# Entropy Current for Non-Relativistic Fluids based on [arXiv:1405.5687] (JHEP 1408 (2014) 037)

Akash Jain<sup>1</sup>

with Dr. Nabamita Banerjee $^2$ , Dr. Suvankar Dutta $^3$ , and Dr. Dibakar Roychowdhury $^3$ 

<sup>1</sup>Durham University, UK <sup>2</sup>Indian Institute of Science Education and Research (HSER), Pune, India Indian Institute of Science Education and Research (HSER), Bhopal, India

December  $18, \overline{2014}$ 



#### Introduction

- ► System of interest: *d* (spatial) dimensional charged non-relativistic fluid to leading order.
- ▶ The respective relativistic system is well known.
- ▶ One can take a 'non-relativistic' limit  $(v \ll c)$  to get the non-relativistic counterpart. [Kaminski et al.'14]
- ▶ In [Rangamani et al.'08] an alternative approach to get (neutral) non-relativistic fluids was suggested Light Cone Reduction (LCR), and later was extended to charged fluids by [Brattan '10].
- ▶ A goal of this work was to test this idea in presence of background electromagnetic fields.
- ▶ We were able to construct a NR entropy current, whose positive semi-definite nature constrains the fluid transport coefficients.



#### **Outline**

Relativistic Fluid Dynamics

Light Cone Reduction

LCR of Relativistic Fluid

Parity Violating Fluids and Anomaly

Conclusions



#### **Outline**

#### Relativistic Fluid Dynamics

Light Cone Reduction

LCR of Relativistic Fluid

Parity Violating Fluids and Anomaly

Conclusions



- ▶ Fluids are near equilibrium limit of physical systems.
- ▶ State of a fluid is completely determined by a set of parameters like  $u^{\mu}$  (four-velocity), T (temperature), M (chemical potential) etc. which are functions of space-time.



- ▶ Fluids are near equilibrium limit of physical systems.
- ▶ State of a fluid is completely determined by a set of parameters like  $u^{\mu}$  (four-velocity), T (temperature), M (chemical potential) etc. which are functions of space-time.
- ▶ Dynamics of a fluid is governed by equations of energy-momentum and charge conservation:

$$\nabla_{\mu} T^{\mu\nu} = F^{\mu\nu} J_{Q\nu}, \qquad \nabla_{\mu} J_{Q}^{\mu} = 0.$$
 (1)

- $ightharpoonup T^{\mu\nu}$ ,  $J_Q^{\mu}$  are in general determined in terms of fluid variables, external fields and their derivatives. These expressions are known as 'constitutive relations' of a fluid.
- ► Constitutive relations specify a fluid system completely.



- We use the 'near equilibrium' assumption of fluid, i.e. (space-time) derivatives of fluid parameters are fairly small and can be treated perturbatively.
- ► Constitutive relations can hence be expressed as a perturbative expansion in derivatives.

$$T^{\mu\nu} = T^{\mu\nu}_{(0)} + \Pi^{\mu\nu}_{(1)} + \dots, \qquad J^{\mu}_{Q} = J^{\mu}_{Q(0)} + \Upsilon^{\mu}_{(1)} + \dots$$
 (2)



- We use the 'near equilibrium' assumption of fluid, i.e. (space-time) derivatives of fluid parameters are fairly small and can be treated perturbatively.
- ► Constitutive relations can hence be expressed as a perturbative expansion in derivatives.

$$T^{\mu\nu} = T^{\mu\nu}_{(0)} + \Pi^{\mu\nu}_{(1)} + \dots, \qquad J^{\mu}_{Q} = J^{\mu}_{Q(0)} + \Upsilon^{\mu}_{(1)} + \dots$$
 (2)

- ▶ At every order we put in all possible terms allowed by the symmetry. Every term comes with an arbitrary coefficient a function of fluid thermodynamic variables T, M, known as 'transport coefficients'.
- ▶ For ideal fluids we have:

$$T_{(0)}^{\mu\nu} = E(T, M)u^{\mu}u^{\nu} + P(T, M)(u^{\mu}u^{\nu} + g^{\mu\nu}), \qquad (3)$$

$$J^{\mu}_{Q(0)} = Q(T, M)u^{\mu}. \tag{4}$$



# **Dissipative Fluids**

▶ Landau Gauge Condition:

$$u_{\mu}\Pi^{\mu\nu} = u_{\mu}\Upsilon^{\mu} = 0. \tag{5}$$

Use the projection operator:  $P^{\mu\nu} = g^{\mu\nu} + u^{\mu}u^{\nu}$ .



# **Dissipative Fluids**

▶ Landau Gauge Condition:

$$u_{\mu}\Pi^{\mu\nu} = u_{\mu}\Upsilon^{\mu} = 0. \tag{5}$$

Use the projection operator:  $P^{\mu\nu} = g^{\mu\nu} + u^{\mu}u^{\nu}$ .

- ▶ Most generic symmetric tensors:  $\nabla^{(\mu}u^{\nu)}$ .
- ▶ Contribution to  $T^{\mu\nu}$ :

$$\Pi_{(1)}^{\mu\nu} = -2\eta\sigma^{\mu\nu} - \zeta\Theta P^{\mu\nu}.\tag{6}$$



# **Dissipative Fluids**

▶ Landau Gauge Condition:

$$u_{\mu}\Pi^{\mu\nu} = u_{\mu}\Upsilon^{\mu} = 0. \tag{5}$$

Use the projection operator:  $P^{\mu\nu} = g^{\mu\nu} + u^{\mu}u^{\nu}$ .

- ▶ Most generic symmetric tensors:  $\nabla^{(\mu} u^{\nu)}$ .
- ▶ Contribution to  $T^{\mu\nu}$ :

$$\Pi_{(1)}^{\mu\nu} = -2\eta\sigma^{\mu\nu} - \zeta\Theta P^{\mu\nu}.\tag{6}$$

- ▶ Most generic vectors:  $\nabla^{\mu} T$ ,  $\nabla^{\mu} (M/T)$ ,  $E^{\mu} = F^{\mu\nu} u_{\nu}$ .
- ▶ Contribution to  $J_Q^{\mu}$ :

$$\Upsilon^{\mu}_{(1)} = -\gamma P^{\mu\nu} \nabla_{\nu} T - \varrho P^{\mu\nu} \nabla_{\nu} \left(\frac{M}{T}\right) + \lambda E^{\mu}. \tag{7}$$



► Second law of thermodynamics says that Entropy of a system must always increase.



- Second law of thermodynamics says that Entropy of a system must always increase.
- Since fluids are in local thermodynamic equilibrium, it asks for entropy to be created at every space-time point, or divergence of an entropy current should be positive semi-definite:

$$\nabla_{\mu}J_{S}^{\mu} \ge 0. \tag{8}$$

▶ The canonical form of entropy current is given by:

$$J_S^{\mu} = Su^{\mu} - \frac{M}{T}\Upsilon^{\mu}. \tag{9}$$

$$E + P = ST + QM, \qquad dP = SdT + QdM. \tag{10}$$



- Second law of thermodynamics says that Entropy of a system must always increase.
- Since fluids are in local thermodynamic equilibrium, it asks for entropy to be created at every space-time point, or divergence of an entropy current should be positive semi-definite:

$$\nabla_{\mu}J_{S}^{\mu} \ge 0. \tag{8}$$

▶ The canonical form of entropy current is given by:

$$J_S^{\mu} = Su^{\mu} - \frac{M}{T}\Upsilon^{\mu}. \tag{9}$$

$$E + P = ST + QM, \qquad dP = SdT + QdM. \tag{10}$$

► Entropy positivity gives some constraints on the transport coefficients coupling to derivative terms.



▶ We get the constraints:

$$\Pi_{(1)}^{\mu\nu} = -2\eta\sigma^{\mu\nu} - \zeta\Theta P^{\mu\nu},$$

$$\eta \ge 0, \qquad \zeta \ge 0,$$
(11)



▶ We get the constraints:

$$\Pi_{(1)}^{\mu\nu} = -2\eta\sigma^{\mu\nu} - \zeta\Theta P^{\mu\nu},$$

$$\eta \ge 0, \qquad \zeta \ge 0,$$
(11)

$$\Upsilon^{\mu}_{(1)} = -\gamma P^{\mu\nu} \nabla_{\nu} T - \varrho P^{\mu\nu} \nabla_{\nu} \left(\frac{M}{T}\right) + \lambda E^{\mu},$$

$$\gamma = 0, \qquad \lambda = \frac{1}{T} \varrho \ge 0. \tag{12}$$



#### **Outline**

Relativistic Fluid Dynamics

Light Cone Reduction

LCR of Relativistic Fluid

Parity Violating Fluids and Anomaly

Conclusions



An overview

▶ Light-cone reduction is a prescription to reduce a relativistic algebra to a non-relativistic algebra in one lower dimension.



An overview

- ▶ Light-cone reduction is a prescription to reduce a relativistic algebra to a non-relativistic algebra in one lower dimension.
- ▶ We start with a (d+1,1)-dim relativistic theory, and undergo following coordinate transformation:

$$\{x^{\mu}\}_{\mu=0,1,\dots,d+1} \to \{x^{\pm}, x^{i}\}_{i=1,2,\dots,d},$$
 (13)

$$x^{\pm} = \frac{1}{\sqrt{2}} \left( x^0 \pm x^{d+1} \right), \tag{14}$$





An overview

- ▶ Light-cone reduction is a prescription to reduce a relativistic algebra to a non-relativistic algebra in one lower dimension.
- ▶ We start with a (d+1,1)-dim relativistic theory, and undergo following coordinate transformation:

$$\{x^{\mu}\}_{\mu=0,1,\dots,d+1} \to \{x^{\pm}, x^{i}\}_{i=1,2,\dots,d},$$
 (13)

$$x^{\pm} = \frac{1}{\sqrt{2}} \left( x^0 \pm x^{d+1} \right), \tag{14}$$



- ▶ Now we declare  $x^-$  to be a symmetry direction,  $t \equiv x^+$  to be our new 'time' direction.
- ► The new theory is known to have non-relativistic symmetry, with coordinates  $\left\{t=x^+,x^i\right\}_{i=1,2,\dots,d}$ .

► Generators of relativistic symmetry group under LCR reduces to non-relativistic symmetry group.

$$\left. \begin{array}{c} \text{translations} \\ \text{rotations} \\ \text{boosts} \end{array} \right\} \quad \text{Poincar\'e} \quad \rightarrow \quad \text{Galilean} \quad \left\{ \begin{array}{c} \text{translations} \\ \text{rotations} \\ \text{Gal. boosts} \end{array} \right.$$

- ► Similarly 'Conformal Symmetry' in relativistic theories reduce to 'Schrödinger Symmetry' group.
- ► For more details consult: [Rangamani '09 'Holography for non-relativistic CFTs']



#### **Outline**

Relativistic Fluid Dynamics

Light Cone Reduction

LCR of Relativistic Fluid

Parity Violating Fluids and Anomaly

Conclusions



▶ We start with reducing the conservation equations:

$$\nabla_{+} T^{++} + \nabla_{i} T^{i+} = F^{+\lambda} J_{Q\lambda}$$

$$\nabla_{+} T^{+-} + \nabla_{i} T^{i-} = F^{-\lambda} J_{Q\lambda}$$

$$\nabla_{+} T^{+j} + \nabla_{i} T^{ij} = F^{j\lambda} J_{Q\lambda}$$

$$\nabla_{+} J_{Q}^{+} + \nabla_{i} J_{Q}^{i} = 0$$



▶ We start with reducing the conservation equations:

$$\nabla_{+} T^{++} + \nabla_{i} T^{i+} = F^{+\lambda} J_{Q\lambda} \qquad \Rightarrow \qquad \partial_{t} \rho + \partial_{i} (\rho v^{i}) = 0 
\nabla_{+} T^{+-} + \nabla_{i} T^{i-} = F^{-\lambda} J_{Q\lambda} \qquad \Rightarrow \qquad \partial_{t} (\epsilon + 1/2 \rho \mathbf{v}^{2}) + \partial_{i} j^{i} = j_{Q}^{i} \epsilon_{i} 
\nabla_{+} T^{+j} + \nabla_{i} T^{ij} = F^{j\lambda} J_{Q\lambda} \qquad \Rightarrow \qquad \partial_{t} (\rho v^{j}) + \partial_{i} t^{ij} = q \epsilon^{j} - j_{Qk} \beta^{kj} 
\nabla_{+} J_{Q}^{+} + \nabla_{i} J_{Q}^{i} = 0 \qquad \Rightarrow \qquad \partial_{t} q + \partial_{i} j_{Q}^{i} = 0$$



▶ We start with reducing the conservation equations:

$$\nabla_{+} T^{++} + \nabla_{i} T^{i+} = F^{+\lambda} J_{Q\lambda} \qquad \Rightarrow \qquad \partial_{t} \rho + \partial_{i} (\rho v^{i}) = 0$$

$$\nabla_{+} T^{+-} + \nabla_{i} T^{i-} = F^{-\lambda} J_{Q\lambda} \qquad \Rightarrow \qquad \partial_{t} (\epsilon + 1/2 \rho v^{2}) + \partial_{i} j^{i} = j_{Q}^{i} \epsilon_{i}$$

$$\nabla_{+} T^{+j} + \nabla_{i} T^{ij} = F^{j\lambda} J_{Q\lambda} \qquad \Rightarrow \qquad \partial_{t} (\rho v^{j}) + \partial_{i} t^{ij} = q \epsilon^{j} - j_{Qk} \beta^{kj}$$

$$\nabla_{+} J_{Q}^{+} + \nabla_{i} J_{Q}^{i} = 0 \qquad \Rightarrow \qquad \partial_{t} q + \partial_{i} j_{Q}^{i} = 0$$

▶ The two sets will agree provided we identify:

$$v^{i} = \frac{u^{i}}{u^{+}} + \dots$$

$$\rho = (u^{+})^{2}(E+P) + \dots$$

$$\epsilon = \frac{1}{2}(E-P) + \dots$$

$$q = Qu^{+} + \dots$$



▶ We start with reducing the conservation equations:

$$\nabla_{+} T^{++} + \nabla_{i} T^{i+} = F^{+\lambda} J_{Q\lambda} \qquad \Rightarrow \qquad \partial_{t} \rho + \partial_{i} (\rho v^{i}) = 0$$

$$\nabla_{+} T^{+-} + \nabla_{i} T^{i-} = F^{-\lambda} J_{Q\lambda} \qquad \Rightarrow \qquad \partial_{t} (\epsilon + 1/2 \rho v^{2}) + \partial_{i} j^{i} = j_{Q}^{i} \epsilon_{i}$$

$$\nabla_{+} T^{+j} + \nabla_{i} T^{ij} = F^{j\lambda} J_{Q\lambda} \qquad \Rightarrow \qquad \partial_{t} (\rho v^{j}) + \partial_{i} t^{ij} = q \epsilon^{j} - j_{Qk} \beta^{kj}$$

$$\nabla_{+} J_{Q}^{+} + \nabla_{i} J_{Q}^{i} = 0 \qquad \Rightarrow \qquad \partial_{t} q + \partial_{i} j_{Q}^{i} = 0$$

▶ The two sets will agree provided we identify:

$$v^{i} = \frac{u^{i}}{u^{+}} + \dots$$

$$\rho = (u^{+})^{2}(E+P) + \dots$$

$$\epsilon = \frac{1}{2}(E-P) + \dots$$

$$q = Qu^{+} + \dots$$

$$A^{+} = 0$$

$$\phi = A^{-}$$

$$a^{i} = A^{i}$$

$$\epsilon^{i} = -\partial^{i}\phi - \partial_{t}a^{i}$$

$$\beta^{ij} = \partial^{i}a^{j} - \partial^{j}a^{i}$$



▶ We start with reducing the conservation equations:

$$\nabla_{+} T^{++} + \nabla_{i} T^{i+} = F^{+\lambda} J_{Q\lambda} \qquad \Rightarrow \qquad \partial_{t} \rho + \partial_{i} (\rho v^{i}) = 0 
\nabla_{+} T^{+-} + \nabla_{i} T^{i-} = F^{-\lambda} J_{Q\lambda} \qquad \Rightarrow \qquad \partial_{t} (\epsilon + 1/2 \rho \mathbf{v}^{2}) + \partial_{i} j^{i} = j_{Q}^{i} \epsilon_{i} 
\nabla_{+} T^{+j} + \nabla_{i} T^{ij} = F^{j\lambda} J_{Q\lambda} \qquad \Rightarrow \qquad \partial_{t} (\rho v^{j}) + \partial_{i} t^{ij} = q \epsilon^{j} - j_{Qk} \beta^{kj} 
\nabla_{+} J_{Q}^{+} + \nabla_{i} J_{Q}^{i} = 0 \qquad \Rightarrow \qquad \partial_{t} q + \partial_{i} j_{Q}^{i} = 0$$

▶ The two sets will agree provided we identify:

$$v^{i} = \frac{u^{i}}{u^{+}} + \dots$$

$$\rho = (u^{+})^{2}(E+P) + \dots$$

$$\epsilon = \frac{1}{2}(E-P) + \dots$$

$$q = Qu^{+} + \dots$$

$$A^{+} = 0$$

$$\phi = A^{-}$$

$$a^{i} = A^{i}$$

$$\epsilon^{i} = -\partial^{i}\phi - \partial_{t}a^{i}$$

$$\mu = \frac{M}{u^{+}} + \dots$$

$$\beta^{ij} = \partial^{i}a^{j} - \partial^{j}a^{i}$$



▶ We have the form of the currents:

$$t^{ij} = \rho v^i v^j + p g^{ij} - \mathbf{n} \sigma^{ij} - \mathbf{z} \delta^{ij} \partial_k v^k, \tag{15}$$

$$j^{i} = \left(\epsilon + p + \frac{1}{2}\rho\mathbf{v}^{2}\right)v^{i} - n\sigma^{ij}v_{j} - z\partial_{k}v^{k}v^{i} - \kappa\partial^{i}\tau - \kappa\nabla^{i}\left(\frac{\mu}{\tau}\right) + \frac{\kappa}{\tau}(\epsilon^{i} - v_{j}\beta^{ji}), \quad (16)$$

$$j_Q^i = qv^i - \xi \nabla^i \tau - r \nabla^i \left(\frac{\mu}{\tau}\right) - m \nabla^i p + \sigma(\epsilon^i - v_k \beta^{ki}), \tag{17}$$



▶ We have the form of the currents:

$$t^{ij} = \rho v^i v^j + p g^{ij} - n \sigma^{ij} - z \delta^{ij} \partial_k v^k, \tag{15}$$

$$j^{i} = \left(\epsilon + p + \frac{1}{2}\rho\mathbf{v}^{2}\right)v^{i} - n\sigma^{ij}v_{j} - z\partial_{k}v^{k}v^{i} - \kappa\partial^{i}\tau - \kappa\nabla^{i}\left(\frac{\mu}{\tau}\right) + \frac{\kappa}{\tau}(\epsilon^{i} - v_{j}\beta^{ji}), \quad (16)$$

$$j_Q^i = qv^i - \xi \nabla^i \tau - r \nabla^i \left(\frac{\mu}{\tau}\right) - m \nabla^i p + \sigma(\epsilon^i - v_k \beta^{ki}), \tag{17}$$

▶ We do not get the 'most generic' constitutive relations for NR fluid. It is related to the choice of frame in relativistic theory.



▶ We have the form of the currents:

$$t^{ij} = \rho v^i v^j + p g^{ij} - n \sigma^{ij} - z \delta^{ij} \partial_k v^k, \tag{15}$$

$$j^{i} = \left(\epsilon + p + \frac{1}{2}\rho\mathbf{v}^{2}\right)v^{i} - n\sigma^{ij}v_{j} - z\partial_{k}v^{k}v^{i} - \kappa\partial^{i}\tau - \kappa\nabla^{i}\left(\frac{\mu}{\tau}\right) + \frac{\kappa}{\tau}(\epsilon^{i} - v_{j}\beta^{ji}), \quad (16)$$

$$j_Q^i = qv^i - \xi \nabla^i \tau - r \nabla^i \left(\frac{\mu}{\tau}\right) - m \nabla^i p + \sigma(\epsilon^i - v_k \beta^{ki}), \tag{17}$$

- ▶ We do not get the 'most generic' constitutive relations for NR fluid. It is related to the choice of frame in relativistic theory.
- ▶ The fluid obeys Wiedemann-Franz Law for metals:  $\kappa/\sigma = L\tau$ .

$$L_{exp} = 2.45 \times 10^{-8} W \Omega K^{-2}, \qquad L_{th} = 6.68 \times 10^{-8} W \Omega K^{-2}$$
 (18)



# LCR of Entropy Current

► Reduction of Entropy Current:

$$\nabla_+ J_S^+ + \nabla_i J_S^i \ge 0$$
  $\Rightarrow$   $\partial_t s + \partial_i j_S^i \ge 0$ 

▶ We get the identifications:

$$s = Su^+, \qquad j_S^i = sv^i - \frac{\mu}{\tau}\varsigma^i \tag{19}$$



# **LCR of Entropy Current**

▶ Reduction of Entropy Current:

$$\nabla_+ J_S^+ + \nabla_i J_S^i \ge 0 \qquad \Rightarrow \qquad \partial_t s + \partial_i j_S^i \ge 0$$

▶ We get the identifications:

$$s = Su^+, \qquad j_S^i = sv^i - \frac{\mu}{\tau}\varsigma^i \tag{19}$$

► The constraints on non-relativistic transport coefficients exactly follow:

$$t^{ij} = \rho v^i v^j + p g^{ij} - n \sigma^{ij} - z \delta^{ij} \partial_k v^k, \tag{20}$$

$$j^{i} = \left(\epsilon + p + \frac{1}{2}\rho\mathbf{v}^{2}\right)v^{i} - n\sigma^{ij}v_{j} - z\partial_{k}v^{k}v^{i} - \kappa\partial^{i}\tau - \kappa\nabla^{i}\left(\frac{\mu}{\tau}\right) + \frac{\kappa}{\tau}(\epsilon^{i} - v_{j}\beta^{ji}), \quad (21)$$

$$n \ge 0, \qquad z \ge 0, \qquad \kappa \ge 0$$
 (22)



# **LCR of Entropy Current**

▶ Reduction of Entropy Current:

$$\nabla_+ J_S^+ + \nabla_i J_S^i \ge 0 \qquad \Rightarrow \qquad \partial_t s + \partial_i j_S^i \ge 0$$

▶ We get the identifications:

$$s = Su^+, \qquad j_S^i = sv^i - \frac{\mu}{\tau}\varsigma^i \tag{19}$$

▶ The constraints on non-relativistic transport coefficients exactly follow:

$$t^{ij} = \rho v^i v^j + p g^{ij} - n \sigma^{ij} - z \delta^{ij} \partial_k v^k, \tag{20}$$

$$j^{i} = \left(\epsilon + p + \frac{1}{2}\rho\mathbf{v}^{2}\right)v^{i} - n\sigma^{ij}v_{j} - z\partial_{k}v^{k}v^{i} - \kappa\partial^{i}\tau - \kappa\nabla^{i}\left(\frac{\mu}{2}\right) + \frac{\kappa}{2}(\epsilon^{i} - v_{j}\beta^{ji}),$$

$$n \ge 0, \qquad z \ge 0, \qquad \kappa \ge 0 \tag{22}$$

$$j_Q^i = qv^i - \xi \nabla^i \tau - r \nabla^i \left(\frac{\mu}{\tau}\right) - m \nabla^i p + \sigma(\epsilon^i - v_k \beta^{ki}), \tag{23}$$

$$m = 0,$$
  $\xi \ge 0,$   $\sigma = \frac{1}{\tau}r \ge 0.$  (24)



# **Summary of Parity-even Fluids**

- ► We started with a relativistic charged fluid in electromagnetic background.
- Using Light Cone Reduction, we reached a consistent theory of charged non-relativistic fluids.
- ► We have constrained various transport coefficients of the non-relativistic theory using the demand of local entropy current positivity.
- ▶ LCR does not give the most generic non-relativistic fluid.



#### **Outline**

Relativistic Fluid Dynamics

Light Cone Reduction

LCR of Relativistic Fluid

Parity Violating Fluids and Anomaly

Conclusions



# Parity Odd Fluids

Parity is not a symmetry of nature. So constitutive relations can be given parity-odd terms:

$$T^{\mu\nu} = T^{\mu\nu}_{(0)} + \Pi^{\mu\nu} + \tilde{\Pi}^{\mu\nu}, \qquad J^{\mu}_{Q} = J^{\mu}_{Q(0)} + \Upsilon^{\mu} + \tilde{\Upsilon}^{\mu}$$
 (25)

▶ Only charge current gets parity odd terms at leading order:

$$\tilde{\Upsilon}^{\mu} = \left\{ \tilde{U}l^{\mu} + \tilde{U}B^{\mu} \right\},\tag{26}$$

$$l^{\mu} = \epsilon^{\mu\nu\rho\sigma} u_{\nu} \nabla_{\rho} u_{\sigma}, \ B^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} u_{\nu} F_{\rho\sigma}.$$



# Parity Odd Fluids

Parity is not a symmetry of nature. So constitutive relations can be given parity-odd terms:

$$T^{\mu\nu} = T^{\mu\nu}_{(0)} + \Pi^{\mu\nu} + \tilde{\Pi}^{\mu\nu}, \qquad J^{\mu}_{Q} = J^{\mu}_{Q(0)} + \Upsilon^{\mu} + \tilde{\Upsilon}^{\mu}$$
 (25)

▶ Only charge current gets parity odd terms at leading order:

$$\tilde{\Upsilon}^{\mu} = \left\{ \tilde{U}l^{\mu} + \tilde{U}B^{\mu} \right\},\tag{26}$$

$$l^{\mu} = \epsilon^{\mu\nu\rho\sigma} u_{\nu} \nabla_{\rho} u_{\sigma}, \ B^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} u_{\nu} F_{\rho\sigma}.$$

▶ In (3+1)-dim one can introduce an anomaly to the charge current of fluid such that:

$$\nabla_{\mu}J_{Q}^{\mu} = \{ CE^{\mu}B_{\mu} \}. \tag{27}$$



# **Entropy Current of Parity Odd Fluids**

► It was shown by [Son-Surówka '09] that canonical entropy current definition must be modified to include anomaly:

$$J_S^{\mu} = Su^{\mu} - \frac{M}{T} \left( \Upsilon^{\mu} + \tilde{\Upsilon}^{\mu} \right) + \left\{ Dl^{\mu} + \tilde{D}B^{\mu} \right\}$$
 (28)



# **Entropy Current of Parity Odd Fluids**

► It was shown by [Son-Surówka '09] that canonical entropy current definition must be modified to include anomaly:

$$J_S^{\mu} = Su^{\mu} - \frac{M}{T} \left( \Upsilon^{\mu} + \tilde{\Upsilon}^{\mu} \right) + \left\{ Dl^{\mu} + \tilde{D}B^{\mu} \right\}$$
 (28)

▶ Demanding entropy positivity, all the coefficients:  $\mho$ ,  $\bar{\mho}$ , D,  $\bar{D}$  can be related to the anomaly coefficient C.



# LCR of Parity Odd Fluids

▶ Reduction of charge current will be modified:

$$\nabla_{+}J_{Q}^{+} + \nabla_{i}J_{Q}^{i} = \{CE^{\mu}B_{\mu}\} \qquad \Rightarrow \qquad \partial_{t}q + \partial_{i}j_{Q}^{i} = 0$$



# LCR of Parity Odd Fluids

Reduction of charge current will be modified:

$$\nabla_{+}J_{Q}^{+} + \nabla_{i}J_{Q}^{i} = \{CE^{\mu}B_{\mu}\} \qquad \Rightarrow \qquad \partial_{t}q + \partial_{i}j_{Q}^{i} = 0$$

► LCR gives the parity-odd current:

$$\tilde{\boldsymbol{\varsigma}}^{i} = \left\{ \bar{\kappa} \epsilon^{ij} \nabla_{j} \tau + \bar{\xi} \epsilon^{ij} \nabla_{j} \left( \frac{\mu}{\tau} \right) - \bar{m} \epsilon^{ij} \nabla_{j} p + \bar{\sigma} \epsilon^{ij} \left( \epsilon_{j} - v^{k} \beta_{kj} \right) \right\}, \quad (29)$$

The coefficients are determined in terms of  $\omega = \tilde{U}(u^+)^2$ ,  $\tilde{\omega} = \tilde{\tilde{U}}u^+$ .



# LCR of Parity Odd Fluids

Reduction of charge current will be modified:

$$\nabla_{+}J_{Q}^{+} + \nabla_{i}J_{Q}^{i} = \{CE^{\mu}B_{\mu}\} \qquad \Rightarrow \qquad \partial_{t}q + \partial_{i}j_{Q}^{i} = 0$$

► LCR gives the parity-odd current:

$$\tilde{\boldsymbol{\varsigma}}^{i} = \left\{ \bar{\kappa} \epsilon^{ij} \nabla_{j} \tau + \bar{\xi} \epsilon^{ij} \nabla_{j} \left( \frac{\mu}{\tau} \right) - \bar{m} \epsilon^{ij} \nabla_{j} p + \bar{\sigma} \epsilon^{ij} \left( \epsilon_{j} - v^{k} \beta_{kj} \right) \right\}, \quad (29)$$

The coefficients are determined in terms of  $\omega = \mathcal{U}(u^+)^2$ ,  $\tilde{\omega} = \tilde{\mathcal{U}}u^+$ .

► Similarly we can reduce the entropy current. We need to add more terms to the entropy current for consistency of the theory.

$$j_S^i = sv^i - \frac{\mu}{\tau} \left( \varsigma^i + \tilde{\varsigma}^i \right) + \left\{ \mathfrak{b}\epsilon^{ij} \nabla_j \left( \frac{\mu}{\tau} \right) + \mathfrak{d}\epsilon^{ij} \left( \epsilon_j - v^k \beta_{kj} \right) \right\}. \tag{30}$$

- ▶ We find that,  $\omega$  and  $\tilde{\omega}$  are left unconstrained by entropy current positivity *iff* fluid is 'incompressible' and is kept in 'constant magnetic field'. Otherwise they both are zero.
  - ► The constraints are not consistent with the relativistic theory.

#### **Outline**

Relativistic Fluid Dynamics

Light Cone Reduction

LCR of Relativistic Fluid

Parity Violating Fluids and Anomaly

Conclusions



#### **Conclusions**

- ▶ We were able to get a consistent theory describing non-relativistic (parity-violating) charged fluid, using the formalism of light cone reduction.
- Various transport coefficients appearing in the theory were constrained using the demand of local entropy positivity.
- ightharpoonup Parity-odd transport coefficients (in 2+1 dimensions) can only sustain if fluid is incompressible, and is subjected to constant magnetic field.
- In presence of anomalies, the constraints of relativistic and non-relativistic theories do not match.
- ▶ The theory gained by LCR is not most generic.



#### **Further Work**

- ▶ Checking LCR for higher derivative fluids.
- ▶ Extending LCR of parity-odd sector to generic dimensions.



#### **Further Work**

- ▶ Checking LCR for higher derivative fluids.
- ▶ Extending LCR of parity-odd sector to generic dimensions.
- ▶ Extension is trivial for even to odd dimensional reduction. For odd to even, the entire first order of non-relativistic fluid is lost.

```
2n dimensions \rightarrow first parity odd correction at n-1 order 2n-1 dimensions \rightarrow first parity odd correction at n-1 order
```



#### **Further Work**

- ▶ Checking LCR for higher derivative fluids.
- ▶ Extending LCR of parity-odd sector to generic dimensions.
- ▶ Extension is trivial for even to odd dimensional reduction. For odd to even, the entire first order of non-relativistic fluid is lost.

```
2n dimensions \rightarrow first parity odd correction at n-1 order 2n-1 dimensions \rightarrow first parity odd correction at n-1 order
```

Perform LCR in generic fluid frames, and check if we get the most generic non-relativistic fluid.

