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Ingredients

Things we need

VEGAS + Phase Space Generator

Parton Distribution Functions (PDFs)

Matrix elements

Jet algorithm + observables
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Ingredients

Things we need

VEGAS + Phase Space Generator

Parton Distribution Functions (PDFs)

Matrix elements

Jet algorithm + observables

Subtraction terms (beyond Leading Order (LO))
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VEGAS

Older than the known universe.
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VEGAS

Use the idea of importance sampling.

Generates a set of random numbers, these random numbers are fed into the

phase space generator to generate a unique phase space point.

Start with a uniform unit n-dimensional grid, where n is the required number

of variables to define your phase space point.

Once the initial sample is complete, VEGAS adapts the grid to focus on the

dominant features.

Rinse and repeat multiple times until you have a good convergence.
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from Protons to Partons

To compute cross sections we need to exploit the factorisation of QCD into low

energy physics and high energy physics.

dσ =
∑

i ,j

∫
dξ1

ξ1

dξ2

ξ2

Parton Distribution Functions︷ ︸︸ ︷
fi(ξ1, µ

2
F )fj(ξ2, µ

2
F ) dσ̂ij(αs (µR), µR , µF )︸ ︷︷ ︸

Partonic Cross Section

(1)

ξ1 and ξ2 are the momentum fractions of parton 1 and 2 respectively.
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Parton Distribution Functions

Parton Distribution Functions (PDFs) give us the probability of finding a parton

with a certain momentum fraction within a proton.

They describe low energy physics of the proton. This is impossible to model in

any meaningful way, we fit PDFs using known results from previous collider

experiments.
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Partonic Cross sections

We’re interested in computing cross sections for massless QCD in a

perturbative regime,

dσ̂ij = dσ̂LOij +

(
αs(µR)

2π

)
dσ̂NLOij +

(
αs(µR)

2π

)2
dσ̂NNLOij +O(α3s ). (2)

What do we need to calculate a cross section for a given order?
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Matrix Elements

Describes the high energy physics of the event (the interesting bit).

Numerous tools on the market for tree (helicity amplitudes, colour

decompositions, recursion relations, . . . ) and one loop (integrand reduction,

generalised unitarity, . . . ) scattering amplitudes.
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NLO Corrections

One extra power of αs . This implies we are left with two possibilities

Real corrections

Jet function maps 3 partons → 2 jets.

Virtual corrections
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IR singularities in Real Corrections

Consider the real radiation corrections to the γ∗ → 2 jet process, the matrix

element behaves like

|M(1q , ig, 2q̄)|
2 ∝

1

Eg(1− cos(θqg))(1 − cos(θq̄g))
(3)

Singularities

Eg → 0, ‘soft singularity’

θqg → 0, ‘collinear singularity’

θq̄g → 0, ‘collinear singularity’

Singularities are bad!
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IR singularities in Virtual Corrections

An explicit pole structure appears from dimensional regularisation.

M12 (1q, 2q̄) = 2

Catani pole
structure︷ ︸︸ ︷

Iqq(ǫ, µ; s12)M
0
2 (1q, 2q̄) +O(ǫ

0) (4)

Explicit pole structures are really bad . . .
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Subtraction

dσ̂NLOqq̄ =

∫

dσ3

(
dσ̂R ,NLOqq̄ −dσ̂S,NLOqq̄

)
+

∫

dσ2

(
dσ̂V ,NLOqq̄ −dσ̂T ,NLOqq̄

)
, (5)

where each set of brackets is free of IR poles. Also

dσ̂T ,NLOqq̄ = −

∫

dσ1

dσ̂S,NLOqq̄ . (6)

Unlike UV poles, your cross section and all IR-safe observables are not

dependent on your subtraction scheme.
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NLO Subtraction

Subtraction schemes

Catani-Seymour (CS) dipole subtraction

Frixione-Krunszt-Signer (FKS) subtraction

Phase space slicing

Sector Decomposition
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Antenna Subtraction

Follows a very similar idea to CS dipole subtraction.

Exploit the IR universal factorisation of QCD

M03 (1q, ig, 2q̄)

ig
unresolved
→

Antenna function︷ ︸︸ ︷
A03(1q, ig, 2q̄) M

0
2 ((̃1i)q, (̃i2)q̄)︸ ︷︷ ︸

reduced matrix element

. (7)

The antenna function only depends on the momentum configuration and

flavours of the unresolved parton and the hard radiators.

By construction it contains all the unresolved limits between the two hard

radiators and the unresolved parton.
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Antenna Subtraction

M03 (1q, 3g, 2q̄)

M02 ((̃13)q, (̃32)q̄)
≡ A03(1q, 3g, 2q̄). (8)

Once we have an antenna we can recycle this for arbitrarily complicated

processes with the same unresolved limits.

Problems

The resulting antenna must be suitably simple such that we can integrate it

analytically.

We need to define a map from the n + 1→ n phase space such that we

correctly intepolate between the limits in your antenna.
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Processes

quark-antiquark antenna: γ∗ → qgq̄

quark-gluon antenna: χ̃→ g̃gg, χ̃→ g̃qq̄

gluon-gluon antenna: H → ggg,H → gqq̄
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NNLO Corrections

Now we have two extra powers of αs and 3 possible corrections.

Real-Real corrections

Real-Virtual corrections

Virtual-Virtual corrections

Thomas Morgan (IPPP, Durham) Writing your own Monte Carlo Integrator 18/12/2014 20 / 23



NNLO cross section

dσ̂NNLOqq̄ =

∫

dσ4

(
dσ̂RR ,NNLOqq̄ −dσ̂S,NNLOqq̄

)

+

∫

dσ3

(
dσ̂RV ,NNLOqq̄ −dσ̂T ,NNLOqq̄

)

+

∫

dσ2

(
dσ̂VV ,NNLOqq̄ −dσ̂U,NNLOqq̄

)
(9)
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New Integredients for NNLO

New Integredients

n + 2 parton phase space generator - trivial (ish)

a numerically stable one loop matrix element - usually ok

new subtraction terms - very hard

two loop matrix element - very hard
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Conclusions

The difference between an NLO and NNLO MC integrator is trivial once we

have the subtraction scheme and two loop matrix elements.

Antenna subtraction provides a numerically efficient and relatively simple

approach to dealing with IR singularities at NNLO.

Hopefully we’ll be able to provide real physics results in the not too distant

future.
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