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Introduction

I System of interest: d (spatial) dimensional charged non-relativistic
fluid to leading order.

I The respective relativistic system is well known.

I One can take a ‘non-relativistic’ limit (v � c) to get the
non-relativistic counterpart. [Kaminski et al.’14]

I In [Rangamani et al.’08] an alternative approach to get (neutral)
non-relativistic fluids was suggested – Light Cone Reduction (LCR),
and later was extended to charged fluids by [Brattan ’10].

I A goal of this work was to test this idea in presence of background
electromagnetic fields.

I We were able to construct a NR entropy current, whose positive
semi-definite nature constrains the fluid transport coefficients.
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Relativistic Fluid Dynamics

I Fluids are near equilibrium limit of physical systems.

I State of a fluid is completely determined by a set of parameters like uµ

(four-velocity), T (temperature), M (chemical potential) etc. which
are functions of space-time.

I Dynamics of a fluid is governed by equations of energy-momentum and
charge conservation:

∇µTµν = FµνJQν , ∇µJµQ = 0. (1)

I Tµν , JµQ are in general determined in terms of fluid variables, external
fields and their derivatives. These expressions are known as
‘constitutive relations’ of a fluid.

I Constitutive relations specify a fluid system completely.
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Relativistic Fluid Dynamics

I We use the ‘near equilibrium’ assumption of fluid, i.e. (space-time)
derivatives of fluid parameters are fairly small and can be treated
perturbatively.

I Constitutive relations can hence be expressed as a perturbative
expansion in derivatives.

Tµν = Tµν
(0) + Πµν

(1) + . . . , JµQ = JµQ(0) + Υµ
(1) + . . . . (2)

I At every order we put in all possible terms allowed by the symmetry.
Every term comes with an arbitrary coefficient – a function of fluid
thermodynamic variables T , M , known as ‘transport coefficients’.

I For ideal fluids we have:

Tµν
(0) = E(T ,M )uµuν + P(T ,M ) (uµuν + gµν) , (3)

JµQ(0) = Q(T ,M )uµ. (4)
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Dissipative Fluids

I Landau Gauge Condition:

uµΠµν = uµΥµ = 0. (5)

Use the projection operator: Pµν = gµν + uµuν .

I Most generic symmetric tensors: ∇(µuν).

I Contribution to Tµν :

Πµν
(1) = −2ησµν − ζΘPµν . (6)

I Most generic vectors: ∇µT , ∇µ(M /T ), Eµ = Fµνuν .

I Contribution to JµQ :

Υµ
(1) = −γPµν∇νT − %Pµν∇ν

(
M

T

)
+ λEµ. (7)
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Entropy Current

I Second law of thermodynamics says that Entropy of a system must
always increase.

I Since fluids are in local thermodynamic equilibrium, it asks for entropy
to be created at every space-time point, or divergence of an entropy
current should be positive semi-definite:

∇µJµS ≥ 0. (8)

I The canonical form of entropy current is given by:

JµS = Suµ − M

T
Υµ. (9)

E + P = ST + QM , dP = SdT + QdM . (10)

I Entropy positivity gives some constraints on the transport coefficients
coupling to derivative terms.
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Entropy Current

I We get the constraints:

Πµν
(1) = −2ησµν − ζΘPµν ,

η ≥ 0, ζ ≥ 0, (11)

Υµ
(1) = −γPµν∇νT − %Pµν∇ν

(
M

T

)
+ λEµ,

γ = 0, λ =
1

T
% ≥ 0. (12)
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Light Cone Reduction
An overview

I Light-cone reduction is a prescription to reduce a relativistic algebra to
a non-relativistic algebra in one lower dimension.

I We start with a (d + 1, 1)-dim relativistic theory, and undergo
following coordinate transformation:

{xµ}µ=0,1,...,d+1 →
{

x±, x i}
i=1,2,...,d

, (13)

x± =
1√
2

(
x0 ± xd+1

)
, (14)

I Now we declare x− to be a
symmetry direction, t ≡ x+ to be
our new ‘time’ direction.

I The new theory is known to have
non-relativistic symmetry, with
coordinates

{
t = x+, x i

}
i=1,2,...,d

.
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Light Cone Reduction
An overview

I Generators of relativistic symmetry group under LCR reduces to
non-relativistic symmetry group.

translations
rotations

boosts

 Poincaré → Galilean


translations
rotations
Gal. boosts

I Similarly ‘Conformal Symmetry’ in relativistic theories reduce to
‘Schrödinger Symmetry’ group.

I For more details consult: [Rangamani ’09 - ‘Holography for non-relativistic CFTs’]

12 / 24



Outline

Relativistic Fluid Dynamics

Light Cone Reduction

LCR of Relativistic Fluid

Parity Violating Fluids and Anomaly

Conclusions

13 / 24



LCR of Relativistic Fluid

I We start with reducing the conservation equations:

∇+T++ +∇iT
i+ = F+λJQλ

∇+T+− +∇iT
i− = F−λJQλ

∇+T+j +∇iT
ij = F jλJQλ

∇+J+
Q +∇iJ

i
Q = 0

⇒
⇒
⇒
⇒

∂tρ+ ∂i(ρv i) = 0

∂t(ε+ 1/2 ρv2) + ∂i j
i = j iQεi

∂t(ρv j ) + ∂i t
ij = qεj − jQkβ

kj

∂tq + ∂i j
i
Q = 0

I The two sets will agree provided we identify:

v i =
u i

u+
+ . . .

ρ = (u+)2(E + P) + . . .

ε =
1

2
(E − P) + . . .

q = Qu+ + . . .

A+ = 0

φ = A−

a i = Ai

εi = −∂iφ− ∂ta i

βij = ∂ia j − ∂j a i

p = P + . . .

τ =
T

u+
+ . . .

µ =
M

u+
+ . . .
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LCR of Relativistic Fluid

I We have the form of the currents:

t ij = ρv iv j + pg ij−nσij − zδij∂kvk , (15)

j i =

(
ε+ p +

1

2
ρv2

)
v i−nσij vj − z∂kvkv i

−κ∂iτ − κ∇i
(µ
τ

)
+
κ

τ
(εi − vjβ

ji), (16)

j iQ = qv i−ξ∇iτ − r∇i
(µ
τ

)
−m∇ip + σ(εi − vkβ

ki), (17)

I We do not get the ‘most generic’ constitutive relations for NR fluid. It
is related to the choice of frame in relativistic theory.

I The fluid obeys Wiedemann-Franz Law for metals: κ/σ = Lτ .

Lexp = 2.45× 10−8W ΩK−2, Lth = 6.68× 10−8W ΩK−2 (18)
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LCR of Entropy Current

I Reduction of Entropy Current:

∇+J+
S +∇iJ

i
S ≥ 0 ⇒ ∂ts + ∂i j

i
S ≥ 0

I We get the identifications:

s = Su+, j iS = sv i − µ

τ
ς i (19)

I The constraints on non-relativistic transport coefficients exactly follow:

t ij = ρv iv j + pg ij−nσij − zδij∂kvk , (20)

j i =

(
ε+ p +

1

2
ρv2

)
v i−nσij vj − z∂kvkv i

−κ∂iτ − κ∇i
(µ
τ

)
+
κ

τ
(εi − vjβ

ji), (21)

n ≥ 0, z ≥ 0, κ ≥ 0 (22)

j iQ = qv i−ξ∇iτ − r∇i
(µ
τ

)
−m∇ip + σ(εi − vkβ

ki), (23)

m = 0, ξ ≥ 0, σ =
1

τ
r ≥ 0. (24)
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Summary of Parity-even Fluids

I We started with a relativistic charged fluid in electromagnetic
background.

I Using Light Cone Reduction, we reached a consistent theory of charged
non-relativistic fluids.

I We have constrained various transport coefficients of the
non-relativistic theory using the demand of local entropy current
positivity.

I LCR does not give the most generic non-relativistic fluid.
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Parity Odd Fluids

I Parity is not a symmetry of nature. So constitutive relations can be
given parity-odd terms:

Tµν = Tµν
(0) + Πµν + Π̃µν , JµQ = JµQ(0) + Υµ + Υ̃µ (25)

I Only charge current gets parity odd terms at leading order:

Υ̃µ =
{
flµ + f̃Bµ

}
, (26)

lµ = εµνρσuν∇ρuσ, Bµ = 1
2
εµνρσuνFρσ.

I In (3 + 1)-dim one can introduce an anomaly to the charge current of
fluid such that:

∇µJµQ = {C EµBµ}. (27)
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Entropy Current of Parity Odd Fluids

I It was shown by [Son-Surówka ’09] that canonical entropy current definition
must be modified to include anomaly:

JµS = Suµ − M

T

(
Υµ + Υ̃µ

)
+
{

Dlµ + D̃Bµ} (28)

I Demanding entropy positivity, all the coefficients: f, f̃, D , D̃ can be
related to the anomaly coefficient C .
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LCR of Parity Odd Fluids

I Reduction of charge current will be modified:

∇+J+
Q +∇iJ

i
Q = {C EµBµ} ⇒ ∂tq + ∂i j

i
Q = 0

I LCR gives the parity-odd current:

ς̃ i =
{
κ̄εij∇j τ + ξ̄εij∇j

(µ
τ

)
− m̄εij∇j p + σ̄εij

(
εj − vkβkj

)}
, (29)

The coefficients are determined in terms of ω = f(u+)2, ω̃ = f̃u+.

I Similarly we can reduce the entropy current. We need to add more
terms to the entropy current for consistency of the theory.

j iS = sv i − µ

τ

(
ς i + ς̃ i

)
+
{
bεij∇j

(µ
τ

)
+ dεij

(
εj − vkβkj

)}
. (30)

I We find that, ω and ω̃ are left unconstrained by entropy current
positivity iff fluid is ‘incompressible’ and is kept in ‘constant magnetic
field’. Otherwise they both are zero.

I The constraints are not consistent with the relativistic theory.
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Conclusions

I We were able to get a consistent theory describing non-relativistic
(parity-violating) charged fluid, using the formalism of light cone
reduction.

I Various transport coefficients appearing in the theory were constrained
using the demand of local entropy positivity.

I Parity-odd transport coefficients (in 2 + 1 dimensions) can only sustain
if fluid is incompressible, and is subjected to constant magnetic field.

I In presence of anomalies, the constraints of relativistic and
non-relativistic theories do not match.

I The theory gained by LCR is not most generic.
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Further Work

I Checking LCR for higher derivative fluids.

I Extending LCR of parity-odd sector to generic dimensions.

I Extension is trivial for even to odd dimensional reduction. For odd to
even, the entire first order of non-relativistic fluid is lost.

2n dimensions → first parity odd correction at n − 1 order

2n − 1 dimensions → first parity odd correction at n − 1 order

I Perform LCR in generic fluid frames, and check if we get the most
generic non-relativistic fluid.
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