Lattice Phenomenology of Heavy Quarks Using Dynamical Fermions

Ava Khamseh

UKQCD Collaboration Higgs Centre for Theoretical Physics, University of Edinburgh

Durham - December 17, 2014

Outline

- Motivation and Introduction to Lattice QCD
- Field Correlators and Extracting Observables
- Meson Masses, Decay Constants, Bag Parameter
- Results
- Outlook

Motivation

- Flavor physics plays an important role in testing the limits of SM and constraining BSM theories
- Precision measurements at LHCb and other B-factories in searches for New Physics

Introduction

- $\bullet\,$ Strong Interactions: QCD at low energy is confining $\to\,$ breakdown of perturbation theory
- Lattice QCD: Non-perturbative (numerical) method to solve the theory from first principles
- Discretise Euclidean space-time

$$x_{\mu} = n_{\mu}a$$
 $n = 0, 1, ..., \mu = 1, 2, ..., D$ in D - dims

for finite volume n = 0, 1, ..., N - 1 , a = lattice spacing

$$\int d^D x f(x) \rightarrow a^D \sum_n f(na) \quad , \quad \int \mathcal{D}\phi \rightarrow \prod_n \phi_n$$

$$abla_{\mu}\phi(x) = rac{\phi(x+a\hat{\mu})-\phi(x)}{a} \quad , \quad
abla^{*}_{\mu}\phi(x) = rac{\phi(x)-\phi(x-a\hat{\mu})}{a}$$

Field Correlators

Meson correlator, $O=ar{q'}\Gamma q$ and $O^{\dagger}=ar{q}\Gamma q'$

$$\langle O(n)O^{\dagger}(m) \rangle = rac{1}{Z} \int \mathcal{D}[U]e^{-S_G[U]} \det[D_q] \det[D'_q] \\ imes \operatorname{Tr} \left[\Gamma D_q^{-1}(n|m) \Gamma D_{q'}^{-1}(m|n) \right]$$

Gauge fields generated by Monte Carlo simulations. Performing $det[D_q]$ (unquenched) is computationally expensive

Meson Two-Point Function

• Pseudoscalar $O=ar{q_1}\gamma_5 q_2$ and $O^\dagger=ar{q_2}\gamma_5 q_1$

$$C(x) = \langle O(x) O^{\dagger}(0) \rangle$$

• Inserting complete set of states for large T, gives

$$C_{PP}(t) = \frac{1}{2m} \langle 0|O(0)|n, \mathbf{p} = 0 \rangle \langle n, \mathbf{p} = 0|O^{\dagger}(0)|0 \rangle e^{-E_0 t} + \dots$$

= $N_{PP} e^{-E_0 t} + \dots$

• This can be done for different channels e.g. ${\cal O}=ar d\gamma_\mu\gamma_5 u$ then

$$C_{AP}(t) = N_{AP}e^{-E_0t} + \dots$$

Extracting Observables: Masses and Decay Constants

• For a finite volume lattice

$$C(t) = 2N_0 e^{-TE_0/2} \cosh((T/2 - t)E_0)$$

from which the meson ground state mass $M_{\rm PS} = E_0$ can be extracted.

Pseudoscalar decay constant

 π^+

$$\langle 0|A_0(0)|\pi, \mathbf{p} = 0 \rangle = f_{\rm PS}M_{\rm PS}$$

$$\downarrow^{u}$$

$$f_{\rm PS} = \sqrt{\frac{2N_{AA}}{M_{\rm PS}}} = \frac{\sqrt{2N_{AP}^2}}{\sqrt{M_{\rm PS} \times N_{PP}}}$$

Results 1: M_{π} , f_{π} , M_K , f_K

 $48^3 (a^{-1} = 1.73 \text{ GeV}, 88 \text{ confgs})$ and $64^3 (a^{-1} = 2.36 \text{ GeV}, 40 \text{ confgs})$ ensembles:

Meson	Mass 48 ³ MeV	Mass 64 ³ MeV	PDG Mass <i>MeV</i>
π	139.25(22)	139.33(26)	134.9766(6)
K	499.16(24)	507.80(94)	497.614(24)

After a short $\mathcal{O}(3)$ % extrapolation agrees with the physical values:

 $f_{\pi} = 130.19 \pm 0.89 \quad [130.4(0.04)(0.2)] \quad MeV$

 $f_{\rm K} = 155.51 \pm 0.83 ~[156.2(0.2)(0.6)(0.3)]~MeV$

RBC/UKQCD, Nov 2014, http://arxiv.org/pdf/1411.7017v1.pdf

Results 2: M_{PS} and f_{PS} for Heavy Quarks

- Preliminary results for the masses and decay constants (*MeV*) of heavy-strange and heavy-light mesons (in progress)
- Extrapolate/interpolate to charm mass

Meson	Mass 48 ³	Mass 64 ³	Decay 48 ³	Decay 64 ³
Heavy-Strange	1526.59(21)	1600.60(26)	233.01(15)	238.64(19)
Heavy-Strange	1778.35(26)	2217.31(40)	238.57(25)	243.03(36)
Heavy-Light	1423.8(1.3)	1492.1(1.5)	201.41(92)	203.83(79)
Heavy-Light	1804.4(3.1)	2123.3(3.1)	206.1(2.7)	206.6(1.8)

Excited States Contribution

• It is possible to take the contribution of the first excited state into account, however, these become negligible at large times.

$$C(t) = c_0 h(t, 0, M_0) + c_1 h(x_0, 0, M_1) + \dots$$
$$M_{\text{eff}} = M_0 \left\{ 1 + \frac{\epsilon(t) - \epsilon(t - a)}{\delta(t) - \delta(t - a)} + \dots \right\}$$

where $\epsilon(t)$ and $\delta(t)$ are functions of h(t) defined before. M_0 , M_1 and c_0/c_1 can be found as parameters of the fit.

Unitarity Triangle

 $\mathsf{CKM matrix}{=} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

Kaon Mixing and CP Violation

- CP is not an exact symmetry of weak interactions
- Experimental measure of indirect CP violation

$$\epsilon_{K} = rac{A(K_{L}
ightarrow (\pi\pi))}{A(K_{S}
ightarrow (\pi\pi))}$$

• Theoretically,

$$\epsilon_{K} \propto V_{xs}^{*} V_{xd} G_{F}^{2} M_{W}^{2} imes \ \langle K^{0} | \underbrace{(ar{s} \gamma_{\mu} d)(ar{s} \gamma_{\mu} d) + (ar{s} \gamma_{5} \gamma_{\mu} d)(ar{s} \gamma_{5} \gamma_{\mu} d)}_{O_{VV+AA}} | ar{K}^{0}
angle$$

non-perturbative hadronic matrix element is determined theoretically using Lattice. This imposes constraints on unitarity triangle through $V_{xs}^*V_{xd} \rightarrow$ green hyperbola

The Bag Parameter

 Dominant contribution comes from indirect CP violation through state-mixing, mediated by imaginary part of the the box diagram:

• Define "Bag Parameter" to parametrise $K^0 - \bar{K^0}$ mixing due to weak interactions:

$$B_{K} = \frac{\langle K^{0} | O_{VV+AA} | \bar{K}^{0} \rangle}{\frac{8}{3} f_{K}^{2} M_{K}^{2}}$$

B_K on the Lattice: The 3-point Function

To determine the Bag Parameter, we integrate out M_W and heavy quark masses (EFT) and evaluate the following QCD diagram:

 B_K can be found staring from the 3-point function on the lattice

 $\langle Q(t_2)O_{VV+AA}(t_1)Q(0)\rangle = \langle 0|O|\bar{K}^0\rangle\langle\bar{K}^0|Q|K^0\rangle\langle K^0|O|0\rangle e^{-(t_y-t_x)E_{\bar{K}^0}}e^{-t_xE_{K^0}} + \dots$

where the pseudo-scalar operator $Q = \bar{d}\gamma_5 s$ and $t_2 > t_1$. Time dependence is cancelled in this structure,

$$B_{K}^{\text{bare}} = \frac{\langle K^{0}(\Delta t) | O_{VV+AA}(t) | \bar{K}^{0}(0) \rangle}{\frac{8}{3} \langle K^{0}(\Delta t - t) | A_{0}(0) \rangle \langle A_{0}(t) | \bar{K}^{0}(0) \rangle}$$

Results 4: Fit Strategy and Excited States

• For the region where the time dependence cancels, B_0 can be found by fitting the plateau to a constant e.g. $B_{0K}^{\text{bare}} = 0.57748(60)$

Results 4: Fit Strategy and Excited States

• In the same way as the 2-point function, the effect of the excited states for the Bag parameter can be taken into account. Then "effective" Bag parameter

$$B_{\text{eff}} = B_0 \times \left[1 + \alpha e^{-t_x (E_{\kappa_1^0} - E_{\kappa_0^0})} + \alpha e^{-(t_y - t_x) (E_{\bar{\kappa}_1^0} - E_{\bar{\kappa}_0^0})} - \frac{c_1}{c_0} \left(\epsilon_{\bar{K}} (t_y - t_x) + \epsilon_K t_x\right)\right] + \dots\right]$$

explaining the shape of the relevant region:

Results 5: Bag near Charm Mass

11/20

$B^0 - \bar{B}^0$ mixing and ξ Parameter

Light and Heavy mass eigenstates

$$|B_{L,H}\rangle = \alpha |B_q^0\rangle \pm \beta |\bar{B}_q^0\rangle \quad , \quad q = d, s$$

Mass difference $\Delta M_q = M_H - M_L$ is

$$\Delta M_q \propto |M_{12}^{(q)}| \propto G_F^2 M_W^2 |V_{tq}|^2 (B_{B_q} F_{B_q}^2)$$

where

$$B_{B_q} = \langle B_q^0 | \underbrace{(\bar{b}\gamma_\mu q)(\bar{b}\gamma_\mu q) + (\bar{b}\gamma_5\gamma_\mu q)(\bar{b}\gamma_5\gamma_\mu q)}_{Q_{VV+AA}} | \bar{B}_q^0 \rangle$$

Results 6: ξ Parameter

• $B^0 - \bar{B}^0$ mixing provides information on the $|\frac{V_{td}}{V_{ts}}|$ through the parameter

$$\xi = \frac{f_{hs}\sqrt{B_{hs}}}{f_{hl}\sqrt{B_{hl}}}$$

 $\bullet\,$ This constrains the orange circle centred at $\bar{\rho}=1$

Summary

- \bullet Simulation of pions near the physical mass \rightarrow no large extrapolation required
- Simulation of heavy quarks near the charm mass
- Large lattice volumes 48³ and 64³ with two different UV cut-off scales
- Precise measurements of meson masses and decay constant
- Precise measurements of bag parameters and the ξ -parameter
- Use these measurements to contains the parameter space