Non-associative geometry in flux compactifications of string theory

Gwendolyn E. Barnes

Department of Mathematics, Heriot-Watt University, Edinburgh, United Kingdom

Maxwell Institute for Mathematical Sciences

The Tait Institute

Joint work with A. Schenkel and R. J. Szabo [arXiv:1409.6331] to appear in Journal of Geometry and Physics

December 18, 2014

Overview

Motivation

Work in progress/ outlook

Overview

Motivation

Work in progress/ outlook

Motivation Light and the nature of space-time

Light follows the geodesics of space-time

Gravitational lensing

Massive objects curve space-time in their vicinity

What is the nature of quantum space-time?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Motivation Light and the nature of space-time

Light follows the geodesics of space-time

Gravitational lensing

Massive objects curve space-time in their vicinity

What is the nature of quantum space-time?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Motivation Space-time on the quantum level

Closed strings probe or 'feel-out' space-time on the quantum level $(\sim 10^{-35}m)$

Worldsheet of closed string probing space-time

Flux compactifications of *closed* string theory

6 unobserved dimensions of strings' 10 dimensional target space are perhaps rolled up/ $$\rm compactified\ in}$

Flux compactifications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

string vacua with p-form fluxes along the extra dimensions

Flux compactifications of *closed* string theory

$$X: \Sigma \longrightarrow M = \mathbb{R}^4 \times K_H$$

H-flux, H = d B, turned on in extra dimensions of string vacua K_H

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Non-commutative and non-associative space-time geometry

geometric
$$K_H \xrightarrow{T-\text{duality}}$$
 "non – geometric" K_R

- closed strings propagating and winding in the *R*-flux background probe a non-commutative and non-associative space-time geometry (Blumenhagen, Plauschinn: 2010, Lüst: 2010)
- confirmed by explicit string and CFT calculations (Blumenhagen, Deser, Lüst, Plauschinn, Rennecke: 2011, Condeescu, Florakis, Lüst: 2012)

Constant trivector *R*-flux: $R = \frac{1}{3!} R^{ijk} \partial_i \wedge \partial_i \wedge \partial_k$ Coordinate algebra probed by closed strings in *R*-flux compactification: non-commutative $[x^i, x^j] = \frac{i\ell_s^4}{3\hbar} R^{ijk} \partial_k$, $[x^i, \partial_j] = i\hbar \delta^i{}_j$ and $[\partial_i, \partial_j] = 0$ non-associative $[x^i, x^j, x^k] = \ell_s^4 R^{ijk}$

Non-commutative and non-associative space-time geometry

geometric
$$K_H \xrightarrow{T-\text{duality}}$$
 "non – geometric" K_R

- closed strings propagating and winding in the *R*-flux background probe a non-commutative and non-associative space-time geometry (Blumenhagen, Plauschinn: 2010, Lüst: 2010)
- confirmed by explicit string and CFT calculations (Blumenhagen, Deser, Lüst, Plauschinn, Rennecke: 2011, Condeescu, Florakis, Lüst: 2012)

Constant trivector *R*-flux: $R = \frac{1}{3!} R^{ijk} \partial_i \wedge \partial_i \wedge \partial_k$ Coordinate algebra probed by closed strings in *R*-flux compactification: non-commutative $[x^i, x^j] = \frac{i\ell_s^4}{3\hbar} R^{ijk} \partial_k$, $[x^i, \partial_j] = i\hbar \delta^i_j$ and $[\partial_i, \partial_j] = 0$ non-associative $[x^i, x^j, x^k] = \ell_s^4 R^{ijk}$

Non-commutative and non-associative space-time geometry

geometric
$$K_H \xrightarrow{T-\text{duality}}$$
 "non – geometric" K_R

- closed strings propagating and winding in the *R*-flux background probe a non-commutative and non-associative space-time geometry (Blumenhagen, Plauschinn: 2010, Lüst: 2010)
- confirmed by explicit string and CFT calculations (Blumenhagen, Deser, Lüst, Plauschinn, Rennecke: 2011, Condeescu, Florakis, Lüst: 2012)

Constant trivector *R*-flux: $R = \frac{1}{3!} R^{ijk} \partial_i \wedge \partial_i \wedge \partial_k$ Coordinate algebra probed by closed strings in *R*-flux compactification: non-commutative $[x^i, x^j] = \frac{i\ell_s^4}{3\hbar} R^{ijk} \partial_k$, $[x^i, \partial_j] = i\hbar \delta^i_j$ and $[\partial_i, \partial_j] = 0$ non-associative $[x^i, x^j, x^k] = \ell_s^4 R^{ijk}$

Attempt to understand non-geometric space-time

 Kontsevich's deformation quantization of twisted Poisson manifolds provides explicit star product realizations of this non-associative geometry (Mylonas, Schupp, Szabo: 2012)

If one replaces

$\mathbf{x}^i \cdot \mathbf{x}^j \longmapsto \mathbf{x}^i \star \mathbf{x}^j$

one recovers the "non-geometric" commutation relations and Jacobiator nc $[x^i, x^j]_* = \frac{i\ell_1^i}{3\hbar} R^{ijk} \partial_k$, $[x^i, \partial_j]_* = i\hbar\delta^i_j$ and $[\partial_i, \partial_j]_* = 0$ na $[x^i, x^j, x^k]_* = \ell_*^i R^{ijk}$

► The coordinate algebra with the ***-product is a non-commutative and non-associative algebra on the *R*-flux compactification

Attempt to understand non-geometric space-time

 Kontsevich's deformation quantization of twisted Poisson manifolds provides explicit star product realizations of this non-associative geometry (Mylonas, Schupp, Szabo: 2012)

If one replaces

$$\mathbf{x}^i \cdot \mathbf{x}^j \longmapsto \mathbf{x}^i \star \mathbf{x}^j$$

one recovers the "non-geometric" commutation relations and Jacobiator nc $[x^i, x^j]_{\star} = \frac{i\ell_s^4}{3\hbar} R^{ijk} \partial_k$, $[x^i, \partial_j]_{\star} = i\hbar \delta^i{}_j$ and $[\partial_i, \partial_j]_{\star} = 0$ na $[x^i, x^j, x^k]_{\star} = \ell_s^4 R^{ijk}$

The coordinate algebra with the *-product is a non-commutative and non-associative algebra on the *R*-flux compactification

Attempt to understand non-geometric space-time

 Kontsevich's deformation quantization of twisted Poisson manifolds provides explicit star product realizations of this non-associative geometry (Mylonas, Schupp, Szabo: 2012)

If one replaces

$$\mathsf{x}^i \cdot \mathsf{x}^j \longmapsto \mathsf{x}^i \star \mathsf{x}^j$$

one recovers the "non-geometric" commutation relations and Jacobiator nc $[x^i, x^j]_{\star} = \frac{i\ell_s^4}{3\hbar} R^{ijk} \partial_k$, $[x^i, \partial_j]_{\star} = i\hbar \delta^i{}_j$ and $[\partial_i, \partial_j]_{\star} = 0$ na $[x^i, x^j, x^k]_{\star} = \ell_s^4 R^{ijk}$

► The coordinate algebra with the *-product is a non-commutative and non-associative algebra on the *R*-flux compactification

- (Mylonas, Schupp, Szabo: 2013) observed that noncommutative and nonassociative star products can be obtained via a cochain twisting of classical symmetries to a quasi-Hopf algebra
- ▶ For a particular choice of "classical algebra of symmetries" g
- ▶ and "cochain twist" $F \in U\mathfrak{g} \otimes U\mathfrak{g}$, we obtain

 $\begin{aligned} & \star - \text{product: } \star = \mu \circ F^{-1} \\ & \text{flip: } \tau = F^{21} \circ \sigma \circ F^{-1} \quad x^i \star x^j = \tau \triangleright (x^j \star x^i) \\ & \text{associator: } \phi_F = (1 \otimes F) \circ (1 \otimes \Delta)(F) \circ \phi \circ (\Delta \otimes 1)(F^{-1}) \circ (F^{-1} \otimes 1) \\ & (x^i \star x^j) \star x^k = \phi_F \triangleright (x^j \star (x^i \star x^k)) \end{aligned}$

quasi-Hopf algebra (H, τ, φ_F) = "generalised quantum group / quantum symmetries"

- (Mylonas, Schupp, Szabo: 2013) observed that noncommutative and nonassociative star products can be obtained via a cochain twisting of classical symmetries to a quasi-Hopf algebra
- ▶ For a particular choice of "classical algebra of symmetries" g

▶ and "cochain twist"
$$F \in Ug \otimes Ug$$
, we obtain
*-product: $\star = \mu \circ F^{-1}$
flip: $\tau = F^{21} \circ \sigma \circ F^{-1}$ $x^i \star x^j = \tau \triangleright (x^j \star x^i)$
associator: $\phi_F = (1 \otimes F) \circ (1 \otimes \Delta)(F) \circ \phi \circ (\Delta \otimes 1)(F^{-1}) \circ (F^{-1} \otimes 1)$
 $(x^i \star x^j) \star x^k = \phi_F \triangleright (x^j \star (x^i \star x^k))$

(日) (日) (日) (日) (日) (日) (日) (日)

► quasi-Hopf algebra (H, τ, φ_F) = "generalised quantum group / quantum symmetries"

- (Mylonas, Schupp, Szabo: 2013) observed that noncommutative and nonassociative star products can be obtained via a cochain twisting of classical symmetries to a quasi-Hopf algebra
- ▶ For a particular choice of "classical algebra of symmetries" g
- ▶ and "cochain twist" $F \in U\mathfrak{g} \otimes U\mathfrak{g}$, we obtain

*-product: $\star = \mu \circ F^{-1}$ flip: $\tau = F^{21} \circ \sigma \circ F^{-1}$ $x^i \star x^j = \tau \triangleright (x^j \star x^i)$ associator: $\phi_F = (1 \otimes F) \circ (1 \otimes \Delta)(F) \circ \phi \circ (\Delta \otimes 1)(F^{-1}) \circ (F^{-1} \otimes 1)$ $(x^i \star x^j) \star x^k = \phi_F \triangleright (x^j \star (x^i \star x^k))$

quasi-Hopf algebra (H, τ, φ_F) = "generalised quantum group / quantum symmetries"

- (Mylonas, Schupp, Szabo: 2013) observed that noncommutative and nonassociative star products can be obtained via a cochain twisting of classical symmetries to a quasi-Hopf algebra
- ▶ For a particular choice of "classical algebra of symmetries" g
- ▶ and "cochain twist" $F \in U\mathfrak{g} \otimes U\mathfrak{g}$, we obtain

*-product:
$$\star = \mu \circ F^{-1}$$

flip: $\tau = F^{21} \circ \sigma \circ F^{-1}$ $x^i \star x^j = \tau \triangleright (x^j \star x^i)$
associator: $\phi_F = (1 \otimes F) \circ (1 \otimes \Delta)(F) \circ \phi \circ (\Delta \otimes 1)(F^{-1}) \circ (F^{-1} \otimes 1)$
 $(x^i \star x^j) \star x^k = \phi_F \triangleright (x^i \star (x^i \star x^k))$

quasi-Hopf algebra (H, τ, φ_F) = "generalised quantum group / quantum symmetries"

- (Mylonas, Schupp, Szabo: 2013) observed that noncommutative and nonassociative star products can be obtained via a cochain twisting of classical symmetries to a quasi-Hopf algebra
- ▶ For a particular choice of "classical algebra of symmetries" g
- ▶ and "cochain twist" $F \in U\mathfrak{g} \otimes U\mathfrak{g}$, we obtain

 $\begin{array}{l} \star \text{-product: } \star = \mu \circ F^{-1} \\ \text{flip: } \tau = F^{21} \circ \sigma \circ F^{-1} \quad x^i \star x^j = \tau \triangleright (x^j \star x^i) \\ \text{associator: } \phi_F = (1 \otimes F) \circ (1 \otimes \Delta)(F) \circ \phi \circ (\Delta \otimes 1)(F^{-1}) \circ (F^{-1} \otimes 1) \\ (x^i \star x^j) \star x^k = \phi_F \triangleright (x^i \star (x^i \star x^k)) \end{array}$

▶ quasi-Hopf algebra (H, τ, ϕ_F) = "generalised quantum group / quantum symmetries"

Where these formulae come from...

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Goal

Goal Mathematical development of a framework to describe a large class of non-commutative and non-associative geometries, including the non-geometric flux compactification above.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Equivalence of algebra representation categories

We are interested in obtaining nc/ na spaces by deforming classical manifolds with a symmetry group action G.

Gelfand-Naimark "Manifolds can be analyzed by studying functions on them."

Lem G a Lie group, $U\mathfrak{g}$ the universal enveloping algebra of its associated Lie algebra \mathfrak{g} . Then there is a functor:

$$G\operatorname{\mathsf{-Man}^{\operatorname{op}}} \xrightarrow{C^{\infty}} \xrightarrow{U\mathfrak{g}} \operatorname{Alg}}$$

Thm F a twist of $U\mathfrak{g}$. Then there is a functor:

Quantisation

$${}^{U\mathfrak{g}}\operatorname{Alg} \xrightarrow{F} {}^{H}\operatorname{Alg}$$

"Algebras transforming under classical symmetries are twisted to nc/ na algebras transforming under quantum symmetries *H*."

Remark Twist deformation quantisation is an equivalence of categories.

Equivalence of algebra representation categories

We are interested in obtaining nc/ na spaces by deforming classical manifolds with a symmetry group action G.

Gelfand-Naimark "Manifolds can be analyzed by studying functions on them."

Lem G a Lie group, Ug the universal enveloping algebra of its associated Lie algebra g. Then there is a functor:

$$G\operatorname{-Man}^{\operatorname{op}} \xrightarrow{\quad C^{\infty} \qquad \qquad } {}^{U\mathfrak{g}}\operatorname{Alg}$$

Thm F a twist of $U\mathfrak{g}$. Then there is a functor

Quantisation

$$\stackrel{U\mathfrak{g}}{\longrightarrow} \operatorname{Alg} \xrightarrow{F} \operatorname{Alg}$$

"Algebras transforming under classical symmetries are twisted to nc/ na algebras transforming under quantum symmetries *H*."

Remark Twist deformation quantisation is an equivalence of categories.

Equivalence of algebra representation categories

We are interested in obtaining nc/ na spaces by deforming classical manifolds with a symmetry group action G.

Gelfand-Naimark "Manifolds can be analyzed by studying functions on them."

Lem G a Lie group, $U\mathfrak{g}$ the universal enveloping algebra of its associated Lie algebra \mathfrak{g} . Then there is a functor:

$$G\operatorname{\mathsf{-Man}^{\operatorname{op}}} \xrightarrow{C^{\infty}} {}^{\mathcal{U}\mathfrak{g}}\operatorname{\mathsf{Alg}}$$

Thm F a twist of $U\mathfrak{g}$. Then there is a functor

Quantisation

$${}^{U\mathfrak{g}}\operatorname{Alg} \xrightarrow{F} {}^{H}\operatorname{Alg}$$

"Algebras transforming under classical symmetries are twisted to nc/ na algebras transforming under quantum symmetries *H*."

Remark Twist deformation quantisation is an equivalence of categories.

Equivalence of algebra representation categories

We are interested in obtaining nc/ na spaces by deforming classical manifolds with a symmetry group action G.

Gelfand-Naimark "Manifolds can be analyzed by studying functions on them."

Lem G a Lie group, $U\mathfrak{g}$ the universal enveloping algebra of its associated Lie algebra \mathfrak{g} . Then there is a functor:

$$\operatorname{\mathsf{G-Man}^{\operatorname{op}}} \xrightarrow{\operatorname{\mathsf{C}^{\infty}}} \xrightarrow{\operatorname{\mathsf{Ug}}} \operatorname{\mathsf{Alg}}$$

Thm F a twist of Ug. Then there is a functor:

Quantisation

$${}^{U\mathfrak{g}}\operatorname{Alg} \xrightarrow{F} {}^{H}\operatorname{Alg}$$

"Algebras transforming under classical symmetries are twisted to nc/ na algebras transforming under quantum symmetries H."

Remark Twist deformation quantisation is an equivalence of categories.

Equivalence of algebra representation categories

We are interested in obtaining nc/ na spaces by deforming classical manifolds with a symmetry group action G.

Gelfand-Naimark "Manifolds can be analyzed by studying functions on them."

Lem G a Lie group, $U\mathfrak{g}$ the universal enveloping algebra of its associated Lie algebra \mathfrak{g} . Then there is a functor:

$$G\operatorname{\mathsf{-Man}^{\operatorname{op}}} \xrightarrow{C^{\infty}} {}^{U\mathfrak{g}}\operatorname{\mathsf{Alg}}$$

Thm F a twist of Ug. Then there is a functor:

Quantisation

$${}^{U\mathfrak{g}}\operatorname{Alg} \xrightarrow{F} {}^{H}\operatorname{Alg}$$

"Algebras transforming under classical symmetries are twisted to nc/ na algebras transforming under quantum symmetries H."

Remark Twist deformation quantisation is an equivalence of categories.

▶ g the non-Abelian nilpotent Lie algebra over \mathbb{C} with generators $\{t_i, \tilde{t}^i, m_{ij} : 1 \le i < j \le n\}$ and Lie bracket relations

$$[\tilde{t}^{i}, m_{jk}] = \delta^{i}_{j} t_{k} - \delta^{i}_{k} t_{j}$$

- classical algebra of symmetries Ug
- algebra $A = C^{\infty}(\mathbb{R}^{2n})$ in ^{Ug}Alg
- cochain twist $F \in U\mathfrak{g} \otimes U\mathfrak{g}$ given by

$${\mathcal F} = \exp \left(- rac{\mathrm{i}\,\hbar}{2} \left(rac{\mathrm{i}\,k}{4} \, \mathsf{R}^{ijk} \left(m_{ij} \otimes t_k - t_i \otimes m_{jk}
ight) + t_i \otimes ilde{t}^{\,\,i} - ilde{t}^{\,\,i} \otimes t_i
ight)
ight)$$

The star product is given by * = µ ∘ F⁻¹, which yields on A nc [xⁱ, x^j]_{*} = ^{iℓ^s}/_{3ħ} R^{ijk} p_k, [xⁱ, p_j]_{*} = iħδⁱ_j and [p_i, p_j]_{*} = 0 na [xⁱ, x^j, x^k]_{*} = ℓ⁴_s R^{ijk}
The flip is given by τ = F⁻²
The associator is given by φ_F = exp (^{ħ²}/₂ R^{ijk} t_i ⊗ t_j ⊗ t_k)

▶ g the non-Abelian nilpotent Lie algebra over \mathbb{C} with generators $\{t_i, \tilde{t}^i, m_{ij} : 1 \le i < j \le n\}$ and Lie bracket relations

$$[\tilde{t}^{i}, m_{jk}] = \delta^{i}_{j} t_{k} - \delta^{i}_{k} t_{j}$$

classical algebra of symmetries Ug

- algebra $A = C^{\infty}(\mathbb{R}^{2n})$ in ^{Ug}Alg
- cochain twist $F \in U\mathfrak{g} \otimes U\mathfrak{g}$ given by

$${\mathcal F} = \exp \left(- rac{\mathrm{i}\,\hbar}{2} \left(rac{\mathrm{i}\,k}{4} \, \mathsf{R}^{ijk} \left(m_{ij} \otimes t_k - t_i \otimes m_{jk}
ight) + t_i \otimes ilde{t}^{\,\,i} - ilde{t}^{\,\,i} \otimes t_i
ight)
ight)$$

The star product is given by * = µ ∘ F⁻¹, which yields on A nc [xⁱ, x^j]_{*} = ^{iℓ⁴}/_{3ħ} R^{ijk}p_k, [xⁱ, p_j]_{*} = iħδⁱ_j and [p_i, p_j]_{*} = 0 na [xⁱ, x^j, x^k]_{*} = ℓ⁴_s R^{ijk}
The flip is given by τ = F⁻²
The associator is given by φ_F = exp (^{h²}/₂ R^{ijk} t_i ⊗ t_k)

▶ g the non-Abelian nilpotent Lie algebra over \mathbb{C} with generators $\{t_i, \tilde{t}^i, m_{ij} : 1 \le i < j \le n\}$ and Lie bracket relations

$$[\tilde{t}^{i}, m_{jk}] = \delta^{i}_{j} t_{k} - \delta^{i}_{k} t_{j}$$

- ▶ classical algebra of symmetries Ug
 ▶ algebra A = C[∞](ℝ²ⁿ) in ^{Ug}Alg
- cochain twist $F \in U\mathfrak{g} \otimes U\mathfrak{g}$ given by

$$F = \exp\left(-\frac{\mathrm{i}\hbar}{4}\left(\frac{1}{2}\mathsf{R}^{ijk}\left(m_{ii}\otimes t_{k}-t_{i}\otimes m_{ik}\right)+t_{i}\otimes\tilde{t}^{i}-\tilde{t}^{i}\otimes\right)\right)$$

The star product is given by * = µ ∘ F⁻¹, which yields on A nc [xⁱ, x^j]_{*} = ^{iℓ_s}/_{3ħ} R^{ijk} p_k, [xⁱ, p_j]_{*} = iħδⁱ_j and [p_i, p_j]_{*} = 0 na [xⁱ, x^j, x^k]_{*} = ℓ_s⁴ R^{ijk}
The flip is given by τ = F⁻²
The associator is given by φ_F = exp (^{h²}/₂ R^{ijk} t_i ⊗ t_j ⊗ t_k)

▶ g the non-Abelian nilpotent Lie algebra over \mathbb{C} with generators $\{t_i, \tilde{t}^i, m_{ij} : 1 \le i < j \le n\}$ and Lie bracket relations

$$[\tilde{t}^{i}, m_{jk}] = \delta^{i}_{j} t_{k} - \delta^{i}_{k} t_{j}$$

- classical algebra of symmetries Ug
- algebra $A = C^{\infty}(\mathbb{R}^{2n})$ in ^{Ug}Alg
- cochain twist $F \in U\mathfrak{g} \otimes U\mathfrak{g}$ given by

$${\mathcal F} = \exp \left(- rac{\mathrm{i}\,\hbar}{2} \left(rac{\mathrm{i}\,\hbar}{4} \, \mathsf{R}^{ijk} \left(m_{ij} \otimes t_k - t_i \otimes m_{jk}
ight) + t_i \otimes ilde{t}^{\,\,i} - ilde{t}^{\,\,i} \otimes t_i
ight)
ight)$$

The star product is given by * = µ ∘ F⁻¹, which yields on A nc [xⁱ, x^j]_{*} = ^{iℓ^s}/_{3ħ} R^{ijk}p_k, [xⁱ, p_j]_{*} = iħδⁱ_j and [p_i, p_j]_{*} = 0 na [xⁱ, x^j, x^k]_{*} = ℓ⁴_s R^{ijk}
The flip is given by τ = F⁻²
The associator is given by φ_F = exp (^{h²}/₂ R^{ijk} t_i ⊗ t_k)

▶ g the non-Abelian nilpotent Lie algebra over \mathbb{C} with generators $\{t_i, \tilde{t}^i, m_{ij} : 1 \le i < j \le n\}$ and Lie bracket relations

$$[\tilde{t}^{i}, m_{jk}] = \delta^{i}_{j} t_{k} - \delta^{i}_{k} t_{j}$$

- classical algebra of symmetries Ug
- algebra $A = C^{\infty}(\mathbb{R}^{2n})$ in ^{Ug}Alg
- cochain twist $F \in U\mathfrak{g} \otimes U\mathfrak{g}$ given by

$${\mathcal F} = \exp \left(- rac{\mathrm{i}\,\hbar}{2} \left(rac{\mathrm{i}\,\hbar}{4} \, \mathsf{R}^{ijk} \left({{m_{ij}} \otimes {t_k} - {t_i} \otimes {m_{jk}}}
ight) + {t_i} \otimes { ilde t}^i - { ilde t}^i \otimes {t_i}
ight)
ight)$$

► The star product is given by $\star = \mu \circ F^{-1}$, which yields on Anc $[x^i, x^j]_\star = \frac{i\ell_s^4}{3\hbar} R^{ijk} p_k$, $[x^i, p_j]_\star = i\hbar \delta^i{}_j$ and $[p_i, p_j]_\star = 0$ na $[x^i, x^j, x^k]_\star = \ell_s^4 R^{ijk}$

• The flip is given by $\tau = F^{-2}$

► The associator is given by $\phi_F = \exp\left(\frac{\hbar^2}{2} \mathsf{R}^{ijk} t_i \otimes t_j \otimes t_k\right)$

▶ g the non-Abelian nilpotent Lie algebra over \mathbb{C} with generators $\{t_i, \tilde{t}^i, m_{ij} : 1 \le i < j \le n\}$ and Lie bracket relations

$$[\tilde{t}^{i}, m_{jk}] = \delta^{i}_{j} t_{k} - \delta^{i}_{k} t_{j}$$

- classical algebra of symmetries Ug
- algebra $A = C^{\infty}(\mathbb{R}^{2n})$ in ^{Ug}Alg
- cochain twist $F \in U\mathfrak{g} \otimes U\mathfrak{g}$ given by

$${\mathcal F} = \exp \left(- rac{\mathrm{i}\,\hbar}{2} \left(rac{\mathrm{i}\,\hbar}{4} \, \mathsf{R}^{ijk} \left({{m_{ij}} \otimes {t_k} - {t_i} \otimes {m_{jk}}}
ight) + {t_i} \otimes { ilde t}^i - { ilde t}^i \otimes {t_i}
ight)
ight)$$

The star product is given by * = µ ∘ F⁻¹, which yields on A nc [xⁱ, x^j]_{*} = ^{iℓ^s}/_{3ħ} R^{ijk} p_k, [xⁱ, p_j]_{*} = iħδⁱ_j and [p_i, p_j]_{*} = 0 na [xⁱ, x^j, x^k]_{*} = ℓ⁴_s R^{ijk}
The flip is given by τ = F⁻²
The associator is given by φ_F = exp (^{h²}/₂ R^{ijk} t_i ⊗ t_j ⊗ t_k)

▶ g the non-Abelian nilpotent Lie algebra over \mathbb{C} with generators $\{t_i, \tilde{t}^i, m_{ij} : 1 \le i < j \le n\}$ and Lie bracket relations

$$[\tilde{t}^{i}, m_{jk}] = \delta^{i}_{j} t_{k} - \delta^{i}_{k} t_{j}$$

- classical algebra of symmetries Ug
- algebra $A = C^{\infty}(\mathbb{R}^{2n})$ in ^{Ug}Alg
- cochain twist $F \in U\mathfrak{g} \otimes U\mathfrak{g}$ given by

$${\mathcal F} = \exp \left(- rac{\mathrm{i}\,\hbar}{2} \left(rac{\mathrm{i}\,\hbar}{4} \, \mathsf{R}^{ijk} \left({{m_{ij}} \otimes {t_k} - {t_i} \otimes {m_{jk}}}
ight) + {t_i} \otimes { ilde t}^i - { ilde t}^i \otimes {t_i}
ight)
ight)$$

The star product is given by * = µ ∘ F⁻¹, which yields on A nc [xⁱ, x^j]_{*} = ^{iℓ^s}/_{3ħ} R^{ijk}p_k, [xⁱ, p_j]_{*} = iħδⁱ_j and [p_i, p_j]_{*} = 0 na [xⁱ, x^j, x^k]_{*} = ℓ⁴_s R^{ijk}
The flip is given by τ = F⁻²
The associator is given by φ_F = exp(^{ħ²}/₂ R^{ijk} t_i ⊗ t_j ⊗ t_k)

Equivalence of module representation categories

Given a nc/ na space, we want to understand **all** H-equivariant vector bundles (e.g. tangent bundle, cotangent bundle) and operations between them

Serre-Swan "Vector bundles may be analysed by studying their modules of sections."

Lem M a manifold with G-action. Then there is a functor:

$$G\operatorname{-VecBun}_{M} \xrightarrow{\Gamma^{\infty}} {}^{U\mathfrak{g}}_{\mathcal{C}^{\infty}(M)} \mathscr{M}_{\mathcal{C}^{\infty}(M)}$$

Thm *F* a twist of *U*g. Then there is a functor:

Quantisation

$${}^{U\mathfrak{g}}{}_{\mathcal{C}^{\infty}(M)}\mathscr{M}_{\mathcal{C}^{\infty}(M)} \xrightarrow{F} {}^{H}{}_{\mathcal{A}}\mathscr{M}_{\mathcal{A}}$$

"Modules of sections over classical algebras are twisted to nc/ na modules of sections over quantum algebras."

Remark Twist deformation quantisation is an equivalence of categories

Application Applied to our non-geometric space, this gives us all *H*-equivariant vector bundles over the nc/na algebra describing the flux compactification.

Non-commutative and non-associative bundles from deformations Equivalence of module representation categories

Given a nc/ na space, we want to understand **all** *H*-equivariant vector bundles (e.g. tangent bundle, cotangent bundle) and operations between them

Serre-Swan "Vector bundles may be analysed by studying their modules of sections."

Lem M a manifold with G-action. Then there is a functor:

$$G\operatorname{-VecBun}_M \xrightarrow{\Gamma^{\infty}} {}^{U\mathfrak{g}}_{C^{\infty}(M)} \mathscr{M}_{C^{\infty}(M)}$$

Thm *F* a twist of *U*g. Then there is a functor:

Quantisation

$${}^{U\mathfrak{g}}{}_{\mathcal{C}^{\infty}(M)}\mathscr{M}_{\mathcal{C}^{\infty}(M)} \xrightarrow{F} {}^{H}{}_{A}\mathscr{M}_{A}$$

"Modules of sections over classical algebras are twisted to nc/ na modules of sections over quantum algebras."

Remark Twist deformation quantisation is an equivalence of categories

Application Applied to our non-geometric space, this gives us all *H*-equivariant vector bundles over the nc/na algebra describing the flux compactification.

Non-commutative and non-associative bundles from deformations Equivalence of module representation categories

Given a nc/ na space, we want to understand **all** *H*-equivariant vector bundles (e.g. tangent bundle, cotangent bundle) and operations between them

Serre-Swan "Vector bundles may be analysed by studying their modules of sections."

Lem M a manifold with G-action. Then there is a functor:

$$G\operatorname{-VecBun}_M \xrightarrow{\Gamma^{\infty}} {}^{U\mathfrak{g}}{}_{C^{\infty}(M)}\mathscr{M}_{C^{\infty}(M)}$$

Thm *F* a twist of *U*g. Then there is a functor:

Quantisation

$${}^{Ug}{}_{\mathcal{C}^{\infty}(M)}\mathcal{M}_{\mathcal{C}^{\infty}(M)} \xrightarrow{F} {}^{H}{}_{A}\mathcal{M}_{A}$$

"Modules of sections over classical algebras are twisted to nc/ na modules of sections over quantum algebras."

Remark Twist deformation quantisation is an equivalence of categories

Application Applied to our non-geometric space, this gives us all *H*-equivariant vector bundles over the nc/na algebra describing the flux compactification.

Non-commutative and non-associative bundles from deformations Equivalence of module representation categories

Given a nc/ na space, we want to understand **all** *H*-equivariant vector bundles (e.g. tangent bundle, cotangent bundle) and operations between them

Serre-Swan "Vector bundles may be analysed by studying their modules of sections."

Lem M a manifold with G-action. Then there is a functor:

$$G\operatorname{-VecBun}_M \xrightarrow{\Gamma^{\infty}} {}^{\mathcal{U}\mathfrak{g}}_{\mathcal{C}^{\infty}(M)}\mathscr{M}_{\mathcal{C}^{\infty}(M)}$$

Thm F a twist of Ug. Then there is a functor:

Quantisation

$${}^{U_{\mathfrak{g}}}{}_{C^{\infty}(M)}\mathscr{M}_{C^{\infty}(M)} \xrightarrow{F} {}^{H}{}_{A}\mathscr{M}_{A}$$

"Modules of sections over classical algebras are twisted to nc/ na modules of sections over quantum algebras."

Remark Twist deformation quantisation is an equivalence of categories

Application Applied to our non-geometric space, this gives us all *H*-equivariant vector bundles over the nc/na algebra describing the flux compactification.

Non-commutative and non-associative bundles from deformations Equivalence of module representation categories

Given a nc/ na space, we want to understand **all** *H*-equivariant vector bundles (e.g. tangent bundle, cotangent bundle) and operations between them

Serre-Swan "Vector bundles may be analysed by studying their modules of sections."

Lem M a manifold with G-action. Then there is a functor:

$$G\operatorname{-VecBun}_M \xrightarrow{\Gamma^{\infty}} {}^{\mathcal{U}\mathfrak{g}}_{\mathcal{C}^{\infty}(M)}\mathscr{M}_{\mathcal{C}^{\infty}(M)}$$

Thm F a twist of Ug. Then there is a functor:

Quantisation

$${}^{U\mathfrak{g}}{}_{C^{\infty}(M)}\mathscr{M}_{C^{\infty}(M)} \xrightarrow{F} {}^{H}{}_{A}\mathscr{M}_{A}$$

"Modules of sections over classical algebras are twisted to nc/ na modules of sections over quantum algebras."

Remark Twist deformation quantisation is an equivalence of categories

Application Applied to our non-geometric space, this gives us all *H*-equivariant vector bundles over the nc/na algebra describing the flux compactification.

Non-commutative and non-associative bundles from deformations Equivalence of module representation categories

Given a nc/ na space, we want to understand **all** *H*-equivariant vector bundles (e.g. tangent bundle, cotangent bundle) and operations between them

Serre-Swan "Vector bundles may be analysed by studying their modules of sections."

Lem M a manifold with G-action. Then there is a functor:

$$G\operatorname{-VecBun}_M \xrightarrow{\Gamma^{\infty}} {}^{\mathcal{U}_{\mathfrak{g}}} \mathcal{C}^{\infty}(M) \overset{\mathcal{U}_{\mathcal{C}^{\infty}}(M)}{\longrightarrow} \mathcal{U}_{\mathcal{C}^{\infty}(M)}$$

Thm F a twist of Ug. Then there is a functor:

Quantisation

$${}^{U\mathfrak{g}}{}_{\mathcal{C}^{\infty}(M)}\mathscr{M}_{\mathcal{C}^{\infty}(M)} \xrightarrow{F} {}^{H}{}_{A}\mathscr{M}_{A}$$

"Modules of sections over classical algebras are twisted to nc/ na modules of sections over quantum algebras."

Remark Twist deformation quantisation is an equivalence of categories

Application Applied to our non-geometric space, this gives us all *H*-equivariant vector bundles over the nc/na algebra describing the flux compactification.

- The representation category of any quasi-Hopf algebra is a closed braided monoidal category, which means that it has a tensor product, a braiding and internal homomorphisms.
- For the category ^H_A.ℳ_A of H-equivariant vb over A ∈^H Alg we obtain: Thm ^H_A.ℳ_A is a closed braided monoidal category (⊗_A, τ_A, hom_A) Physical relevance This gives standard operations on fields:
 - 1 nc/na vector bundles can be tensored $\otimes_A \rightsquigarrow$ tensor fields
 - 2 $V \otimes_A W \xrightarrow{\tau_A} W \otimes_A V \rightsquigarrow$ allows us to define symmetric and anti-symmetric tensors

(日) (同) (三) (三) (三) (○) (○)

- The representation category of any quasi-Hopf algebra is a closed braided monoidal category, which means that it has a tensor product, a braiding and internal homomorphisms.
- For the category ^H_Aℳ_A of H-equivariant vb over A ∈^H Alg we obtain: Thm ^H_Aℳ_A is a closed braided monoidal category (⊗_A, τ_A, hom_A) Physical relevance This gives standard operations on fields:
 - 1 nc/na vector bundles can be tensored $\otimes_A \rightsquigarrow$ tensor fields
 - 2 $V \otimes_A W \xrightarrow{\tau_A} W \otimes_A V \rightarrow$ allows us to define symmetric and anti-symmetric tensors

(日) (同) (三) (三) (三) (○) (○)

The representation category of any quasi-Hopf algebra is a closed braided monoidal category, which means that it has a tensor product, a braiding and internal homomorphisms.

 For the category ^H_A.ℳ_A of H-equivariant vb over A ∈^H Alg we obtain: Thm ^H_A.ℳ_A is a closed braided monoidal category (⊗_A, τ_A, hom_A) Physical relevance This gives standard operations on fields:

1 nc/na vector bundles can be tensored $\otimes_A \rightsquigarrow$ tensor fields

2 $V \otimes_A W \xrightarrow{\tau_A} W \otimes_A V \rightsquigarrow$ allows us to define symmetric and anti-symmetric tensors

(日) (同) (三) (三) (三) (○) (○)

The representation category of any quasi-Hopf algebra is a closed braided monoidal category, which means that it has a tensor product, a braiding and internal homomorphisms.

 For the category ^H_A.ℳ_A of H-equivariant vb over A ∈^H Alg we obtain: Thm ^H_A.ℳ_A is a closed braided monoidal category (⊗_A, τ_A, hom_A) Physical relevance This gives standard operations on fields:

1 nc/na vector bundles can be tensored $\otimes_A \rightsquigarrow$ tensor fields

2 $V \otimes_A W \xrightarrow{\tau_A} W \otimes_A V \rightsquigarrow$ allows us to define symmetric and anti-symmetric tensors

(日) (同) (三) (三) (三) (○) (○)

The representation category of any quasi-Hopf algebra is a closed braided monoidal category, which means that it has a tensor product, a braiding and internal homomorphisms.

 For the category ^H_A.ℳ_A of H-equivariant vb over A ∈^H Alg we obtain: Thm ^H_A.ℳ_A is a closed braided monoidal category (⊗_A, τ_A, hom_A) Physical relevance This gives standard operations on fields:

1 nc/na vector bundles can be tensored $\otimes_A \rightsquigarrow$ tensor fields

2 $V \otimes_A W \xrightarrow{\tau_A} W \otimes_A V \rightsquigarrow$ allows us to define symmetric and anti-symmetric tensors

(日) (同) (三) (三) (三) (○) (○)

The representation category of any quasi-Hopf algebra is a closed braided monoidal category, which means that it has a tensor product, a braiding and internal homomorphisms.

 For the category ^H_A.M_A of H-equivariant vb over A ∈^H Alg we obtain: Thm ^H_A.M_A is a closed braided monoidal category (⊗_A, τ_A, hom_A) Physical relevance This gives standard operations on fields:

1 nc/na vector bundles can be tensored $\otimes_A \rightsquigarrow$ tensor fields

2 $V \otimes_A W \xrightarrow{\tau_A} W \otimes_A V \rightsquigarrow$ allows us to define symmetric and anti-symmetric tensors

The representation category of any quasi-Hopf algebra is a closed braided monoidal category, which means that it has a tensor product, a braiding and internal homomorphisms.

 For the category ^H_A.M_A of H-equivariant vb over A ∈^H Alg we obtain: Thm ^H_A.M_A is a closed braided monoidal category (⊗_A, τ_A, hom_A) Physical relevance This gives standard operations on fields:

1 nc/na vector bundles can be tensored $\otimes_A \rightsquigarrow$ tensor fields

2 $V \otimes_A W \xrightarrow{\tau_A} W \otimes_A V \rightsquigarrow$ allows us to define symmetric and anti-symmetric tensors

Overview

Motivation

Work in progress/ outlook

Work in progress/ outlook

- ▶ Differential operators, connections, Riemannian geometry in ${}^{H}{}_{A}\mathscr{M}_{A}$
- Develop a gravity theory in ^H_A.*M*_A which is a candidate for a low-energy effective theory for non-geometric closed string theory

Geometry on curved spaces

Thank you

