BCJ duality, the Double copy and Black Holes

Andrés Luna Godoy
University of Glasgow
December 18, 2014

Figure: They act so cute when they try to understand Quantum Field Theory.

BCJ duality BCJ

- BCJ duality is a kinematic identity for n-point tree level color-ordered gauge theory amplitudes,

$$
\begin{equation*}
\mathcal{A}_{n}^{\text {tree }}(1,2, \ldots, n)=g^{n-2} \sum_{\mathcal{P}(2,3, \ldots, n)} \operatorname{Tr}_{r}\left[T^{a_{1}} T^{a_{2}} \cdots T^{a_{n}}\right] A_{n}^{\text {tree }}(1,2, \ldots, n) \tag{1}
\end{equation*}
$$

- Kinematic analog of Jacobi identity for numerators in the amplitudes.
- Using generalized unitarity, the numerators identity has applicatons at higher loops.

BCJ duality

Four point example

- Color-ordered, tree level amplitudes satisfy some identities (cyclic, reflection and photon-decoupling). At four points, photon-decoupling identity reads,

$$
\begin{equation*}
A_{4}^{\text {tree }}(1,2,3,4)+A_{4}^{\text {tree }}(1,3,4,2)+A_{4}^{\text {tree }}(1,4,2,3)=0 \tag{2}
\end{equation*}
$$

- Then, using kinematic considerations we obtain the following relations between four point amplitudes,

$$
\begin{align*}
t A_{4}^{\text {tree }}(1,2,3,4) & =u A_{4}^{\text {tree }}(1,3,4,2) \\
t A_{4}^{\text {tree }}(1,4,2,3) & =s A_{4}^{\text {tree }}(1,3,4,2) \tag{3}\\
s A_{4}^{\text {tree }}(1,2,3,4) & =u A_{4}^{\text {tree }}(1,4,2,4)
\end{align*}
$$

where $s=\left(k_{1}+k_{2}\right)^{2}, t=\left(k_{1}+k_{4}\right)^{2}, s=\left(k_{1}+k_{3}\right)^{2}$.

- Expressing these tree color-ordered amplitudes in terms of the poles that appear,

$$
\begin{align*}
& A_{4}^{\text {tree }}(1,2,3,4) \equiv \frac{n_{s}}{s}+\frac{n_{t}}{t} \\
& A_{4}^{\text {tree }}(1,3,4,2) \equiv-\frac{n_{u}}{u}-\frac{n_{s}}{s} \tag{4}\\
& A_{4}^{\text {tree }}(1,2,3,4) \equiv-\frac{n_{t}}{t}+\frac{n_{u}}{u}
\end{align*}
$$

- Comparing the last two expressions, we get the relation,

$$
\begin{equation*}
n_{u}=n_{s}-n_{t} \tag{5}
\end{equation*}
$$

which mimics the Jacobi identity,

BCJ duality

Four point example

FIG. 2: The Jacobi identity relating the color factors of the u, s, t channel "color diagrams". The color factors are given by dressing each vertex with an $\tilde{f}^{a b c}$ following a clockwise ordering.

$$
\begin{equation*}
c_{u}=c_{s}-c_{t} \tag{6}
\end{equation*}
$$

where,

$$
\begin{equation*}
c_{u} \equiv \tilde{f}^{a_{4} a_{2} b} \tilde{f}^{b_{3} a_{3}}, c_{s} \equiv \tilde{f}^{a_{1} a_{2} b} \tilde{f}^{b a_{3} a_{4}}, c_{t} \equiv \tilde{f}^{a_{2} a_{3} b} \tilde{f}^{b_{4} a_{1}} \tag{7}
\end{equation*}
$$

BCJ duality

Higher-Point

- Given three dependent color factors $c_{\alpha}, c_{\beta}, c_{\gamma}$ associated with tree level color diagrams, scattering amplitudes can be decomposed into kinematic diagrams with numerator factors $n_{\alpha}, n_{\beta}, n_{\gamma}$ that satisfy

$$
\begin{equation*}
c_{\alpha}-c_{\beta}+c_{\gamma}=0, \Rightarrow n_{\alpha}-n_{\beta}+n_{\gamma}=0 \tag{8}
\end{equation*}
$$

- For example, in the five-point case, the diagrams in the figure satisfy the color identity

$$
\begin{equation*}
c_{3}=c_{5}-c_{8} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{3} \equiv \tilde{f}^{a_{3} a_{4} b} \tilde{f}^{b a_{5} c} \tilde{f}^{c_{1} a_{2}}, c_{5} \equiv \tilde{f}^{a_{3} a_{4} b} \tilde{f}^{b a_{2} c} \tilde{f}^{c a_{1} a_{5}}, c_{8} \equiv \tilde{f}^{a_{3} a_{4} b} \tilde{f}^{b_{1} c} \tilde{f}^{c a_{2} a_{5}} \tag{10}
\end{equation*}
$$

BCJ duality

Five point example

FIG. 4: The Jacobi identity at five points. These diagrams can be interpreted as relations for color factors, where each color factor is obtained by dressing the diagrams with $\tilde{f}^{a b c}$ at each vertex in a clockwise ordering. Alternatively it can be interpreted as relations between the kinematic numerator factors of corresponding diagrams, where the diagrams are nontrivially rearranged compared to Feynman diagrams.

BCJ duality

Five point example

- Then, it is possible to write the numerators, in such a form that they satisfy the same identities as the color factors. This is,

$$
\begin{equation*}
c_{3}-c_{5}+c_{8}=0, \Rightarrow n_{3}-n_{5}+n_{8}=0, \tag{11}
\end{equation*}
$$

where the kinematic numerators come from expressing the full color dressed amplitude via

$$
\begin{equation*}
\mathcal{A}_{5}^{\text {tree }}=g^{3} \sum_{i=1}^{15} \frac{n_{i} c_{i}}{p_{i}} \tag{12}
\end{equation*}
$$

Five point example

- This will have as a consequence, simple relations between color-ordered amplitudes. For example

$$
\begin{equation*}
A_{5}^{\text {tree }}(1,3,4,2,5)=\frac{-s_{12} s_{45} A_{5}^{\text {tree }}(1,2,3,4,5)+s_{14}\left(s_{24}+s_{25}\right) A_{5}^{\text {tree }}(1,4,3,2,5)}{s_{13} s_{24}} \tag{13}
\end{equation*}
$$

(and another three of those).

- Derived by Kawai, Lewellen and Tye in 1986.
- First uncovered in string theory, hold in field theory (string's low energy limit).
- Relate gauge and gravity theories amplitudes. For example,

$$
\begin{align*}
M_{5}^{\text {tree }}(1,2,3,4,5)= & i s_{12} s_{34} A_{5}^{\text {tree }}(1,2,3,4,5) \tilde{A}_{5}^{\text {tree }}(2,1,4,3,5) \\
& +i s_{13} s_{24} A_{5}^{\text {tree }}(1,3,2,4,5) \tilde{A}_{5}^{\text {tree }}(3,1,4,2,5) . \tag{14}
\end{align*}
$$

Double copy

- BCJ conjectured this duality is true to all loop orders and (partially inspired by KLT relations) we can write gravity theories scattering amplitudes by "squaring" a gauge theory scattering amplitude. This process is called Double copy.
- A general massless m-point gauge theory amplitude in d space-time can be written as,

$$
\begin{equation*}
\mathcal{A}_{m}^{(L)}=i^{L} g^{m-2+2 L} \sum_{i \in \Gamma} \int \prod_{\ell=1}^{L} \frac{d^{d} p_{\ell}}{(2 \pi)^{d}} \frac{1}{S_{i}} \frac{n_{i} c_{i}}{\prod_{\alpha_{i}} p_{\alpha_{i}}^{2}} \tag{15}
\end{equation*}
$$

- If kinematic numerators satisfy BCJ relations, the m-point, L-loop gravity amplitude will be,

$$
\begin{equation*}
\mathcal{M}_{m}^{(L)}=i^{L+1}\left(\frac{\kappa}{2}\right)^{m-2+2 L} \sum_{i \in \Gamma} \int \prod_{\ell=1}^{L} \frac{d^{d} p_{\ell}}{(2 \pi)^{d}} \frac{1}{S_{i}} \frac{n_{i} \tilde{n}_{i}}{\prod_{\alpha_{i}} p_{\alpha_{i}}^{2}} \tag{16}
\end{equation*}
$$

Why solutions?

- Trying to understand better the origin of BCJ and Double copy.
- Because they are defined in a purely perturbative context, multiloop calculations make difficult to explorate the deeper meaning.
- Do features manifest themselves in a clasical context? (Or at Lagrangian level).

Kerr-Schild coordinates

Kerr-Schild coordinates

- In Kerr-Schild coordinates, spacetime metric may be written in the form,

$$
\begin{align*}
g_{\mu \nu} & =\eta_{\mu \nu}+h_{\mu \nu} \\
& =\eta_{\mu \nu}+k_{\mu} k_{\nu} \phi, \tag{17}
\end{align*}
$$

where the vector k_{μ} has the property of being null with both the Minkowski and the Kerr-Schild metrics:

$$
\begin{equation*}
\eta_{\mu \nu} k_{\mu} k_{\nu}=0=g_{\mu \nu} k_{\mu} k_{\nu} \tag{18}
\end{equation*}
$$

Kerr-Schild coordinates

Einstein equations

- In terms of function ϕ and vector k_{μ}, one has the tensor,

$$
\begin{equation*}
R_{\nu}^{\mu}=\frac{1}{2}\left(\partial^{\mu} \partial_{\alpha}\left(\phi k^{\alpha} k_{\nu}\right)+\partial_{\nu} \partial_{\alpha}\left(\phi k^{\alpha} k^{\mu}\right)-\partial^{2}\left(\phi k^{\mu} k_{\nu}\right)\right) . \tag{19}
\end{equation*}
$$

- In the stationary case (where $\partial_{0}=0, k^{0}=1$), Einstein vacuum equations are,

$$
\begin{align*}
& R_{0}^{0}=\frac{1}{2} \nabla^{2} \phi \tag{20}\\
& R_{0}^{i}=-\frac{1}{2} \partial_{j}\left[\partial^{i}\left(\phi k^{j}\right)-\partial^{j}\left(\phi k^{i}\right)\right] \tag{21}\\
& R_{j}^{i}=\frac{1}{2} \partial_{l}\left[\partial^{i}\left(\phi k^{\prime} k_{j}\right)+\partial_{j}\left(\phi k^{\prime} k^{i}\right)-\partial^{\prime}\left(\phi k^{i} k_{j}\right)\right] . \tag{22}
\end{align*}
$$

Kerr-Schild coordinates

Yang-Mills equation

- If we define a vector field $A_{\mu}=\phi k_{\mu}$, the Einstein vacuum equations $R_{\mu \nu}=0$ imply, in the stationary case,

$$
\begin{equation*}
\partial_{\mu} F^{\mu \nu}=\partial_{\mu}\left(\partial^{\mu}\left(\phi k^{\nu}\right)-\partial^{\nu}\left(\phi k^{\mu}\right)\right)=0 . \tag{23}
\end{equation*}
$$

Kerr-Schild coordinates and Double Copy

Stationary Kerr-Schild solutions

- Let,

$$
\begin{equation*}
g_{\mu \nu}=\eta_{\mu \nu}+k_{\mu} k_{\nu} \phi, \tag{24}
\end{equation*}
$$

be a stationary solution of the Einstein equations, then,

$$
\begin{equation*}
A_{\mu}^{a}=c_{a} \phi k^{\mu}, \tag{25}
\end{equation*}
$$

is a solution of the Yang Mills equations. This constitutes a class of solutions identifiable between gauge and gravity theories.

- The Gauge solution is refered as single copy, or square root of the gravity solution.

Kerr-Schild coordinates and Double Copy

EXAMPLE 1: Schwarzchild Black Hole

- Most general spherically symmetric solution of vacuum Einstein equation.
- Considering the energy-momentum tensor,

$$
\begin{equation*}
T^{\mu \nu}=M v^{\mu} v^{\nu} \delta^{(3)}(\mathbf{x}) \tag{26}
\end{equation*}
$$

where $v^{\mu}=(1,0,0,0)$. The exterior metric may be put in the form,

$$
\begin{equation*}
g_{\mu \nu}=\eta_{\mu \nu}+\frac{2 G M}{r} k_{\mu} k_{\nu} \tag{27}
\end{equation*}
$$

(which is in Kerr-Schild form), where,

$$
\begin{equation*}
k^{\mu}=\left(1, \frac{x^{i}}{r}\right), r^{2}=x^{i} x_{i}, 1=1 \ldots 3 \tag{28}
\end{equation*}
$$

Kerr-Schild coordinates and Double Copy

 EXAMPLE 1: Schwarzchild Black Hole- Using $\kappa^{2}=16 \pi G$, the graviton will be,

$$
\begin{equation*}
h_{\mu \nu}=\frac{\kappa}{2} \phi k_{\mu} k_{\nu}, \phi=\frac{M}{4 \pi r} . \tag{29}
\end{equation*}
$$

And we can have the single copy,

$$
\begin{equation*}
A^{\mu}=\frac{g c_{a} T^{a}}{4 \pi r} k_{\mu} \tag{30}
\end{equation*}
$$

via the replacements,

$$
\begin{equation*}
\frac{\kappa}{2} \rightarrow g, M \rightarrow c_{a} T^{a}, k_{\mu} k_{\nu} \rightarrow k_{\mu}, \frac{1}{4 \pi r} \rightarrow \frac{1}{4 \pi r} \tag{31}
\end{equation*}
$$

Kerr-Schild coordinates and Double Copy
 EXAMPLE 1: Schwarzchild Black Hole

- Given that this is a solution of Abelian Maxwell equations, we can perform a gauge transformation,

$$
\begin{equation*}
A_{\mu}^{a} \rightarrow A_{\mu}^{a}+\partial_{\mu} \chi^{a}(x) \tag{32}
\end{equation*}
$$

Let us choose,

$$
\begin{equation*}
\chi^{a}=-\frac{g c_{a}}{4 \pi} \log \left(\frac{r}{r_{0}}\right) . \tag{33}
\end{equation*}
$$

In this gauge, one has,

$$
\begin{equation*}
A_{\mu}=\left(\frac{g c_{a} T^{a}}{4 \pi r}, 0,0,0\right) \tag{34}
\end{equation*}
$$

This is a Coulomb-like solution.

Kerr-Schild coordinates and Double Copy

EXAMPLE 2: Kerr Black Hole

- The uncharged, rotating black hole (Kerr) can be put in Kerr-Schild form, with the graviton,

$$
\begin{equation*}
g_{\mu \nu}=\eta_{\mu \nu}+\phi(r) k_{\mu} k_{\nu} \tag{35}
\end{equation*}
$$

where,

$$
\begin{equation*}
\phi(r)=\frac{2 M G r^{3}}{r^{4}+a^{2} z^{2}} \tag{36}
\end{equation*}
$$

and,

$$
\begin{equation*}
k^{\mu}=\left(1, \frac{r x+a y}{r^{2}+a^{2}}, \frac{r y-a x}{r^{2}+a^{2}}, \frac{z}{r}\right), \tag{37}
\end{equation*}
$$

and r is implicitly defined by,

$$
\begin{equation*}
\frac{x^{2}+y^{2}}{r^{2}+a^{2}}+\frac{z^{2}}{r^{2}}=1 \tag{38}
\end{equation*}
$$

Kerr-Schild coordinates and Double Copy

 EXAMPLE 2: Kerr Black Hole- Following the Kerr-Schild single copy procedure, one may construct the gauge field,

$$
\begin{equation*}
A_{\mu}^{a}=\frac{g}{4 \pi} \phi(r) c_{a} k \mu \tag{39}
\end{equation*}
$$

where again this is a solution to the Abelian Maxwell equations.

Kerr-Schild coordinates and Double Copy

Time dependent solutions

This single copy procedure, can be applied to time dependent solutions, like,

- Plane waves solutions.
- Shockwave solutions.
- Taub-NUT solutions. (?)(Further Work)

Thank you

Thank you

Thank you.

