉〈φ|. (5.28)

Actually, we can treat outer products as operators. Therefore, the results discussed for
operators also work for outer products.

In the usual quantum mechanics, we have

fρ̂(~ξ) = tr(ρ̂∆(~ξ))

= (2π)n/2Tr(ρ̂∆̂(~ξ))

= (2π)n/2
∫

dn~k

(2π)n
Tr(ρ̂ei

~k~̂ξ)e−i
~k·~x.

(5.29)

For the case of pure state with wavefunction ψ(~q), our Wigner function reduces, up to
normalisation, to the definition defined in literature [22], [23]. We have

f(~ξ) =

∫
dd~yψ∗

(
~x− 1

2
~y

)
e−i~y·~pψ

(
~x+

1

2
~y

)
. (5.30)

In canonical quantisation formalism, the average of an observable Ŵ [g] in a state with
density matrix ρ̂ is given by tr(ρ̂Ŵ [g]). From theorem 4 and equation (5.15), we have

tr(ρ̂Ŵ [g]) =

∫
dn~ξfρ̂(~ξ) ∗ g(~ξ). (5.31)
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Generally, for any well-behaved phase space functions g(~ξ), h(~ξ), we have

∫
dn~ξg(~ξ) ∗ h(~ξ) =

∫
dn~ξ

∫
dn~k

(2π)n

∫
dn~k′

(2π)n
g̃(~k)h̃(~k′ − ~k) exp

(
− i

2
Θijkik

′
j

)
ei
~k′·~ξ

=

∫
dn~k

(2π)n
g̃(~k)h̃(−~k)

=

∫
dn~ξg(~ξ)h(~ξ).

(5.32)

So we may as well write equation (5.31) as

tr(ρ̂Ŵ [g]) =

∫
dn~ξfρ̂(~ξ)g(~ξ). (5.33)

5.4 Eigenvalue Equation

In quantum mechanics it is often useful to study eigenvalue equations of time independent
Hamiltonian. It is natural to construct eigenvalue equations for phase space quantisation
formalism.

For
H(~ξ)

WW←→ Ĥ, (5.34)

we have

H(~ξ) ∗ f|ψ,α〉〈φ,β|(~ξ) = Eψf|ψ,α〉〈φ,β|(~ξ)
WW←→ Ĥ|ψ, α〉〈φ, β| = Eψ|ψ, α〉〈φ, β|, (5.35)

f|ψ,α〉〈φ,β|(~ξ) ∗H(~ξ) = Eφf|ψ,α〉〈φ,β|(~ξ)
WW←→ |ψ, α〉〈φ, β|Ĥ = Eφ|ψ, α〉〈φ, β|. (5.36)

Here α and β are degeneracy indices. From the Weyl-Wigner correspondence we see that
f|ψ,α〉〈φ,β|(~ξ) is the left ∗-eigenfunction of H(~ξ) with ∗-eigenenergy Eφ, and is the right

∗-eigenfunction of H(~ξ) with ∗-eigenenergy Eψ.
From Weyl-Wigner correspondence, we obtain the orthogonality condition:

f|i,α〉〈j,β|(~ξ) ∗ f|k,γ〉〈j,ǫ|(~ξ) = f|i,α〉〈l,ǫ|(~ξ)δjkδβγ, (5.37)

where the eigenkets and eigenbras are normalised.

5.5 Quantisation Procedure

We have seen that phase space quantisation is not completely new. We can make Weyl-
Wigner correspondence to bring phase space quantisation to a more familiar canonical
quantisation. However, the phase space quantisation has some advantages. For example,
it can be used to visualise observables and states as phase space functions.

We are now going to discuss another advantage of phase space quantisation. Consider
phase space observables (phase space functions that correspond to observable operators)
that are functions of degree ≤ 2. This type of observables is useful in many important
quantum systems.
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Theorem 5. A classical phase space observable G(~ξ) = (1/2)Gijξ
iξj remains the same

after quantisation.

Proof. It is natural to quantise a usual function product to symmetrised ∗-product. i.e.
we quantise the observable:

Gqm(~ξ) =
1

2
Gij

ξi ∗ ξj + ξj ∗ ξi
2

=
1

2
Gijξ

iξj

= G(~ξ).

From this theorem, we see that the phase space observable of degree ≤ 2 remains the
same after quantising.

We now make a note about Moyal bracket.

Theorem 6. A Moyal bracket between any two phase space observables of degree ≤ 2
reduces, up to constant, to Poisson bracket. i.e.

{{g(~ξ), h(~ξ)}} = i{g(~ξ), h(~ξ)}. (5.38)

Proof. The proof is straight forward. It follows by using definition of ∗-product and
Moyal bracket.

If a set of phase space observables of degree ≤ 2 forms a group under Poisson bracket,
then the set also forms, up to constant i, the same group under Moyal bracket. We say
that the algebra is preserved.

Example 2 (Homogeneous Linear Canonical Transformation in Four-Dimensional Phase
Space (continued)). This example continues from the Example 1. The analysis in subsec-
tion 2.1.3 continue to work in quantum case since the generators are of degree ≤ 2. This
example will be useful when studying the main result. Consider a star product between
two generators G1(~ξ), G2(~ξ) :

G1(~ξ) ∗G2(~ξ) = G1(~ξ)G2(~ξ)−
i

2
(~ξ)TΛ−1G1G2

~ξ − 1

8
Tr(G1G2), (5.39)

where Tr is matrix trace. If [G1, G2] = K, we have

G1(~ξ) ∗G2(~ξ)−G2(~ξ) ∗G1(~ξ) = − i
2
(~ξ)TΛ−1K~ξ

=
1

2
(~ξ)TK~ξ

= K(~ξ).

(5.40)

So we see that the Moyal bracket for function form of generators is the same as com-
mutator for matrix from of generators. There is another result worth remarking. We
have

G(~ξ) ∗G(~ξ) = G2(~ξ)− 1

8
Tr(G2). (5.41)
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So for example, from J2
0 − K2

2 − Q2
2 = J2

2 , and Tr(J0
2) = Tr(J2

2) = −Tr(K2
2) =

−Tr(Q2
2) = 1, we have

J0 ∗ J0 −K2 ∗K2 −Q2 ∗Q2 = J2 ∗ J2 −
1

4
. (5.42)

So the algebra for the classical function is modified in star product.

In summary, for phase space observables of degree ≤ 2, the classical and quantum
version of the observable are represented by the same function. However, the Poisson
bracket is quantised to be Moyal bracket.

For general phase space observables we will also make a quantisation so that the
algebra is preserved. The form of quantum phase space observables will be differed from
that of the classical phase space observables in general case.

Let us remark about vocabulary. We will call the formalism that corresponds to phase
space quantisation as phase space formalism. Similarly, for canonical quantisation, we
call its corresponding formalism as canonical formalism.

We have finished building the formalism. So let us study some quantum systems using
phase space quantisation.
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Chapter 6

Topics in Noncommutative Quantum

Field Theory

In section 4.1, we have seen that spacetime can become commutative. Let us discuss
some physical consequences of noncommutative spacetime in this chapter. We can adapt
the phase space quantisation method to study quantum field theory (QFT) in noncom-
mutative spacetime. The idea is that instead of noncommutativity in phase space, we
only require the noncommutative spacetime in the formalism. So the star product lives in
noncommutative spacetime. The functions in this formalism are now functions of space-
time. So it is convenient to study field theory. We can replace usual products by star
products given by

∗ = exp

(
i

2

←−
∂µθ

µν−→∂ν
)
. (6.1)

We require the matrix with components θµν to be invertible, so let us take the spacetime
dimensions to be even.

The features of quantum field theory in noncommutative spacetime are for example,
nonlocality, non-planar Feynman diagram, UV/IR mixing, noncommutative Yang-Mills
theory, and Morita equivalence. We will go into details in some topics. The discussion in
this chapter is based on [24], [19], [9].

6.1 Feynman Diagrams

6.1.1 Feynman Diagrams for QFT

Before we move on to study noncommutative spacetime, let us study about Feynman
Diagram which plays an important role when calculating interactions. We consider the
case of massive scalar field with φ4 interaction. The action of the field is

S = −
∫
dDx

[
1

2
∂µφ(x)∂µφ(x) +

1

2
m2φ(x)2 +

λ

4!
φ(x)4

]
, (6.2)

where λ and m are constants. Note that the first two terms represent the free field. The
term with φ4 potential is the interaction term.

Usually, we want to calculate scattering amplitude. This will be useful in order to
study the probability of each particle interaction process. This can be done in path
integral quantisation using perturbative expansion of coupling parameter λ. Each term
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Figure 6.1: Left: Propagator with momentum k. Right: A vertex connecting four prop-
agators.

of the calculation can be represented by Feynman diagrams with associating Feynman
rules. So in practice, given a process, we draw all allowed Feynman diagrams up to some
order and use Feynman rules to calculate scattering amplitude.

There is a momentum associated at each line in Feynman diagram. The mathematical
expression associating to a line is called propagator, and is derived from the free part of
the action. For the massive scalar field, the propagator for the line of momentum pµ is
given by

GF (k) =
−i~

kµkµ +m2 − iǫ , (6.3)

where ǫ will be taken to zero after calculation. Momenta of internal lines will be integrated
over. Propagators of external lines will be removed. Lines can join at a vertex. For φ4

theory, there are four lines at each vertex. Mathematical expression of vertex can be
obtained using Fourier transform of interaction part of the action. We have

SI = −
∫
dDx

λ

4!
φ(x)4

= −
∫
dDx

λ

4!

4∏

a=1

(∫
dDka
(2π)D

φ̃(ka)

)
e−i(k

µ
1
+kµ

2
+kµ

3
+kµ

4
)xµ

= − λ
4!

4∏

a=1

(∫
dDka
(2π)D

φ̃(ka)

)
(2π)DδD(k1 + k2 + k3 + k4).

(6.4)

At each vertex, we impose momentum conservation by

(2π)DδD(k1 + k2 + k3 + k4). (6.5)

Note that this expression is invariant under any permutation of the propagators at a
vertex. We also have to give a factor −iλ/~ at each vertex.

6.1.2 Feynman Diagrams for Noncommutative QFT

In noncommutative spacetime, we introduce star product into the action. The action
now becomes

S = −
∫
dDx

[
1

2
∂µφ(x)∂µφ(x) +

1

2
m2φ(x)2 +

λ

4!
φ(x) ∗ φ(x) ∗ φ(x) ∗ φ(x)

]
, (6.6)
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where we used equation (5.32) in the first two terms. We see that the free part of
the action remains the same. Therefore the expression for propagator does not change.
However, the interaction part is changed. Let us see how this change the momentum
conservation on a vertex. Consider Fourier transform of the interaction part:

SI = −
∫
dDx

λ

4!
φ(x) ∗ φ(x) ∗ φ(x) ∗ φ(x)

= −
∫
dDx

λ

4!

4∏

a=1

(∫
dDka
(2π)D

φ̃(ka)

)
e−ik

µ
1
xµ ∗ e−ikµ

2
xµ ∗ e−ikµ

3
xµ ∗ e−ikµ

4
xµ

= −
∫
dDx

λ

4!

4∏

a=1

(∫
dDka
(2π)D

φ̃(ka)

)
e−

i
2
k1×k2e−i(k

µ
1
+kµ

2
)xµ ∗ e−ikµ

3
xµ ∗ e−ikµ

4
xµ

= −
∫
dDx

λ

4!

4∏

a=1

(∫
dDka
(2π)D

φ̃(ka)

)
e−

i
2
k1×k2e−

1

2
(k1+k2)×k3e−i(k

µ
1
+kµ

2
+kµ

3
)xµ ∗ e−ikµ

4
xµ

= −
∫
dDx

λ

4!

4∏

a=1

(∫
dDka
(2π)D

φ̃(ka)

)
V (k1, k2, k3, k4)e

−i(kµ
1
+kµ

2
+kµ

3
+kµ

4
)xµ

= − λ
4!

4∏

a=1

(∫
dDka
(2π)D

φ̃(ka)

)
(2π)DδD(k1 + k2 + k3 + k4)V (k1, k2, k3, k4),

(6.7)

where
V (k1, k2, k3, k4) =

∏

a<b

e−
i
2
ka×kb , (6.8)

and
ka × kb ≡ (ka)µθ

µν(kb)ν = −kb × ka. (6.9)

Therefore the momentum conservation at a vertex becomes

(2π)DδD(k1 + k2 + k3 + k4)V (k1, k2, k3, k4). (6.10)

Note that because of the phase factor this expression is invariant only up to under cyclic
permutation of momentum. So Feynman diagrams have to split into two species: planar
and non-planar. This means that we can no longer freely permute lines to make all
Feynman diagram becomes planar.

Let us first consider planar Feynman diagram. We can keep track of cyclic ordering
by using ribbon diagrams. Consider a vertex with cyclically ordered momenta. Introduce
l1, l2, l3, l4 by

k1 = l1 − l4, (6.11)

k2 = l2 − l1, (6.12)

k3 = l3 − l2, (6.13)

k4 = l4 − l3. (6.14)

The vertex can be drawn as in figure 6.2. In this way, momentum at each vertex is
automatically conserved, and the phase factor becomes

V = exp

(
− i

2
(l1 × l2 + l2 × l3 + l3 × l4 + l4 × l1)

)
. (6.15)
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Figure 6.2: Vertex of noncommutative QFT with φ4 potential.
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Figure 6.3: Two adjacent vertices in Feynman diagram. The line connecting two vertices
make no contribution to overall phase factor V.

Now consider two adjacent vertices in figure 6.3. The overall phase factor of this
diagram is

V = exp

(
− i

2
(l2 × l3 + l3 × l4 + l4 × l1 + l1 × l5 + l5 × l6 + l6 × l2)

)
. (6.16)

As far as the overall phase factor concerns, this expression looks as if two vertices join,
and the connecting line disappears. i.e. the connecting line makes no contribution to the
overall phase factor. Therefore, for a connected Feynman diagram, internal lines make
no contribution to the overall phase factor. The resulting phase factor then only depends
on external momenta p1, p2, . . . , pn :

Vp(p1, . . . , pn) =
∏

a<b

e−
i
2
pa×pb . (6.17)

Let us now consider non-planar Feynman diagrams. It can be shown that the phase
factor is given by

Vnp(p1, . . . , pn) = Vp(p1, . . . , pn)
∏

a,b

e−
i
2
Cabka×kb , (6.18)

where Cab is the signed intersection matrix which counts the number of times that the
a-th line crosses over the b-th line. Here, the a-th and b-th lines can be either internal
or external. If the a-th line cross the b-th line with b-th line goes from right to left then
Cab = 1.
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Figure 6.4: All possible 1→ 1 scattering amplitudes up to 1-loop order in noncommuta-
tive QFT. From left to right: tree-level diagram, 1-loop planar diagram, 1-loop non-planar
diagram.

6.2 Divergencies

Consider the 1→ 1 scattering process. Feynman diagrams of scattering amplitude have
two external lines. Order of ~ increases with the number of looks. So, to the leading
orders, we can consider tree-level diagrams (diagrams with no loop) and 1-loop diagrams.
For noncommutative QFT, the diagrams up to 1-loop order are shown in figure 6.4. We
apply Wick rotation to zeroth components of momenta in Feynman diagram.

6.2.1 Divergencies in Usual QFT

For the usual QFT, 1-loop planar and non-planar diagrams coincide. Mathematical
expression of the tree-level diagram is given by

p2 +m2, (6.19)

where we ignored momentum-conserving delta function and some factors (e.g. λ,−i, ~)
because they can be put back in later. In order to obtain this expression, we used
Feynman rules. There is one propagator so we have (p2 + m2)−1. However we have to
remove two external propagators. So we have (p2 + m2)2. Overall factor then becomes
p2 +m2. For 1-loop diagram, we have

Π(1)(~k) =
1

2

∫
dD~k

(2π)D
1

~k2 +m2
, (6.20)

where we used Feynman rules given earlier, as well as the rule that we have to integrate
over the internal momentum. The factor 1/2 is coming from symmetry of permutation.

This expression is divergence for large k ≡ |~k| → ∞. This means that if we integrate in
some bounded region, then this integral is finite. However, if we extend the integral over
all space, the integral becomes infinite. This divergence property is called UV divergence.
This usually happens in loop diagrams of massive quantum fields. There is another kind
of divergence which is called IR divergence. This divergence happens when momentum
approaches zero. We usually encounter IR divergences in theories containing massless
quantum fields.

Let us now deal with the UV divergence. In order to do this, we first regularise Π(1)(~k)
by cutting off the region k > Λ, and only considering leading divergencies in Λ. Since
we are only interested in leading order, we can equivalently regularise Π(1)(~k) by using a
trick. We first use Schwinger parameterisation

1

k2 +m2
=

∫ ∞

0

dαe−α(k2+m2). (6.21)
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We put this in Π(1)(~k) and do Gaussian integral for ~k. This becomes

Π(1) =
1

2

∫ ∞

0

dα

(
1

2π

∫ ∞

−∞
dke−αk

2

)D
e−αm

2

=
1

2

1

(4π)D/2

∫ ∞

0

dα

αD/2
e−αm

2

. (6.22)

We see that the UV divergence now becomes α→ 0 divergence. This can be regularised
by introducing a factor exp(−1/(Λ2α)) so that

Π(1) =
1

2

1

(4π)D/2

∫ ∞

0

dα

αD/2
e−αm

2− 1

Λ2α . (6.23)

This integral can be computed directly (e.g. by using computer programme like Maple).
For the case D = 4, we have, to leading divergence orders in Λ,

Π(1) =
1

2

1

(4π)2

(
Λ2 +m2 log

(
m2

Λ2

))
. (6.24)

6.2.2 Divergencies in noncommutative QFT

Let us now consider the case of noncommutative QFT. Consider the graphs in figure 6.4.
At tree level, the mathematical expression is the same as the usual case. However, at
1-loop level, planar and nonplanar diagrams have to be considered independently. The
expression for the planar diagram is given by

Π(1)
p =

2

3
Π(1), (6.25)

this is because the overall phase factor is 1, and there is less symmetry than the case of
usual QFT. So this graph has the same UV divergence property as the usual QFT. The
expression for the nonplanar diagram is given by

Π(1)
np (~p) =

1

6

∫
dD~k

(2π)D
ei
~k×~p

~k2 +m2
. (6.26)

Note that 2Π
(1)
np (0) = Π

(1)
p . Actually, the expression for non-planar graph reduces, up to

numerical factor, to the one for planar graph. Therefore, for piθ
ij = 0, this diagram

has UV divergence. Let us now do the regularisation. As before, we apply Schwinger
parameterisation. Then

Π(1)
np (~p) =

1

6

∫
dD~k

(2π)D
eik×pe−α(k2+m2)

=
1

2

∫ ∞

0

dα

(
1

2π

∫ ∞

−∞
dk′e−αk

′2

)D
e−

p•p
4α e−αm

2

=
1

2

1

(4π)D/2

∫ ∞

0

dα

αD/2
exp

(
−αm2 − p • p

4α

)
,

(6.27)

where p • p = δlmpjθ
ljθmkpk. Putting in the cut-off and calculating Π

(1)
np (~p) to leading

orders, we immediately get, in the case D = 4,

Π(1)
np =

1

6

1

(4π)2

(
Λ2

eff +m2 log

(
m2

Λ2
eff

))
, (6.28)
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where

Λ2
eff =

1

1/Λ2 + p • p/4 . (6.29)

The scattering amplitude up to 1-loop order is given by

Π(~p) = p2 +m2 + λΠ(1)
p + λΠ(1)

np (~p). (6.30)

Looking at the tree-level order, we expect that the mass square is given by Π(0). So we
define a renormalised mass square

m2
ren = Π(0). (6.31)

Let us consider two cases:

1. p→ 0. In this case, the renormalised mass square reduces to the case of usual QFT.
That is

m2
ren = m2 +

λΛ2

32π2
+
λm2

32π2
log

(
m2

Λ2

)
, (6.32)

which diverges as Λ→ 0.

2. Λ→∞. The scattering amplitude is given by

Π(~p) = p2 +M2 +
λ

24π2p • p +
λm2

96π2
log

(
m2p • p

4

)
, (6.33)

where M2 = m2 + λΛ2

48π2 + λm2

48π2 log
(
m2

Λ2

)
. Due to the divergence in p→ 0, we cannot

have a well-defined renormalised mass square Π(0).

We see that the two limits Λ → ∞ and p → 0 do not commute. This demonstrates the
effect called UV/IR mixing. It is surprising that IR divergence appears in massive QFT.

6.3 Other Topics

Let us state some other features of noncommutative QFT. First, due to the infinite
spacetime derivative order from star product, the noncommutative QFT is nonlocal.
The effect of nonlocality only appears in interacting part of the QFT. It can be seen
that nonlocality gives rise to UV/IR mixing. Consider two functions that nonvanish
over a very small region. The interaction through star product of the two functions is
nonvanished over a much larger region. In momentum space, the small range is equivalent
to high momentum. So a virtual particle (a particle in a loop) of high energy produces
the effect of small energy (long range). This means that UV cut-off imposes IR cut-off.
For more details of this discussion see [24].

In noncommutative spacetime, noncommutative Yang-Mills theory can also be con-
structed. The construction is more complicated than noncommutative QFT we discussed
earlier. We have to define star product for matrix-valued functions.

There is an interesting equivalence in noncommutative Yang-Mills theory. For a Yang-
Mills theory in noncommutative torus, there is a dual Yang-Mills theory in a dual non-
commutative torus. This equivalence is called Morita equivalence. We may deal with
Yang-Mills theory in noncommutative torus by finding a dual theory that is simpler.
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Chapter 7

Simple Harmonic Oscillator in

Noncommutative Phase Space

We are now ready to study quantum systems using phase space quantisation. We are
particularly interested in simple harmonic oscillator (SHO) in totally noncommutative
phase space. The simplest situation which noncommutativity comes into play is the case
of four dimensional phase space. We first discuss SHO in two dimensional phase space
to get the idea of phase space quantisation. We will then turn our attention to SHO in
four dimensional phase space. In the case of usual phase space, there are already several
results. Based on these results we hope to construct SHO in totally noncommutative four
dimensional phase space.

In canonical formalism, we have seen that the energy of SHO is quantised. Each energy
state can be constructed from a vacuum |0〉 by repeatedly applying creation operators on
the vacuum. So when we study SHO using phase space formalism, we are particularly
interested to see energy levels, energy eigenstates, and ladder operators.

7.1 One Dimensional Simple Harmonic Oscillator

Let us now one dimensional SHO using phase space formalism. There are several tech-
niques to study one dimensional SHO. The most obvious one would be to use Weyl-Wigner
correspondence to write the well-known canonical formalism’s solutions as quantities in
phase space formalism. Alternatively, we may study physics directly in phase space for-
malism because states and operators are phase space functions, and operations are done
by differentiations. So solving some (probably infinite order) partial differential equations
might give the required result.

Let us discuss the first technique in more details. In canonical formalism, the Hamil-
tonian of the SHO, after scaling, is

Ĥ =
1

2
(x̂2 + p̂2), (7.1)

and commutation relation is [x̂, p̂] = i. We have the ladder operators

â =
1√
2
(x̂+ ip̂), â† =

1√
2
(x̂− ip̂). (7.2)

We now pass to phase space formalism using Weyl-Wigner correspondence. We have the
Hamiltonian

H =
1

2
(x2 + p2), (7.3)
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and ladder operators

a =
1√
2
(x+ ip), a† =

1√
2
(x− ip). (7.4)

The operator product is Weyl-Wigner corresponding to the star product. So the number
operator is

N = a† ∗ a, (7.5)

where the star product is

∗ = exp
i

2
(
←−
∂x
−→
∂p −

←−
∂p
−→
∂x). (7.6)

We can check that
H ∗N = N ∗H. (7.7)

So N shares the ∗-eigenfunctions fn with H. Consider Wigner functions fn such that

N ∗ fn = fn ∗N = nfn. (7.8)

Using Weyl-Wigner correspondence, we know from canonical formalism that n = 0, 1, 2, . . . ,
and

fn(x, p) =

∫
dyψ∗

n

(
x− 1

2
y

)
e−iypψn

(
x+

1

2
y

)
, (7.9)

where ψn(x) is the wavefunction for the state |n〉, i.e. ψn(x) = 〈x|n〉. This means that
if we know wavefunctions ψn(x), we can immediately get the Wigner functions fn(x, p)
which are ∗-eigenfunctions ofH with ∗-eigenvalues n+1/2. Actually, we only need to know
one Wigner function f0(x, p) which describes ground state. We can then generate fn(x, p)
by repeatedly applying a†∗ on the left, and ∗a on the right. This means that fn(x, p) is
proportional to (a†∗)nf0(x, p)(∗a)n. Since ψ0(x) ∝ e−x

2/2, we have f0(x, p) ∝ e−(x2+p2).
For the alternative technique, we begin with the ∗-eigenvalue equation

H ∗ f = f ∗H = Ef. (7.10)

Explicitly [(
x+

i

2
∂p

)2

+

(
p− i

2
∂x

)2

− 2E

]
f(x, p) = 0. (7.11)

The imaginary part of this equation implies that f is a function of H. Solving the real
part we get [25]

fn(x, p) = fn(H) ≡ 2(−1)ne−2HLn(4H), (7.12)

where n = E − 1/2 = 0, 1, 2, . . . , and Ln(4H) are Laguerre’s polynomial:

L0(4H) = 1, L1(4H) = 1− 4H, L2(4H) = 8H2 − 8H + 1, . . . . (7.13)

7.2 Two Dimensional Simple Harmonic Oscillator

Let us now discuss two dimensional SHO. The Hamiltonian is given by H = 1
2
(x2 + y2 +

p2
x + p2

y). The star product is

∗ = exp
i

2
(
←−
∂x
−→
∂px −

←−
∂px

−→
∂x +

←−
∂y
−→
∂py −

←−
∂py

−→
∂y). (7.14)
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We may use the fact from canonical formalism that for two dimensional SHO, we have
two separate sets of ladder operators. Explicitly â1 = (x̂+ ip̂x)/

√
2, â2 = (ŷ+ ip̂y)/

√
2 are

the annihilation operators. The number operator associated to each set is then N̂i = â†i âi,
for i = 1, 2. If |n1〉1, |n2〉2 are eigenstates of N̂1 and N̂2 respectively, then |n1〉1 ⊗ |n2〉2 is
the eigenstate of Ĥ with eigenenergy n1+n2+1. The wavefunction 〈x, y|ni〉i only depends
on xi. So the Wigner function is Weyl-Wigner corresponding to |n1〉1〈n1|1 ⊗ |n2〉2〈n2|2.
That is the ∗-eigenfunction of H is

f̃n1,n2
(x, y, px, py) = fn1

(H1)fn2
(H2), (7.15)

where Hi = Ni + 1/2. Explicitly

f̃n1,n2
(x, y, px, py) = 4(−1)n1+n2e−2HLn1

(4H1)Ln2
(4H2). (7.16)

An alternative method can be seen in [26]. In there the analysis is done solely in phase
space formalism. The method is Weyl-Wigner corresponding to spectral decomposition
method in canonical formalism. We briefly discuss the idea here. First the quantity

Exp(Ht) ≡
∞∑

n=0

1

n!
(−it)n(H ∗ . . . ∗H︸ ︷︷ ︸

n terms

) (7.17)

is written. It is then expanded around the origin of complex plane of t. For one dimen-
sional SHO, Fourier transform of Exp(Ht) in this region has Wigner functions fn(H) as
amplitudes and E = n+ 1/2, n = 0, 1, 2, . . . as ‘frequency’ . For N dimensional isotropic
SHO with Hamiltonian H = 1

2
(~p2 + ~q2) the quantity Exp(Ht) can be decomposed as

Exp(Ht) = Exp(H1t) ∗ . . . ∗ Exp(HN t) (7.18)

where Hi = 1
2
(p2
i + q2

i ), i = 1, . . . ,N . The Fourier amplitude is then obtained by multi-
plying the N separate sets of one-dimensional amplitude. In two dimensional SHO, we
then get the result in equation (7.16).

Actually, there is a symmetry in two dimensional SHO that allows us to write Wigner
funciton in an alternative form. Let us consider an important example which will be
a useful starting point for achieving the main result. The analysis is taken from [26].
Consider a two dimensional SHO with Hamiltonian H = 1

2
(x2 + y2 + p2

x + p2
y). We also

consider the angular momentum L = xpy− ypx. Note that H ∗L = L ∗H. So they shares
the same ∗-eigenfunctions. This result is also expected from classical mechanics since the
angular momentum is conserved. Let us now solve the eigenvalue problem:

H ∗ f = f ∗H = Ef, (7.19)

L ∗ f = f ∗ L = Mf, (7.20)

f ∗ f = f. (7.21)

We introduce linear canonical transformation

x′ =
1√
2
(x+ py), p′x = − 1√

2
(y − px), (7.22)

y′ =
1√
2
(x− py), p′y =

1√
2
(y + px). (7.23)
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We now introduce ladder operators and number operators.

ar =
1√
2
(x′ + ip′x), Nr = a†r ∗ ar, (7.24)

al =
1√
2
(y′ + ip′y), Nl = a†l ∗ al. (7.25)

Note that Nr ∗Nl = Nl ∗Nr, and we have

Nr +
1

2
=
H + L

2
, (7.26)

Nl +
1

2
=
H − L

2
. (7.27)

In this way, we have decomposed two dimensional SHO into two sets of separate one
dimensional SHO. The solution is then

fn,m(H/2, L/2) ≡ 4(−1)ne−2HL(n+m)/2(2(H + L))L(n−m)/2(2(H − L)) (7.28)

with E = n+ 1,M = m, where n = 0, 1, 2, . . . and m = −n,−n+ 2, . . . , n− 2, n.

7.3 Two Dimensional SHO in Noncommutative Phase

Space

Let us now consider two dimensional SHO in totally noncommutative phase space. After
scaling the Hamiltonian is

H =
1

2
(x2 + y2 + p2

x + p2
y), (7.29)

and the Moyal brackets are

{{x, y}} = iθ, {{xi, pj}} = iδij, {{px, py}} = iφ. (7.30)

We can then define star product accordingly. As in the case of usual phase space, we
introduce L = xpy − ypx. The operators in two dimensional SHO in totally noncommu-
tative phase space are polynomials of degree ≤ 2. So in practice, we may use the tricks
discussed in section 5.5, and particularly in example 2.

We first calculate the Moyal bracket between J0 = H/2 and J2 = L/2. We have

{{J0, J2}} = i(φ− θ)K2

2
, (7.31)

where K2 = (xpx + ypy)/2. This commutation relation generates a new quantity K2.
We hope that by calculating Moyal bracket within the group of J0, J2, K2, we will get
new quantities. Calculating Moyal bracket within a new group would generate other
quantities. The process would end when there is no new quantity generated. The result
is

{{J0, J2}} = −ivK2, (7.32)

{{J0, K2}} = −iQ2 + ivJ2, (7.33)

{{J0, Q2}} = iK2, (7.34)

{{J2, K2}} = ivJ0 + iuQ2, (7.35)

{{J2, Q2}} = −iuK2, (7.36)

{{K2, Q2}} = iJ0 + iuJ2, (7.37)

(7.38)
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where Q2 = −(x2−p2
x+y2−p2

y)/4, u = (θ+φ)/2, v = (θ−φ)/2. Note that the quantities
J0, J2, K2 and Q2 coincide with the ones given in example 1. The commutation relations
are messy and difficult to study.

To get some insight, let us study the case of θ = φ = 0. The commutation relations
are then

{{J0, J2}} = 0, (7.39)

{{J0, K2}} = −iQ2, (7.40)

{{J0, Q2}} = iK2, (7.41)

{{J2, K2}} = 0, (7.42)

{{J2, Q2}} = 0, (7.43)

{{K2, Q2}} = iJ0. (7.44)

As expected, these commutation relations reduce to the ones given in example 1. We
see that J0, Q2, K2 generates SO(1, 2) group. Using the trick in example 2, we have the
Casimir operator:

J0 ∗ J0 −K2 ∗K2 −Q2 ∗Q2 = J2 ∗ J2 −
1

4
=

(
J2 −

1

2

)
∗
(
J2 +

1

2

)
. (7.45)

Let us now analyse the spectrum of two dimensional SHO using SO(1, 2) algebra. Let us
do this in canonical formalism because it is Weyl-Wigner corresponding to phase space
formalism and is more compact in this analysis. Consider the state |j µ〉 with

Ĵ2|j µ〉 = j|j µ〉, (7.46)

Ĵ0|j µ〉 = µ|j µ〉. (7.47)

Let Ĵ± = iK̂2 ± Q̂2 so that

[Ĵ0, Ĵ±] = ±Ĵ±, (7.48)

[Ĵ+, Ĵ−] = 2Ĵ0. (7.49)

From the commutation relations, we see that

Ĵ0Ĵ±|j µ〉 = (Ĵ±Ĵ0 + [Ĵ0, Ĵ±])|j µ〉
= Ĵ±(Ĵ0 ± 1)|j µ〉
= (µ± 1)Ĵ±|j µ〉.

(7.50)

That is Ĵ± raises/lowers the eigenenergy of Ĵ0. We note that Ĵ†
+ = −Ĵ−. So

0 ≤
∣∣∣Ĵ±|j µ〉

∣∣∣
2

= 〈j µ|Ĵ†
±Ĵ±|j µ〉

= 〈j µ| − Ĵ∓Ĵ±|j µ〉

= −〈j µ|Ĵ2
2 −

1

4
− Ĵ2

0 ∓ Ĵ0|j µ〉

= −(j2 − 1

4
− µ2 ∓ µ).

(7.51)
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This implies −(µ−1/2) ≤ j ≤ µ−1/2. Actually, the analysis from SO(1, 2) is not enough
to determine the spectrum. However note that when j take integer or half-integer we get
the expected spectrum as in the previous section.

We now have some insight about the commutation relations in the case θ = φ = 0.
Let us come back to the case of general θ and φ. We expect to get the algebra as similar
as possible to SO(1, 2). We do this is steps

STEP 1 We want to see if there is an operator that commutes with J0. We recognise
that {{J0, J2}} and {{J0, Q2}} gives, up to constant, K2. So we have

{{J0, A1}} = 0, (7.52)

where A1 = J2 +vQ2. As usual, we want a closed algebra of commutation relations.
We have, in addition,

{{K2, A1}} = −iuA2, (7.53)

{{J0, K2}} = −iA2, (7.54)

{{J0, A2}} = is2K2, (7.55)

{{K2, A2}} = is2J0 + iuA1, (7.56)

{{A1, A2}} = −ius2K2, (7.57)

where A2 = Q2 − vJ2, and s =
√

1 + v2.

STEP 2 Looking at {{J0, K2}}, {{J0, A2}}, and {{K2, A2}} we are motivated to define

A′′
2 =

A2

s
, (7.58)

J ′′
0 = sJ0 +

uA1

s
. (7.59)

So now

{{J ′′
0 , A1}} = 0, (7.60)

{{K2, A1}} = −iusA′′
2, (7.61)

{{J ′′
0 , K2}} = −i(1− θφ)A′′

2, (7.62)

{{J ′′
0 , A

′′
2}} = i(1− θφ)K2, (7.63)

{{K2, A
′′
2}} = iJ ′′

0 , (7.64)

{{A1, A
′′
2}} = −iusK2. (7.65)

STEP 3 Let us focus on equations (7.62)-(7.64). We also consider the case θφ < 1.
Other cases will be discussed later. We are motivated to define

J ′
0 =

J ′′
0

1− θφ, (7.66)

K ′
2 =

K2√
1− θφ, (7.67)

Q′
2 =

A′′
2√

1− θφ. (7.68)
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So that J ′
0, K

′
2, Q

′
2 generates SO(1, 2) group. We want to find the central element

J ′
2 that commutes with J ′

0, K
′
2, Q

′
2. Let us use the trick in example 2. We realise

that J ′2
0 −K ′2

2 −Q′2
2 = J ′2

2 , where

J ′
2 =

1

1− θφ (uJ0 + A1) . (7.69)

We can check that this is actually the case, i.e. J ′
0 ∗ J ′

0 − K ′
2 ∗ K ′

2 − Q′
2 ∗ Q′

2 =
J ′

2 ∗ J ′
2 − 1/4.

By construction, we see that J ′
0, K

′
2, Q

′
2, J

′
2 for θφ < 1 forms the same set of commutation

relations as J0, K2, Q2, J2 for θ = φ = 0. So for general θ, φ with θφ < 1 we can find the
spectrum of J ′

0 in the same way as in the usual phase space. We first note that J0, J2, J
′
0,

and J ′
2 commute with each other. So they share the same eigenstates. Furthermore, we

have
J0 = J ′

0s− uJ ′
2, (7.70)

J2 = J ′
2s

2 − usJ ′
0. (7.71)

Let eigenvalues for J0, J2, J
′
0, and J ′

2 be µ, j, µ′, and j′, respectively. We carry out the
analysis of finding the energy for the state |j′ µ′〉. We set j′ being integer or half-integer.
As usual, we have 2µ′ = n + 1, for n = 0, 1, 2, . . . , and 2j′ = m, for m = −n,−n +
2, . . . , n− 2, n. The energy spectrum for H = 2J0 is then

E(θ,φ)
n,m = 2µ = (n+ 1)

√

1 +

(
θ − φ

2

)2

− (θ + φ)

2
m. (7.72)

So we see that as opposed to the usual case where En,m = n + 1, the energy level for
the same value of n is generally split. However, the degeneracy is recovered in the case
θ+φ = 0. For small θ and φ, we have E

(θ,φ)
n,m = En,m−(θ+φ)m/2. The effect of energy level

splitting for two dimensional SHO in totally noncommutative phase space is analogous to
Zeeman effect which is the splitting of energy level for Hydrogen atom by weak magnetic
field B. The splitting of energy level is proportional to Bml, where ml is the magnetic
quantum number.

Let us now discuss what is likely to happen for θφ ≥ 1. Looking at the equations
(7.62)-(7.64), we see that when θφ = 1, there are more quantities that commute with
Hamiltonian. So the energy should become more degenerate in this case. For the case of
θφ > 1, the ladder operators J± = iK2±Q2 switches the role. That is J+ becomes lowering
operator while J− becomes raising operator. So instead of energy unbounded from above,
energy now becomes unbounded from below. We may discuss this in alternative way.
Näıvely1 consider the equation (7.72). When θφ = 1, the vacuum energy is degenerate
with the value of (θ + φ)/2 for m = n. When θφ > 1, the energy is not bounded from
below: the vacuum is then unstable. So we may believe that the region θφ ≥ 1 is
unphysical.

There is a better interpretation for the requirement θφ < 1. Let us look back at the
result of D-brane in pp-wave background with constant B-field. For point particle at
σ = 0, the coordinates and momenta are given by

X̂k = (x̂k0 cosω0τ + 2α′p̂k0
sinω0τ

ω0

), (7.73)

2πα′P̂ k = (−x̂j0ω0 sinω0τ + 2α′p̂j0 cosω0τ)M
k
j . (7.74)

1I would like to thank Prof. Chong-Sun Chu for the discussion leading to this result.
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Note that there is no oscillation mode for point particle. The commutation relations for
Xk and λP k/(2α′(1 + B̄2)) take the form corresponding to equations (4.72)-(4.74). That
is we may take the commutation relations

[x̂j, p̂k] = iδjk
πω0B̄

(1 + B̄2) tanhπω0B̄
, j, k = 2, 3, (7.75)

[x̂2, x̂3] = i
2πα′B̄

1 + B̄2
, (7.76)

[p̂2, p̂3] = i
πω2

0B̄

2α′(1 + B̄2)
, (7.77)

as a starting point. We want to scale the coordinates and momenta so that the commu-
tation relations take the form of equation (7.30). After scaling, we realise that

θφ = tanh2 πω0B̄ < 1. (7.78)

So we may interpret that string theory only allows the physical region for totally non-
commutative phase space.

Previously we have discussed that using the information from SO(1, 2) is not enough
to determine energy spectrum. However, we may argue that the Wigner functions
fn,m(J ′

0, J
′
2) are ∗-eigenfunctions of J ′

0 and J ′
2. So they are also ∗-eigenfunctions for Hamil-

tonian H. In the case where θ = φ = 0, the energy spectrum is labelled by n = 0, 1, 2, . . . ,
and m = −n,−n+ 2, . . . , n− 2, n. So if we continuously turn on θ and φ an energy level
should not suddenly appear or disappear, i.e. the number of energy levels should remain
the same. This is justified because the ∗-eigenfunctions fn,m(J ′

0, J
′
2) also have the same

set of label n,m. From this argument, we can be more confident to use the result obtained
in this section.

Actually, we can justify our result formally. This justification would lead to an inter-
esting consequence. As many readers may have noticed long before that when θ = φ = 0,
the operators J0, J2, K2, Q2 form a subalgebra of Sp(4). So we may also expect that for
general θ, φ (probably with θφ < 1) the operators J ′

0, J
′
2, K

′
2, Q

′
2 form a subalgebra of

Sp(4). So let us now revisit canonical transformation in four dimensional phase space.

7.4 Canonical Transformation in Four Dimensional

Noncommutative Phase Space

Our goal now is to see how the 10 generators of Sp(4) for θ = φ = 0 deformed and
redefined in the case θ, φ 6= 0 to get an algebra as similar as possible to Sp(4). We may
try to use the method discussed in previous section. However, we now have to deal with
10 generators, which means 45 commutation relations have to be studied simultaneously.
So this is not a good idea.

7.4.1 Function Form of Generators

Inspired by [1], the 10 generators of Sp(4) can be written in terms of ladder operators.
Let us study the case θ = φ = 0. We want to use ladder operators defined near the end of
section 7.2. Since the canonical transformation was used before defining ladder operators,
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the expressions may not look exactly like the ones in [1]. Working out explicitly, we find
that

J0 =
1

2
(a†r ∗ ar + a†l ∗ al + 1), (7.79)

J1 =
1

2i
(a†r ∗ al − a†l ∗ ar), (7.80)

J2 =
1

2
(a†r ∗ ar − a†l ∗ al), (7.81)

J3 =
1

2
(a†r ∗ al + a†l ∗ ar), (7.82)

K1 = −1

4
(a†r ∗ a†r + ar ∗ ar + a†l ∗ a†l + al ∗ al), (7.83)

K2 =
i

2
(a†r ∗ a†l − ar ∗ al), (7.84)

K3 = − i
4
(a†r ∗ a†r − ar ∗ ar − a†l ∗ a†l + al ∗ al), (7.85)

Q1 = − i
4
(a†r ∗ a†r − ar ∗ ar + a†l ∗ a†l − al ∗ al), (7.86)

Q2 = −1

2
(a†r ∗ a†l + ar ∗ al), (7.87)

Q3 =
1

4
(a†r ∗ a†r + ar ∗ ar − a†l ∗ a†l − al ∗ al). (7.88)

So instead of studying 45 commutation relations, we may try to construct 2 sets of ladder
operators.

Let us study the case of general θ, φ with θφ < 1. Recall that we have obtained
J ′

0, J
′
2, K

′
2, Q

′
2. We expect that

J ′
0 + J ′

2 −
1

2
= a′†r ∗ a′r, (7.89)

J ′
0 − J ′

2 −
1

2
= a′†l ∗ a′l, (7.90)

for new ladder operators a′r, a
′†
r , a

′
l, a

′†
l to be determined. With direct calculations (see

appendix A) we have

a′r = Arx+Brpy + i(−Ary +Brpx), a′†r = a′∗r , (7.91)

a′l = Alx−Blpy + i(Aly +Blpx), a′†l = a′∗l , (7.92)

where

Ar =

√
(s+ u)(s− v)

4s(1− θφ)
, Br =

√
(s+ u)(s+ v)

4s(1− θφ)
, (7.93)

Al =

√
(s− u)(s+ v)

4s(1− θφ)
, Bl =

√
(s− u)(s− v)

4s(1− θφ)
. (7.94)

These are well-defined because s > |u| for θφ < 1. We can check that

{{a′r, a′†r }} = {{a′l, a′†l }} = 1, (7.95)
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{{a′r, a′l}} = {{a′r, a′†l }} = {{a′†r , a′†l }} = {{a′†r , a′†l }} = 0. (7.96)

So a′r, a
′†
r , a

′
l, a

′†
l are indeed ladder operators. We use ladder operators to obtain the

generators in the similar way to equations (7.79)-(7.88). The result is

J ′
0 =

1

1− θφ [sJ0 +
u

s
(J2 + vQ2)], (7.97)

J ′
1 =

1

s
√

1− θφ [J1 + vQ1], (7.98)

J ′
2 =

1

1− θφ [uJ0 + J2 + vQ2], (7.99)

J ′
3 =

1

s
√

1− θφ [J3 + vQ3], (7.100)

K ′
1 =

1

s(1− θφ)
[s2K1 + uvJ3 − uQ3], (7.101)

K ′
2 =

K2√
1− θφ, (7.102)

K ′
3 =

1

s(1− θφ)
[s2K3 − uvJ3 + uQ1], (7.103)

Q′
1 =

1

(1− θφ)
[Q1 − vJ1 + uK3], (7.104)

Q′
2 =

1

s
√

1− θφ [Q2 − vJ2], (7.105)

Q′
3 =

1

(1− θφ)
[Q3 − vJ3 − uK1]. (7.106)

We may check explicitly that the commutation relations for these 10 generators form
Sp(4). This is what we expect from the expressions of generators in terms of ladder
operators. The commutation relations for ladder operators can then be used to determine
the commutation relations for the 10 generators.

Having obtained the two sets of ladder operators, we can completely determine the
spectrum of J ′

0 in the same way as we did for two dimensional SHO in the usual phase
space. Then, using the relationship between J0, J2, J

′
0, J

′
2, we can obtain the result in the

equation (7.72). This time we do not need to assume anything.

7.4.2 Matrix Form of Generators

Let us now study the matrix form of generators. We can obtain the matrix form using
the equation (2.24). First we have to determine the symplectic matrix Λ. Explicitly,

Λ(θ, φ) =

(
θT I
−I φT

)
, (7.107)

where

T = iσ2 =

(
0 1
−1 0

)
. (7.108)
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Note that detΛ(θ, φ) = 1 − θφ. So this suggests that when θφ = 1, our definition of
Weyl-Wigner correspondence breaks down. Now we have the matrix form of generators

J ′
0 =

i

2s

(
vT I
−I −vT

)
, (7.109)

J ′
1 =

i

2s
√

1− θφ

(
uσ3 (s2 + uv)σ1

−(s2 − uv)σ1 uσ3

)
, (7.110)

J ′
2 =

1

2

(
σ2 0
0 σ2

)
, (7.111)

J ′
3 =

i

2s
√

1− θφ

(
−uσ1 (s2 + uv)σ3

−(s2 − uv)σ3 −uσ1

)
, (7.112)

K ′
1 =

i

2s

(
vσ1 σ3

σ3 vσ1

)
, (7.113)

K ′
2 =

i

2
√

1− θφ

(
I θT
φT −I

)
, (7.114)

K ′
3 = − i

2s

(
vσ3 −σ1

−σ1 vσ3

)
, (7.115)

Q′
1 = − i

2

(
σ3 0
0 −σ3

)
, (7.116)

Q′
2 =

i

2s
√

1− θφ

(
−uT (s2 + uv)I

(s2 − uv)I −uT

)
, (7.117)

Q′
3 =

i

2

(
σ1 0
0 −σ1

)
. (7.118)

We may check explicitly that the matrix form of generators satisfy the commutation rela-
tions for Sp(4). We may also check explicitly that the transformation matrices generated
by these generators indeed preserve Poisson bracket. Surprisingly, these matrices J ′

2, Q
′
1

and Q′
3 do not depend on θ and φ. That is the matrices remain the same form for any

parameter of totally noncommutative phase space. In the future, it might be useful to
study why this is the case.

7.5 Discussion

Our main objective in this chapter is to study two dimensional SHO. We mainly use phase
space formalism. In quantum case, we have reviewed some methods in obtaining energy
spectrum and Wigner functions which solve our problem. We learn that, as expected,
energy is degenerate. In the case of totally noncommutative phase space, we tried to find
the algebra that is associated to our problem. We have found a complicated algebra for
J0, J2, K2, Q2. This algebra reduces to SO(1, 2) in the case of usual phase space. We learn
that this algebra produces the expected energy spectrum. Looking back to the case of
totally noncommutative phase space, we see that our complicated algebra can be made to
SO(1, 2) with the shift transformation of J0, J2, K2, Q2 to J ′

0, J
′
2, K

′
2, Q

′
2. From this result,

we can also obtain the spectrum of J ′
0. This spectrum tells us that the energy is generally

nondegenerate.
In the process, we have used the requirement that θφ < 1. This is justified from

several separated arguments. All of them pointed out that the case θφ ≥ 1 is unphysical.

65



The most convincing argument is from string theory. On D-brane in pp-wave background
with constant B-field, a point particle has commutation relations that demand θφ < 1.

Let us look back to the main discussion. Actually the information from the group
SO(1, 2) is not enough to determine the spectrum. We noticed that the generators for
this group actually belongs to a bigger group which is Sp(4). Studying Sp(4) might help
us justify the result. Instead of using the method discussed previously, we use a more
elegant method. We can do this by writing the 10 generators in term of ladder operators.
In the case of totally noncommutative phase space we have already obtained 4 (from
SO(1, 2)) generators out of 10. So it is possible to determine the ladder operators. After
getting the ladder operators and checking that they give correctly the generators of Sp(4),
we can use these ladder operators to construct the spectrum of J ′

0 in the same way as we
did for the two dimensional SHO in usual phase space. So this justifies our result.

Reading this chapter, the readers may be motivated that we have used some kind of
changing the basis. Essentially, we realise that a new basis can be defined by

x̃ =
√

2(Arx+Brpy), ỹ =
√

2(Alx+Blpy), (7.119)

p̃x =
√

2(−Ary +Brpx), p̃y =
√

2(Aly +Blpx). (7.120)

This is motivated from the equations (7.91)-(7.92). We can check that the symplectic
matrix is transformed as

Λ(θ, φ)→ Λ̃(θ, φ) = Λ(0, 0). (7.121)

That is the symplectic matrix take the form of the one in usual phase space. Explicitly,
we have the transformation matrix

S =
√

2




Ar 0 0 Br

Al 0 0 −Bl

0 −Ar Br 0
0 Al Bl 0


 . (7.122)

So that
SΛ(θ, φ)ST = Λ(0, 0). (7.123)

The generators G′ of Λ(θ, φ) are related to the generators G of Λ̃(θ, φ) by

SG′S−1 = G. (7.124)

For example SJ0
′S−1 = J0, which can be verified explicitly. More elegantly, let us consider

canonical transformation matrices M ′ = exp(−iαG′), M = exp(−iαG) for some real
parameter α. Using equations (7.123) and (7.124), we can verify that if M and Λ(0, 0)
satisfy the equation (2.19) (this is true; see example 1), then M ′ and Λ(θ, φ) also satisfy
the equation (2.19).
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Chapter 8

Conclusions and Discussions

In this report, we have seen how noncommutative geometry arises in string theory. We
have also discussed physical consequences. In particular, we studied simple harmonic
oscillator (SHO) in totally noncommutative phase space. The idea is that in the case
of noncommutative spacetime, quantum field theory can be constructed. However, it
is difficult to directly construct quantum field theory in totally noncommutative phase
space. So studying SHO in totally noncommutative phase space might give us some
insights.

We have started this report by presenting essential basics in Part I. We started by
discussing theories of point particles. In particular we discussed canonical transformation
which serves as a basic for the main results. We then discussed string theory. When
quantised, string creates particles and fields. In low energy limit, massless background
that strings can live in must satisfies the condition of vanishing β−functions.

We then discuss some advanced topics in Part II. We have seen that when quantising
an open string attached to D-brane in constant B-field, the D-brane worldvolume becomes
noncommutative. Quantum field theory in noncommutative spacetime has been discussed
in literatures. We also see that in the case of D-brane in pp-wave background with
constant B-field, the phase space of D-brane becomes totally noncommutative.

Quantum field theory in noncommutative spacetime has been studied in literatures.
We have reviewed some features in chapter 6.

Actually, we see that the phase space can become totally noncommutative. So the ul-
timate goal is to construct quantum field theory in totally noncommutative phase space.
However, it is difficult to do so because neither coordinate space representation nor mo-
mentum space representation are allowed. We consider phase space quantisation which
allows us to view phase space as a whole. The noncommutative property is encoded in
star product. So in the future this formalism can be useful to construct quantum field
theory in totally noncommutative phase space.

We have constructed phase space quantisation formalism as a direct generalisation
to the one discussed in literatures. In this generalisation we can study quantisation in
totally noncommutative phase space. We can view observables and states as phase space
functions. There is an important property called Weyl-Wigner correspondence which
relates phase space formalism to canonical formalism. So if we have a theory in canonical
formalism we can immediately get the theory in phase space formalism, or vice versa.
The calculation in phase space formalism is simplified if an observable is a polynomial of
degree ≤ 2 : the quantum observable take the same function as the classical observable.

After we discussed phase space quantisation, we studied two dimensional SHO in to-
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tally noncommutative phase space. This is the simplest system where noncommutativity
comes in. We studied a closed algebra of observables and realised that this algebra can
be transformed to be the algebra of SO(1, 2). This allows us to construct energy spec-
trum, and we found that the energy is generally nondegenerate. In the process we have
restricted ourselves to the case θφ < 1. This is justified by comparing with the result
from string theory.

Actually the analysis up to this point is still not complete. The information from
SO(1, 2) is not enough to determine energy spectrum. So we look at a bigger group Sp(4),
which is a homogeneous linear canonical transformation group that preserves Poisson
bracket in four dimensional phase space. We realise that in order to study this group, we
only need to find ladder operators. When we get the ladder operators, we can use them to
construct energy spectrum. This justifies our result of energy spectrum discussed earlier.
Additionally, when we study generators of Sp(4) in matrix form, we see that J ′

2, Q
′
2,

and Q′
3 do not depend on θ and φ. This might be related to some symmetries. Further

investigations may be required.
Essentially, what we have done is the change of basis. We transform the phase space so

that it looks like a usual phase space. The symplectic group Sp(4) can then be constructed
naturally. This group can then be transformed back into the totally noncommutative
phase space to describe physics there.

Actually, we have only discussed the two dimensional isotropic SHO. The SHO with
Hamiltonian

H =
1

2m
(p2
x + p2

y) +
1

2
m(ω2

1x
2 + ω2

2y
2)

will need to be studied in the future. After this, we still have to deal with arbitrary
dimensional SHO before we can construct quantum field theory in totally noncommutative
phase space. This is quite a long way to go along this path. However, we believe that for
each system of SHO, there is a change of basis that allows us to construct separate ladder
operators. Once we get some ideas about the general form of separate ladder operators
we might be able to at least construct free quantum fields in totally noncommutative
phase space.

The problem now is how to make a change of basis. Notice that the change of basis
(7.119)-(7.120) reduces, when θ = φ = 0, to the canonical transformation discussed in
[26] or near the end of subsection 7.2. Why does [26] define such a transformation when
studying two dimensional SHO? Their motivation might be to simultaneously diagonalise
Hamiltonian and a conserved quantity which in this case is angular momentum. So when
we study a general SHO, we may first try to simultaneously diagonalise Hamiltonian and
conserved quantities in usual phase space. This might lead us to canonical transformation.
When we turn on noncommutativity, this canonical transformation might be modified to
become the change of basis that transforms the totally noncommutative phase space into
a usual phase space. Ladder operators can then be constructed, and physics can then be
described.

We have discussed the possible future works in the direction of our ultimate goal. We
may as well study some side tasks. In this report, we have constructed phase space quan-
tisation for the case of totally noncommutative phase space. So we may be able to use
it to describe other quantum systems for example hydrogen atom in totally noncommu-
tative phase space. Additionally, we have discussed about the deformation of symplectic
group Sp(4). This group is not limited to two dimensional SHO. We may also use this
group to study quantum optics in totally noncommutative phase space.
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Appendix A

Calculations of Ladder Operators in

Section 7.4

Recall that in section 7.4, we need ladder operators to construct the 10 generators of
Sp(4) for general θ, φ. Let us see the calculations.

From section 7.3, we obtained

J ′
0 =

1

1− θφ
[
sJ0 +

u

s
(J2 + vQ2)

]
, (A.1)

J ′
2 =

1

1− θφ [uJ0 + J2 + vQ2] . (A.2)

(A.3)

Our goal is to solve equations (7.89)-(7.90). Here let us show the calculation for a′r. The
solution for a′l can be obtained similarly.

Let us first observe that in the case θ = φ = 0, the annihilation operator is given by

ar =
1

2
(x− iy + ipx + py). (A.4)

We require that when θ = φ = 0, a′r should reduce to ar, so we try a′r = z1x + z2y +
z3px + z4py for some complex numbers z1, z2, z3, z4. Now consider

J ′
0 + J ′

2 −
1

2
=

s+ u

s(1− θφ)
[sJ0 + J2 + vQ2]−

1

2

=
s+ u

s(1− θφ)

[
s− v

4
(x2 + y2) +

s+ v

4
(p2
x + p2

y) +
1

2
(xpy − ypx)

]
− 1

2
.

(A.5)

Also consider

a′†r ∗ a′r = a′†r a
′
r +

i

2
{a′†r , a′r}. (A.6)

The second term on the right-hand-side is just a number. So we require

i

2
{a′†r , a′r} = −1

2
. (A.7)

We now write the equation (7.89) in terms of x, y, px, py and compare the coefficients.
Consider the coefficiencts of x2 and y2. We have

|z1|2 + |z2|2 =
s+ u

s(1− θφ)

s− v
4
≡ A2

r, (A.8)
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where Ar is positive. So we have

z1 = Are
iα1 , z2 = Are

iα2 , (A.9)

for some real numbers α1 and α2. Consider the coefficients of xy :

0 = z∗1z2 + z1z
∗
2

= 2A2
r cos(α1 − α2).

(A.10)

So by requiring α1 → 0 and α2 → −π/2 when θ = φ = 0, we pick the solution

α1 − α2 =
π

2
. (A.11)

Similarly, consider the coefficiencts of p2
x and p2

y. We have

|z3|2 + |z4|2 =
s+ u

s(1− θφ)

s+ v

4
≡ B2

r , (A.12)

where Br is positive. So we have

z3 = Bre
iα3 , z4 = Bre

iα4 , (A.13)

for some real numbers α3 and α4. Consider the coefficients of pxpy :

0 = z∗3z4 + z3z
∗
4

= 2B2
r cos(α3 − α4).

(A.14)

By requiring α3 → π/2 and α4 → 0 when θ = φ = 0, we pick the solution

α3 − α4 =
π

2
. (A.15)

Now consider the coefficients of xpy :

1

2

s+ u

s(1− θφ)
= z∗1z4 + z1z

∗
4

= 2ArBr cos(α1 − α4)

=
1

2

s+ u

s(1− θφ)
cos(α1 − α4).

(A.16)

So
α1 − α4 = 0. (A.17)

Consider the coefficients of ypx :

−1

2

s+ u

s(1− θφ)
= z∗2z3 + z2z

∗
3

= 2ArBr cos(α2 − α3)

=
1

2

s+ u

s(1− θφ)
cos(α2 − α3).

(A.18)

We require that the solution must be consistent with equations (A.11), (A.15), and (A.17).
So

α2 − α3 = −π. (A.19)
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So we have
a′r = eiα1(Arx− iAry + iBrpx +Brpy). (A.20)

Finally we have to check that the equation (A.7) is satisfied. This requirement does
not restrict the choice of α1. So we simply choose α1 = 0 to be consistent with the case
θ = φ = 0. Now the equation (A.7) implies

A2
rθ +B2

rφ− 2ArBr = −1

2
. (A.21)

By noting that θ = u + v, φ = u − v, and s2 = 1 + v2, we can check that the equation
(A.7) is indeed satisfied.

So we have finished deriving the ladder operators a′r, a
′†
r , and in the process, the

commutation relation
{{a′r, a′†r }} = 1 (A.22)

is proved.
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