Non-associative geometry in flux compactifications of string theory

Gwendolyn E. Barnes
Department of Mathematics, Heriot-Watt University, Edinburgh, United Kingdom
Maxwell Institute for Mathematical Sciences
The Tait Institute
Joint work with A. Schenkel and R. J. Szabo [arXiv:1409.6331] to appear in Journal of Geometry and Physics

December 18, 2014

Overview

Motivation

Work in progress/ outlook

Overview

Motivation

Work in progress/ outlook

Motivation

Light and the nature of space-time

Light follows the geodesics of space-time

Gravitational lensing

Massive objects curve space-time in their vicinity

What is the nature of quantum space-time?

Motivation

Light and the nature of space-time

Light follows the geodesics of space-time

Gravitational lensing

Massive objects curve space-time in their vicinity
What is the nature of quantum space-time?

Motivation

Space-time on the quantum level

Closed strings probe or 'feel-out' space-time on the quantum level ($\left.\sim 10^{-35} \mathrm{~m}\right)$

Worldsheet of closed string probing space-time

Motivation

Flux compactifications of closed string theory

6 unobserved dimensions of strings' 10 dimensional target space are perhaps rolled up/ compactified in

Flux compactifications

- string vacua with p-form fluxes along the extra dimensions

Motivation

Flux compactifications of closed string theory

$$
X: \Sigma \longrightarrow M=\mathbb{R}^{4} \times K_{H}
$$

H-flux, $H=\mathrm{d} B$, turned on in extra dimensions of string vacua K_{H}

Motivation

Non-commutative and non-associative space-time geometry

$$
\text { geometric } K_{H} \sim^{T \text {-duality }} \text { "non - geometric" } K_{R}
$$

- closed strings propagating and winding in the R-flux background probe a non-commutative and non-associative space-time geometry (Blumenhagen, Plauschinn: 2010, Lüst: 2010)

- confirmed by explicit string and CFT calculations (Blumenhagen, Deser, Lüst, Plauschinn, Rennecke: 2011, Condeescu, Florakis, Lüst: 2012)

Coordinate algebra probed by closed strings in R-flux compactification: non-commutative $\left[x^{i}, x^{j}\right]=\frac{i \ell_{s}^{4}}{3!} R^{i j k} \partial_{k}, \quad\left[x^{i}, \partial_{j}\right]=i \hbar \delta^{i} ;$ and $\left[\partial_{;}, \partial_{j}\right]=0$ non-associative $\left[x^{i}, x^{j}, x^{k}\right]=\ell_{s}^{4} R^{i j k}$

Motivation

Non-commutative and non-associative space-time geometry

$$
\text { geometric } K_{H} \sim^{T \text {-duality }} \text { "non - geometric" } K_{R}
$$

- closed strings propagating and winding in the R-flux background probe a non-commutative and non-associative space-time geometry (Blumenhagen, Plauschinn: 2010, Lüst: 2010)
- confirmed by explicit string and CFT calculations (Blumenhagen, Deser, Lüst, Plauschinn, Rennecke: 2011, Condeescu, Florakis, Lüst: 2012)

Coordinate algebra probed by closed strings in R-flux compactification: non-commutative $\left[x^{i}, x^{j}\right]=\frac{i \ell_{s}^{4}}{3 \hbar} R^{i j k} \partial_{k}, \quad\left[x^{i}, \partial_{j}\right]=i \hbar \delta^{i}{ }_{j}$ and $\left[\partial_{i}, \partial_{j}\right]=0$ non-associative $\left[x^{i}, x^{j}, x^{k}\right]=\ell_{s}^{4} R^{i j k}$

Motivation

Non-commutative and non-associative space-time geometry

$$
\text { geometric } K_{H} \sim \sim^{T \text {-duality }} \text { "non - geometric" } K_{R}
$$

- closed strings propagating and winding in the R-flux background probe a non-commutative and non-associative space-time geometry
(Blumenhagen, Plauschinn: 2010, Lüst: 2010)
- confirmed by explicit string and CFT calculations (Blumenhagen, Deser, Lüst, Plauschinn, Rennecke: 2011, Condeescu, Florakis, Lüst: 2012)

Constant trivector R-flux: $R=\frac{1}{3!} R^{i j k} \partial_{i} \wedge \partial_{i} \wedge \partial_{k}$
Coordinate algebra probed by closed strings in R-flux compactification: non-commutative $\left[x^{i}, x^{j}\right]=\frac{i \ell_{s}^{4}}{3 \hbar} R^{i j k} \partial_{k}, \quad\left[x^{i}, \partial_{j}\right]=i \hbar \delta^{i}{ }_{j}$ and $\left[\partial_{i}, \partial_{j}\right]=0$ non-associative $\left[x^{i}, x^{j}, x^{k}\right]=\ell_{s}^{4} R^{i j k}$

Motivation

Attempt to understand non-geometric space-time

- Kontsevich's deformation quantization of twisted Poisson manifolds provides explicit star product realizations of this non-associative geometry (Mylonas, Schupp, Szabo: 2012)
- If one replaces

one recovers the "non-geometric" commutation relations and Jacobiator
- The coordinate algebra with the \star-product is a non-commutative and non-associative algebra on the R-flux compactification

Motivation

Attempt to understand non-geometric space-time

- Kontsevich's deformation quantization of twisted Poisson manifolds provides explicit star product realizations of this non-associative geometry (Mylonas, Schupp, Szabo: 2012)
- If one replaces

$$
x^{i} \cdot x^{j} \longmapsto x^{i} \star x^{j}
$$

one recovers the "non-geometric" commutation relations and Jacobiator

$$
\begin{aligned}
& \mathrm{nc}\left[x^{i}, x^{j}\right]_{\star}=\frac{i \ell_{s}^{4}}{3 \hbar} R^{i j k} \partial_{k}, \quad\left[x^{i}, \partial_{j}\right]_{\star}=i \hbar \delta^{i}{ }_{j} \quad \text { and }\left[\partial_{i}, \partial_{j}\right]_{\star}=0 \\
& \text { na }\left[x^{i}, x^{j}, x^{k}\right]_{\star}=\ell_{s}^{4} R^{i j k}
\end{aligned}
$$

- The coordinate algebra with the \star-product is a non-commutative and non-associative algebra on the R-flux compactification

Motivation

- Kontsevich's deformation quantization of twisted Poisson manifolds provides explicit star product realizations of this non-associative geometry (Mylonas, Schupp, Szabo: 2012)
- If one replaces

$$
x^{i} \cdot x^{j} \longmapsto x^{i} \star x^{j}
$$

one recovers the "non-geometric" commutation relations and Jacobiator

$$
\begin{aligned}
& \mathrm{nc}\left[x^{i}, x^{j}\right]_{\star}=\frac{i \ell_{s}^{4}}{3 \hbar} R^{i j k} \partial_{k}, \quad\left[x^{i}, \partial_{j}\right]_{\star}=i \hbar \delta^{i}{ }_{j} \quad \text { and }\left[\partial_{i}, \partial_{j}\right]_{\star}=0 \\
& \text { na }\left[x^{i}, x^{j}, x^{k}\right]_{\star}=\ell_{s}^{4} R^{i j k}
\end{aligned}
$$

- The coordinate algebra with the \star-product is a non-commutative and non-associative algebra on the R-flux compactification

Motivation

Twist deformation quantisation

- (Mylonas, Schupp, Szabo: 2013) observed that noncommutative and nonassociative star products can be obtained via a cochain twisting of classical symmetries to a quasi-Hopf algebra
- For a particular choice of "classical algebra of symmetries" \mathfrak{g}
- and "cochain twist" $F \in U \mathfrak{g} \otimes U \mathfrak{g}$, we obtain

- quasi-Hopf algebra $\left(H, \tau, \phi_{F}\right)=$ "generalised quantum group / quantum symmetries"

Motivation

Twist deformation quantisation

- (Mylonas, Schupp, Szabo: 2013) observed that noncommutative and nonassociative star products can be obtained via a cochain twisting of classical symmetries to a quasi-Hopf algebra
- For a particular choice of "classical algebra of symmetries" \mathfrak{g}
> and "cochain twist" $F \in U \mathfrak{g} \otimes U g$, we obtain

- quasi-Hopf algebra $\left(H, \tau, \phi_{F}\right)=$ "generalised quantum group / quantum symmetries"

Motivation

Twist deformation quantisation

- (Mylonas, Schupp, Szabo: 2013) observed that noncommutative and nonassociative star products can be obtained via a cochain twisting of classical symmetries to a quasi-Hopf algebra
- For a particular choice of "classical algebra of symmetries" \mathfrak{g}
- and "cochain twist" $F \in U \mathfrak{g} \otimes U \mathfrak{g}$, we obtain

- quasi-Hopf algebra $\left(H, \tau, \phi_{F}\right)=$ "generalised quantum group / quantum symmetries"

Motivation

Twist deformation quantisation

- (Mylonas, Schupp, Szabo: 2013) observed that noncommutative and nonassociative star products can be obtained via a cochain twisting of classical symmetries to a quasi-Hopf algebra
- For a particular choice of "classical algebra of symmetries" \mathfrak{g}
- and "cochain twist" $F \in U \mathfrak{g} \otimes U \mathfrak{g}$, we obtain
*-product: $\star=\mu \circ F^{-1}$
flip: $\tau=F^{21} \circ \sigma \circ F^{-1} \quad x^{i} \star x^{j}=\tau \triangleright\left(x^{j} \star x^{i}\right)$
associator: $\phi_{F}=(1 \otimes F) \circ(1 \otimes \Delta)(F) \circ \phi \circ(\Delta \otimes 1)\left(F^{-1}\right) \circ\left(F^{-1} \otimes 1\right)$ $\left(x^{i} \star x^{j}\right) \star x^{k}=\phi_{F} \triangleright\left(x^{j} \star\left(x^{i} \star x^{k}\right)\right)$
- quasi-Hopf algebra $\left(H, \tau, \phi_{F}\right)=$ "generalised quantum group / quantum symmetries"

Motivation

- (Mylonas, Schupp, Szabo: 2013) observed that noncommutative and nonassociative star products can be obtained via a cochain twisting of classical symmetries to a quasi-Hopf algebra
- For a particular choice of "classical algebra of symmetries" \mathfrak{g}
- and "cochain twist" $F \in U \mathfrak{g} \otimes U \mathfrak{g}$, we obtain
*-product: $\star=\mu \circ F^{-1}$

$$
\text { flip: } \tau=F^{21} \circ \sigma \circ F^{-1} \quad x^{i} \star x^{j}=\tau \triangleright\left(x^{j} \star x^{i}\right)
$$

associator: $\phi_{F}=(1 \otimes F) \circ(1 \otimes \Delta)(F) \circ \phi \circ(\Delta \otimes 1)\left(F^{-1}\right) \circ\left(F^{-1} \otimes 1\right)$ $\left(x^{i} \star x^{j}\right) \star x^{k}=\phi_{F} \triangleright\left(x^{j} \star\left(x^{i} \star x^{k}\right)\right)$

- quasi-Hopf algebra $\left(H, \tau, \phi_{F}\right)=$ "generalised quantum group / quantum symmetries"

Motivation

Where these formulae come from...

$$
\star=\mu \circ F^{-1}
$$

$$
\tau=F^{21} \circ \sigma \circ F^{-1}
$$

associator: $\quad\left(A_{F} \otimes_{F} A_{F}\right) \otimes_{F} A_{F} \xrightarrow{\phi_{F}} A_{F} \otimes_{F}\left(A_{F} \otimes_{F} A_{F}\right)$

$(A \otimes A)_{F} \otimes_{F} A_{F}$

$$
A_{F} \otimes_{F}(A \otimes A)_{F}
$$

$(A \otimes A) \otimes A \xrightarrow{\phi} A \otimes(A \otimes A)$

$$
\phi_{F}=(1 \otimes F) \circ(1 \otimes \Delta)(F) \circ \phi \circ(\Delta \otimes 1)\left(F^{-1}\right) \circ\left(F^{-1} \otimes 1\right)
$$

Motivation

Goal

Goal Mathematical development of a framework to describe a large class of non-commutative and non-associative geometries, including the non-geometric flux compactification above.

Non-commutative and non-associative algebras from deformations Equivalence of algebra representation categories

We are interested in obtaining nc/ na spaces by deforming classical manifolds with a symmetry group action G.

Gelfand-Naimark "Manifolds can be analyzed by studying functions on them." Lem G a Lie group. $U_{\mathfrak{a}}$ the universal enveloping algebra of its associated Lie algebra g. Then there is a functor:

Thm F a twist of $U \mathfrak{g}$. Then there is a functor:

Quantisation

"Algebras transforming under classical symmetries are twisted
to nc/ na algebras transforming under quantum symmetries H.
Remark Twist deformation quantisation is an equivalence of categories.

Application Recover MSS Algebra by choosing $U_{\mathfrak{g}}$, a particular algebra A in ${ }^{U_{g}} \mathrm{Alg}$ and twist $F \in U_{\mathfrak{g}} \otimes U \mathfrak{g}$.

Non-commutative and non-associative algebras from deformations Equivalence of algebra representation categories

We are interested in obtaining nc/ na spaces by deforming classical manifolds with a symmetry group action G.

Gelfand-Naimark "Manifolds can be analyzed by studying functions on them."

associated Lie algebra \mathfrak{g}. Then there is a functor:

Thm F a twist of $U \mathfrak{g}$. Then there is a functor:

"Algebras transforming under classical symmetries are twisted
to nc/ na algebras transforming under quantum symmetries H.
Remark Twist deformation quantisation is an equivalence of categories.

Application Recover MSS Algebra by choosing $U_{\mathfrak{g}}$, a particular algebra A in ${ }^{U_{\mathfrak{g}}} \mathrm{Alg}$ and twist $F \in U_{\mathfrak{g}} \otimes U_{\mathfrak{g}}$.

Non-commutative and non-associative algebras from deformations
Equivalence of algebra representation categories
We are interested in obtaining nc/ na spaces by deforming classical manifolds with a symmetry group action G.

Gelfand-Naimark "Manifolds can be analyzed by studying functions on them." Lem G a Lie group, $U \mathfrak{g}$ the universal enveloping algebra of its associated Lie algebra \mathfrak{g}. Then there is a functor:

Thm F a twist of $\cup \mathfrak{g}$. Then there is a functor:

"Algebras transforming under classical symmetries are twisted
to nc/ na algebras transforming under quantum symmetries H.
Remark Twist deformation quantisation is an equivalence of categories.

Non-commutative and non-associative algebras from deformations
Equivalence of algebra representation categories
We are interested in obtaining nc/ na spaces by deforming classical manifolds with a symmetry group action G.

Gelfand-Naimark "Manifolds can be analyzed by studying functions on them." Lem G a Lie group, $U \mathfrak{g}$ the universal enveloping algebra of its associated Lie algebra \mathfrak{g}. Then there is a functor:

$$
G-\mathrm{Man}^{\mathrm{op}} \xrightarrow[\simeq]{c^{\infty}}{ }^{U_{\mathfrak{g}}} \mathrm{Alg}
$$

Thm F a twist of $U \mathfrak{g}$. Then there is a functor:
Quantisation

$$
{ }^{U_{\mathfrak{g}}} \mathrm{Alg} \xrightarrow[\simeq]{\text { F }}{ }^{H} \mathrm{Alg}
$$

"Algebras transforming under classical symmetries are twisted to nc/ na algebras transforming under quantum symmetries H."
Remark Twist deformation quantisation is an equivalence of categories.

Non-commutative and non-associative algebras from deformations

We are interested in obtaining nc/ na spaces by deforming classical manifolds with a symmetry group action G.

Gelfand-Naimark "Manifolds can be analyzed by studying functions on them." Lem G a Lie group, $U \mathfrak{g}$ the universal enveloping algebra of its associated Lie algebra \mathfrak{g}. Then there is a functor:

$$
G-\mathrm{Man}^{\mathrm{op}} \xrightarrow[\simeq]{c^{\infty}}{ }^{U_{\mathfrak{g}}} \mathrm{Alg}
$$

Thm F a twist of $U \mathfrak{g}$. Then there is a functor:
Quantisation

$$
{ }^{U_{\mathfrak{g}}} \mathrm{Alg} \xrightarrow[\simeq]{\mathrm{F}}{ }^{H} \mathrm{Alg}
$$

"Algebras transforming under classical symmetries are twisted to nc/ na algebras transforming under quantum symmetries H."
Remark Twist deformation quantisation is an equivalence of categories.

Application Recover MSS Algebra by choosing $U_{\mathfrak{g}}$, a particular algebra A in ${ }^{U} \mathrm{Alg}$ and twist $F \in U \mathfrak{g} \otimes U \mathfrak{g}$.

Example: "Moyal-Weyl" analogue of non-associative algebra

- \mathfrak{g} the non-Abelian nilpotent Lie algebra over \mathbb{C} with generators $\left\{t_{i}, \tilde{t}^{i}, m_{i j}: 1 \leq i<j \leq n\right\}$ and Lie bracket relations

$$
\left[\tilde{t}^{i}, m_{j k}\right]=\delta^{i}{ }_{j} t_{k}-\delta^{i}{ }_{k} t_{j}
$$

- classical algebra of symmetries $U_{\mathfrak{g}}$
- algebra $A=C^{\infty}\left(\mathbb{R}^{2 n}\right)$ in ${ }^{U_{g}} \mathrm{Alg}$
* cochain twist $F \in U g \otimes \cup g$ given by

$$
F=\exp \left(-\frac{\mathrm{i} \hbar}{2}\left(\frac{1}{4} \mathrm{R}^{i j k}\left(m_{i j} \otimes t_{k}-t_{i} \otimes m_{j k}\right)+t_{i} \otimes \tilde{t}^{i}-\tilde{t}^{i} \otimes t_{i}\right)\right)
$$

- The star product is given by $\star=\mu \circ F^{-1}$, which yields on A $\mathrm{nc}\left[x^{i}, x^{j}\right]_{\star}=\frac{i \ell_{s}^{4}}{3 \hbar} R^{i j k} p_{k} . \quad\left[x^{i}, p_{j}\right]_{\star}=i \hbar \delta^{i} ;$ and $\left[p_{i}, p_{j}\right]_{*}=0$

- The flip is given by $\tau=F^{-2}$
- The associator is given by $\phi_{F}=\exp \left(\frac{h^{2}}{2} R^{i j k} t_{i} \otimes t_{j} \otimes t_{k}\right)$

Example: "Moyal-Weyl" analogue of non-associative algebra

- \mathfrak{g} the non-Abelian nilpotent Lie algebra over \mathbb{C} with generators $\left\{t_{i}, \tilde{t}^{i}, m_{i j}: 1 \leq i<j \leq n\right\}$ and Lie bracket relations

$$
\left[\tilde{t}^{i}, m_{j k}\right]=\delta_{j}^{i} t_{k}-\delta^{i}{ }_{k} t_{j}
$$

- classical algebra of symmetries $U \mathfrak{g}$
- algebra $A=C^{\infty}\left(\mathbb{R}^{2 n}\right)$ in ${ }^{U n} \mathrm{Alg}$
- cochain twist $F \in U \mathfrak{g} \otimes \cup \mathfrak{g}$ given by
- The star product is given by $\star=\mu \circ F^{-1}$, which yields on A

- The flip is given by $\tau=F^{-2}$
- The associator is given by $\phi_{F}=\exp \left(\frac{h^{2}}{2} R^{i j k} t_{i} \otimes t_{j} \otimes t_{k}\right)$

Example: "Moyal-Weyl" analogue of non-associative algebra

- \mathfrak{g} the non-Abelian nilpotent Lie algebra over \mathbb{C} with generators $\left\{t_{i}, \tilde{t}^{i}, m_{i j}: 1 \leq i<j \leq n\right\}$ and Lie bracket relations

$$
\left[\tilde{t}^{i}, m_{j k}\right]=\delta_{j}^{i} t_{k}-\delta^{i}{ }_{k} t_{j}
$$

- classical algebra of symmetries $U \mathfrak{g}$
- algebra $A=C^{\infty}\left(\mathbb{R}^{2 n}\right)$ in ${ }^{U \mathfrak{g}} \mathrm{Alg}$
* cochain twist $F \in U g \otimes U g$ given by
- The star product is given by $\star=\mu \circ F^{-1}$, which yields on A

Example: "Moyal-Weyl" analogue of non-associative algebra

- \mathfrak{g} the non-Abelian nilpotent Lie algebra over \mathbb{C} with generators $\left\{t_{i}, \tilde{t}^{i}, m_{i j}: 1 \leq i<j \leq n\right\}$ and Lie bracket relations

$$
\left[\tilde{t}^{i}, m_{j k}\right]=\delta_{j}^{i} t_{k}-\delta^{i}{ }_{k} t_{j}
$$

- classical algebra of symmetries $U \mathfrak{g}$
- algebra $A=C^{\infty}\left(\mathbb{R}^{2 n}\right)$ in ${ }^{U{ }_{g}} \mathrm{Alg}$
- cochain twist $F \in U \mathfrak{g} \otimes U \mathfrak{g}$ given by

$$
F=\exp \left(-\frac{\mathrm{i} \hbar}{2}\left(\frac{1}{4} \mathrm{R}^{i j k}\left(m_{i j} \otimes t_{k}-t_{i} \otimes m_{j k}\right)+t_{i} \otimes \tilde{t}^{i}-\tilde{t}^{i} \otimes t_{i}\right)\right)
$$

- The star product is given by $\star=\mu \circ F^{-1}$, which yields on A

Example: "Moyal-Weyl" analogue of non-associative algebra

- \mathfrak{g} the non-Abelian nilpotent Lie algebra over \mathbb{C} with generators $\left\{t_{i}, \tilde{t}^{i}, m_{i j}: 1 \leq i<j \leq n\right\}$ and Lie bracket relations

$$
\left[\tilde{t}^{i}, m_{j k}\right]=\delta_{j}^{i} t_{k}-\delta^{i}{ }_{k} t_{j}
$$

- classical algebra of symmetries $U \mathfrak{g}$
- algebra $A=C^{\infty}\left(\mathbb{R}^{2 n}\right)$ in ${ }^{U \mathfrak{g}} \mathrm{Alg}$
- cochain twist $F \in U \mathfrak{g} \otimes U \mathfrak{g}$ given by

$$
F=\exp \left(-\frac{\mathrm{i} \hbar}{2}\left(\frac{1}{4} \mathrm{R}^{i j k}\left(m_{i j} \otimes t_{k}-t_{i} \otimes m_{j k}\right)+t_{i} \otimes \tilde{t}^{i}-\tilde{t}^{i} \otimes t_{i}\right)\right)
$$

- The star product is given by $\star=\mu \circ F^{-1}$, which yields on A

$$
\begin{aligned}
& \text { nc }\left[x^{i}, x^{j}\right]_{\star}=\frac{i \ell_{s}^{4}}{3 \hbar} R^{i j k} p_{k}, \quad\left[x^{i}, p_{j}\right]_{\star}=i \hbar \delta^{i}{ }_{j} \text { and }\left[p_{i}, p_{j}\right]_{\star}=0 \\
& \text { na }\left[x^{i}, x^{j}, x^{k}\right]_{\star}=\ell_{s}^{4} R^{i j k}
\end{aligned}
$$

\square

- The associator is given by $\phi_{F}=\exp \left(\frac{\hbar^{2}}{2} \mathrm{R}^{i j k}\right.$

Example: "Moyal-Weyl" analogue of non-associative algebra

- \mathfrak{g} the non-Abelian nilpotent Lie algebra over \mathbb{C} with generators $\left\{t_{i}, \tilde{t}^{i}, m_{i j}: 1 \leq i<j \leq n\right\}$ and Lie bracket relations

$$
\left[\tilde{t}^{i}, m_{j k}\right]=\delta_{j}^{i} t_{k}-\delta^{i}{ }_{k} t_{j}
$$

- classical algebra of symmetries $U \mathfrak{g}$
- algebra $A=C^{\infty}\left(\mathbb{R}^{2 n}\right)$ in ${ }^{U \mathfrak{g}} \mathrm{Alg}$
- cochain twist $F \in U \mathfrak{g} \otimes U \mathfrak{g}$ given by

$$
F=\exp \left(-\frac{\mathrm{i} \hbar}{2}\left(\frac{1}{4} \mathrm{R}^{i j k}\left(m_{i j} \otimes t_{k}-t_{i} \otimes m_{j k}\right)+t_{i} \otimes \tilde{t}^{i}-\tilde{t}^{i} \otimes t_{i}\right)\right)
$$

- The star product is given by $\star=\mu \circ F^{-1}$, which yields on A

$$
\begin{aligned}
& \text { nc }\left[x^{i}, x^{j}\right]_{\star}=\frac{i \ell_{s}^{4}}{3 \hbar} R^{i j k} p_{k}, \quad\left[x^{i}, p_{j}\right]_{\star}=i \hbar \delta^{i}{ }_{j} \text { and }\left[p_{i}, p_{j}\right]_{\star}=0 \\
& \text { na }\left[x^{i}, x^{j}, x^{k}\right]_{\star}=\ell_{s}^{4} R^{i j k}
\end{aligned}
$$

- The flip is given by $\tau=F^{-2}$

Example: "Moyal-Weyl" analogue of non-associative algebra

- \mathfrak{g} the non-Abelian nilpotent Lie algebra over \mathbb{C} with generators $\left\{t_{i}, \tilde{t}^{i}, m_{i j}: 1 \leq i<j \leq n\right\}$ and Lie bracket relations

$$
\left[\tilde{t}^{i}, m_{j k}\right]=\delta_{j}^{i} t_{k}-\delta^{i}{ }_{k} t_{j}
$$

- classical algebra of symmetries $U \mathfrak{g}$
- algebra $A=C^{\infty}\left(\mathbb{R}^{2 n}\right)$ in ${ }^{U \mathfrak{g}} \mathrm{Alg}$
- cochain twist $F \in U \mathfrak{g} \otimes U \mathfrak{g}$ given by

$$
F=\exp \left(-\frac{\mathrm{i} \hbar}{2}\left(\frac{1}{4} \mathrm{R}^{i j k}\left(m_{i j} \otimes t_{k}-t_{i} \otimes m_{j k}\right)+t_{i} \otimes \tilde{t}^{i}-\tilde{t}^{i} \otimes t_{i}\right)\right)
$$

- The star product is given by $\star=\mu \circ F^{-1}$, which yields on A

$$
\begin{aligned}
& \text { nc }\left[x^{i}, x^{j}\right]_{\star}=\frac{i \ell_{s}^{4}}{3 \hbar} R^{i j k} p_{k}, \quad\left[x^{i}, p_{j}\right]_{\star}=i \hbar \delta^{i}{ }_{j} \text { and }\left[p_{i}, p_{j}\right]_{\star}=0 \\
& \text { na }\left[x^{i}, x^{j}, x^{k}\right]_{\star}=\ell_{s}^{4} R^{i j k}
\end{aligned}
$$

- The flip is given by $\tau=F^{-2}$
- The associator is given by $\phi_{F}=\exp \left(\frac{\hbar^{2}}{2} \mathrm{R}^{i j k} t_{i} \otimes t_{j} \otimes t_{k}\right)$

Non-commutative and non-associative bundles from deformations
Equivalence of module representation categories
Given a nc/ na space, we want to understand all H-equivariant vector bundles (e.g. tangent bundle, cotangent bundle) and operations between them

Non-commutative and non-associative bundles from deformations
Equivalence of module representation categories
Given a nc/ na space, we want to understand all H-equivariant vector bundles (e.g. tangent bundle, cotangent bundle) and operations between them

Serre-Swan "Vector bundles may be analysed by studying their modules of sections."
Lem M a manifold with G-action. Then there is a functor:

Thm F a twist of $U \mathfrak{g}$. Then there is a functor:
Quantisation \square
"Modules of sections over classical algebras are twisted to nc/ na modules of sections over quantum algebras."
Remark Twist deformation quantisation is an equivalence of categories

Application Applied to our non-geometric space, this gives us all H-equivariant vector bundles over the nc/na algebra describing the flux compactification.

Non-commutative and non-associative bundles from deformations
Equivalence of module representation categories
Given a nc/ na space, we want to understand all H-equivariant vector bundles (e.g. tangent bundle, cotangent bundle) and operations between them

Serre-Swan "Vector bundles may be analysed by studying their modules of sections."
Lem M a manifold with G-action. Then there is a functor:
$G-\operatorname{VecBun}_{M} \xrightarrow{\Gamma^{\infty}}{ }^{U_{\mathfrak{g}}}{ }_{C \infty(M)} \mathscr{M}_{C^{\infty}(M)}$

Thm F a twist of $U \mathfrak{g}$. Then there is a functor:
Quantisation

"Modules of sections over classical algebras are twisted to nc/ na modules of sections over quantum algebras.'
Remark Twist deformation quantisation is an equivalence of categories

Application Applied to our non-geometric space, this gives us all
H-equivariant vector bundles over the nc/na algebra describing the flux compactification.

Non-commutative and non-associative bundles from deformations

Equivalence of module representation categories
Given a nc/ na space, we want to understand all H-equivariant vector bundles (e.g. tangent bundle, cotangent bundle) and operations between them

Serre-Swan "Vector bundles may be analysed by studying their modules of sections."
Lem M a manifold with G-action. Then there is a functor:

$$
G-\operatorname{VecBun}_{M} \xrightarrow{\Gamma^{\infty}}{ }^{U_{\mathfrak{g}}}{ }_{C^{\infty}(M)} \mathscr{M}_{C^{\infty}(M)}
$$

Thm F a twist of $U \mathfrak{g}$. Then there is a functor:
Quantisation ${ }^{U_{\mathfrak{g}}}{ }_{C^{\infty}(M)} \mathscr{M}_{C^{\infty}(M)} \xrightarrow{F} \longrightarrow{ }^{H}{ }_{A} \mathscr{M}_{A}$
"Modules of sections over classical algebras are twisted to nc/ na modules of sections over quantum algebras."
Remark Twist deformation quantisation is an equivalence of categories

Application Applied to our non-geometric space, this gives us all H-equivariant vector bundles over the nc/na algebra describing the flux compactification

Non-commutative and non-associative bundles from deformations

Equivalence of module representation categories
Given a nc/ na space, we want to understand all H-equivariant vector bundles
(e.g. tangent bundle, cotangent bundle) and operations between them

Serre-Swan "Vector bundles may be analysed by studying their modules of sections."
Lem M a manifold with G-action. Then there is a functor:

$$
G-\operatorname{VecBun}_{M} \xrightarrow{\Gamma^{\infty}}{ }^{U_{\mathfrak{g}}}{ }_{C^{\infty}(M)} \mathscr{M}_{C^{\infty}(M)}
$$

Thm F a twist of $U \mathfrak{g}$. Then there is a functor:
Quantisation ${ }^{U_{\mathfrak{g}}}{ }_{C^{\infty}(M)} \mathscr{M}_{C^{\infty}(M)} \xrightarrow{F} \longrightarrow{ }^{H}{ }_{A} \mathscr{M}_{A}$
"Modules of sections over classical algebras are twisted to nc/ na modules of sections over quantum algebras."
Remark Twist deformation quantisation is an equivalence of categories

Application Applied to our non-geometric space, this gives us all H-equivariant vector bundles over the nc/na algebra describing the flux compactification

Non-commutative and non-associative bundles from deformations

Equivalence of module representation categories
Given a nc/ na space, we want to understand all H-equivariant vector bundles
(e.g. tangent bundle, cotangent bundle) and operations between them

Serre-Swan "Vector bundles may be analysed by studying their modules of sections."
Lem M a manifold with G-action. Then there is a functor:

$$
G-\operatorname{VecBun}_{M} \xrightarrow{\Gamma^{\infty}}{ }^{U_{\mathfrak{g}}}{ }_{C^{\infty}(M)} \mathscr{M}_{C^{\infty}(M)}
$$

Thm F a twist of $U \mathfrak{g}$. Then there is a functor:
Quantisation ${ }^{U_{\mathfrak{g}}}{ }_{C^{\infty}(M)} \mathscr{M}_{C^{\infty}(M)} \xrightarrow{F} \longrightarrow{ }^{H}{ }_{A} \mathscr{M}_{A}$
"Modules of sections over classical algebras are twisted to nc/ na modules of sections over quantum algebras."
Remark Twist deformation quantisation is an equivalence of categories

Application Applied to our non-geometric space, this gives us all H-equivariant vector bundles over the nc/na algebra describing the flux compactification.

Non-commutative and non-associative bundles from deformations
Tensor fields and homomorphism bundles

- The representation category of any quasi-Hopf algebra is a closed braided monoidal category, which means that it has a tensor product, a braiding and internal homomorphisms.
- For the category ${ }^{H}{ }_{A} \mathscr{M}_{A}$ of H-equivariant vb over $A \in^{H} \mathrm{Alg}$ we obtain: Thm ${ }_{A} \mathbb{H}_{A}$ is a closed braided monoidal category $\left(\theta_{A}, \tau_{A}\right.$, hom $\left.A\right)$ Physical relevance This gives standard operations on fields: $1 \mathrm{nc} /$ na vector bundles can be tensored $\otimes_{A} \rightsquigarrow$ tensor fields $2 V \otimes_{A} W \xrightarrow{\tau_{A}} W \otimes_{A} V \leadsto$ allows us to define symmetric and anti-symmetric tensors
$3 \operatorname{lom}_{A}$ are $n c / n a$ homomorphism bundles \rightsquigarrow e.g. g, R metric: $g: V$ Field $\longrightarrow 1$ - Forms curvature: $R: V \longrightarrow V \otimes_{A} \Omega^{2}$

Non-commutative and non-associative bundles from deformations
Tensor fields and homomorphism bundles

- The representation category of any quasi-Hopf algebra is a closed braided monoidal category, which means that it has a tensor product, a braiding and internal homomorphisms.
- For the category ${ }^{H}{ }_{A} \mathscr{M}_{A}$ of H-equivariant vb over $A \in{ }^{H}$ Alg we obtain:

Physical relevance This gives standard operations on fields:
$1 \mathrm{nc} / \mathrm{na}$ vector bundles can be tensored $\otimes_{A} \rightsquigarrow$ tensor fields
$2 V \otimes_{A} W \xrightarrow{T_{A}} W \otimes_{A} V \rightsquigarrow$ allows us to define symmetric
and anti-symmetric tensors
3 hom $_{A}$ are nc/na homomorphism bundles \rightsquigarrow e.g. g, R
metric: $g: V$ Field $\longrightarrow 1-$ Forms
curvature: $R: V \longrightarrow V \otimes_{A} \Omega^{2}$

Non-commutative and non-associative bundles from deformations
Tensor fields and homomorphism bundles

- The representation category of any quasi-Hopf algebra is a closed braided monoidal category, which means that it has a tensor product, a braiding and internal homomorphisms.
- For the category ${ }^{H}{ }_{A} \mathscr{M}_{A}$ of H-equivariant vb over $A \in{ }^{H}$ Alg we obtain:

Thm ${ }^{H}{ }_{A} \mathscr{M}_{A}$ is a closed braided monoidal category $\left(\otimes_{A}, \tau_{A}\right.$, hom $\left._{A}\right)$
Physical relevance This gives standard operations on fields:
$1 \mathrm{nc} / \mathrm{na}$ vector bundles can be tensored $\otimes_{A} \rightsquigarrow$ tensor fields
$2 V \otimes_{A} W \xrightarrow{T_{A}} W Q_{A} W$ allows us to define symmetric
and anti-symmetric tensors
$3 \operatorname{hom}_{A}$ are nc/na homomorphism bundles \rightsquigarrow e.g. g, R
metric: $g: V$ Field $\longrightarrow 1$ - Forms
curvature: $R: V \longrightarrow V \otimes_{A} \Omega^{2}$

Non-commutative and non-associative bundles from deformations

Tensor fields and homomorphism bundles

- The representation category of any quasi-Hopf algebra is a closed braided monoidal category, which means that it has a tensor product, a braiding and internal homomorphisms.
- For the category ${ }^{H}{ }_{A} \mathscr{M}_{A}$ of H-equivariant vb over $A \in{ }^{H}$ Alg we obtain:

Thm ${ }^{H}{ }_{A} \mathscr{M}_{A}$ is a closed braided monoidal category $\left(\otimes_{A}, \tau_{A}\right.$, hom $\left._{A}\right)$
Physical relevance This gives standard operations on fields:
$1 \mathrm{nc} /$ na vector bundles can be tensored $\otimes_{A} \rightsquigarrow$ tensor fields
$2 V \otimes_{A} W \xrightarrow{\tau_{A}} W \otimes_{A} V \rightsquigarrow$ allows us to define symmetric
and anti-symmetric tensors
$3 \operatorname{hom}_{A}$ are nc/na homomorphism bundles \rightsquigarrow e.g. g, R metric: $g: V$ Field $\longrightarrow 1$ - Forms curvature: $R: V \longrightarrow V \otimes_{A} \Omega^{2}$

Non-commutative and non-associative bundles from deformations

Tensor fields and homomorphism bundles

- The representation category of any quasi-Hopf algebra is a closed braided monoidal category, which means that it has a tensor product, a braiding and internal homomorphisms.
- For the category ${ }^{H}{ }_{A} \mathscr{M}_{A}$ of H-equivariant vb over $A \in{ }^{H}$ Alg we obtain:

Thm ${ }^{H}{ }_{A} \mathscr{M}_{A}$ is a closed braided monoidal category $\left(\otimes_{A}, \tau_{A}\right.$, hom $\left._{A}\right)$
Physical relevance This gives standard operations on fields:
$1 \mathrm{nc} / \mathrm{na}$ vector bundles can be tensored $\otimes_{A} \rightsquigarrow$ tensor fields
$2 V \otimes_{A} W \xrightarrow{T_{A}} W \otimes_{A} V \rightsquigarrow$ allows us to define symmetric
and anti-symmetric tensors
3 hom $_{A}$ are nc/na homomorphism bundles \rightsquigarrow e.g. g, R metric: $g: V$ Field $\longrightarrow 1-$ Forms curvature: $R: V \longrightarrow V \otimes_{A} \Omega^{2}$

Non-commutative and non-associative bundles from deformations

Tensor fields and homomorphism bundles

- The representation category of any quasi-Hopf algebra is a closed braided monoidal category, which means that it has a tensor product, a braiding and internal homomorphisms.
- For the category ${ }^{H}{ }_{A} \mathscr{M}_{A}$ of H-equivariant vb over $A \in{ }^{H}$ Alg we obtain:

Thm ${ }^{H}{ }_{A} \mathscr{M}_{A}$ is a closed braided monoidal category $\left(\otimes_{A}, \tau_{A}\right.$, hom $\left._{A}\right)$
Physical relevance This gives standard operations on fields:
$1 \mathrm{nc} /$ na vector bundles can be tensored $\otimes_{A} \rightsquigarrow$ tensor fields
$2 V \otimes_{A} W \xrightarrow{\tau_{A}} W \otimes_{A} V \rightsquigarrow$ allows us to define symmetric and anti-symmetric tensors
$3 \operatorname{hom}_{A}$ are nc/na homomorphism bundles \rightsquigarrow e.g. g, R metric: $g: V$ Field $\longrightarrow 1$ - Forms curvature: $R: V \longrightarrow V \otimes_{A} \Omega^{2}$

Non-commutative and non-associative bundles from deformations

Tensor fields and homomorphism bundles

- The representation category of any quasi-Hopf algebra is a closed braided monoidal category, which means that it has a tensor product, a braiding and internal homomorphisms.
- For the category ${ }^{H}{ }_{A} \mathscr{M}_{A}$ of H-equivariant vb over $A \in{ }^{H}$ Alg we obtain:

Thm ${ }^{H}{ }_{A} \mathscr{M}_{A}$ is a closed braided monoidal category $\left(\otimes_{A}, \tau_{A}\right.$, hom $\left._{A}\right)$
Physical relevance This gives standard operations on fields:
$1 \mathrm{nc} /$ na vector bundles can be tensored $\otimes_{A} \rightsquigarrow$ tensor fields
$2 V \otimes_{A} W \xrightarrow{\tau_{A}} W \otimes_{A} V \rightsquigarrow$ allows us to define symmetric and anti-symmetric tensors
$3 \operatorname{hom}_{A}$ are nc/na homomorphism bundles \rightsquigarrow e.g. g, R metric: $g: V$ Field $\longrightarrow 1-$ Forms curvature: $R: V \longrightarrow V \otimes_{A} \Omega^{2}$

Overview

Motivation

Work in progress/ outlook

Work in progress/ outlook

- Differential operators, connections, Riemannian geometry in ${ }^{H}{ }_{A} \mathscr{M}_{A}$
- Develop a gravity theory in ${ }^{H}{ }_{A} \mathscr{M}_{A}$ which is a candidate for a low-energy effective theory for non-geometric closed string theory

Geometry on curved spaces

Thank you

