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Outline

• Overview: Quantum Gravity(QG) & Non-Perturbative 

Renormalisation Group(NPRG) & Asymptotic Safety(AS) 

• Background Field Technique 

• Motivations for 1/D Expansion: large-D in the literature 

• 1/D Results & Discussion
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Overview: Quantum Gravity
Canonical dimensions of Newton’s coupling:  

1. Gravitational interactions become significant at the Planck scale  
~                      a scale much higher than our reach with current 
accelerators. 

2. Perturbatively non-renormalisable due to negative mass 
dimensions.  

• Some attempts to solve this problem, 
Loop Quantum Gravity (discretise space) 
Causal Sets (discretise space-time) 
Causal Dynamical Triangulations (discretise space-time in 
terms of fractal triangles) 
and of course String Theory 
Effective Field Theory (below Planck scale) 
Asymptotic Safety (UV completion)

3

[GN ] = 2�D

1019GeV !

—
—

no
n-

Q
FT

—
-

Q
FT



4

Overview: NPRG
• Based on Wilson’s idea of renormalisation.  

• Define the scale dependent generating functional and the 
effective action; 

• Such that when            (the inverse lattice spacing): Bare 
action (all fluctuations are frozen) 

• when            : Full effective action  (all fluctuations 
integrated out)
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Overview: NPRG

• We obtain the flow equation (the Wetterich equation) 

•      is the IR regualator, controls the coarse graining. Typically 
taken as the optimised cutoff (D. Litim ’00, ’01): 

•       is the Hessian of the effective average action. 

• For gravity, let’s take a simple case: Einstein-Hilbert gravity, 
an action with only a first order Ricci scalar and a 
cosmological constant.
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Background Field Technique
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• Gravity is governed by the fluctuations in the metric. To apply 
QFT we need a background metric. 

• Two ways of doing this: (i.e. the ones that we looked into) 
Conventional Methods (single metric ansatz) 
Bimetric Ansatz 

• Plus the classical gauge and ghost actions.
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ḡ

1

16⇡GB
k

�
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Asymptotic Safety
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• Recall asymptotic freedom: the running coupling constant 
reaches zero in the UV 

• Similarly, an AS theory is where the running coupling reaches 
a constant and stops running in the UV => Fixed Points 

• We test this by looking into the beta functions.  

• For Einstein-Hilbert gravity, two couplings: gravitational 
constant and cosmological constant. 



Large-D in Perturbation Theory
• Write the Green’s Functions as:  

where D is the number of dimensions, gives Feynman diagram 
sum in powers of 1/D.  

• D dependence in gravity is coming from both the dof of the 
diffeomorphism symmetry group and the loop calculations.  

• Only graphs in which no two bubbles are touching each other 
survives the large-D limit. Nested graphs are higher in 1/D, 
hence dies.  

• Quantum gravity simplifies, although perturbative 
renormalisation of the theory is still unsuccessful.

A. Strominger, DOI:10.1103/PhysRevD.24.3082
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http://dx.doi.org/10.1103/PhysRevD.24.3082


Large-D in Effective Field Theory

• Quantum gravity below Planck scale, investigated 
by using a 1/D expansion.  

• Agrees with the previous results from A. Strominger 
except more graphs contribute.  

• Quantum gravity simplifies in the large-D limit, 
below Planck scale. 

N. E. J. Bjerrum-Bohr, arXiv:hep-th/0310263v2
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http://arxiv.org/abs/hep-th/0310263v2


Large-D in Classical GR

Large-D in Lattice Quantum Gravity

• Interaction between the blackholes reduces with large-D, so 
the theory becomes non-interacting in the D goes to infinity 
limit.  

• Large-D limit simplifies the theory even in the classical limit of 
general relativity

• Examination of a 1/D expansion in Lattice QG based on 
Regge’s simplicial construction.  

• Scaling exponent approaches 0 in the large-D.  
• It is concluded that “The action simplifies considerably in the 

large-D limit.”

H.W. Hamber, R.M.Williams arXiv:hep-th/0512003  

R. Emparan et. al. arXiv:1302.6382  
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Conventional Method (single metric)
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�g = (D � 2 + ⌘)g

�� = (2� ⌘)�+ (a1(�, D) + ⌘a2(�, D)) g

⌘ =
b1(�, D)g

1� b2(�, D)g

• where eta is the anomalous dimension.  

• coefficient functions are functions of dimensions, D and 
lambda, gives us the fixed points in powers of 1/D. 

• Note that, gauge is fixed and the gauge dependence is 
checked. (gauge dep. is only in the higher order 
terms.)

(M. Reuter, arXiv:hep-th/9605030)
(D.Litim, arXiv:hep-th/0312114)

http://arxiv.org/abs/hep-th/9605030
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Fixed Points

� =
1

2
� 6

D
+

90

D2
+ · · ·

g =
6cD
D3

✓
1� 28

D
+ · · ·

◆

cD = (4⇡)D/2�1�(D/2 + 2)

4 10 26 100 1000

-0.5

0.0

0.5

1.0

1.5

D

l

4 26 50 80 100
0.0

0.2

0.4

0.6

0.8

1.0

D

g
ginf

2 differential eqns. (beta 
functions) with 2 unknowns 
(lambda and g), solve 
simultaneously and expand in 
1/D to get:

in Feynman gauge

Dcr ⇡ 25

Dcr ⇡ 25



13

Scaling Exponents 
• The universal quantities are the so-called scaling 

exponents defined as minus the eigenvalues of the 
stability matrix:  

• defines how the coupling approach the fixed point.
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Bimetric Truncation
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• Same form of beta functions as the previous case. 

• a set of beta functions for the dynamical part of the metric 
and the background part of the metric. Dynamical beta 
functions are independent of the background couplings => 
background independence 

• In this talk we will only look into the dynamical couplings as 
they are the equivalent couplings as the conventional case.  

• Gauge fixing is taken as the Feynman gauge. 
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Discussion 
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• Successful 1/D expansion of quantum gravity achieved 
for the first time. Gauge independent fixed points exist in 
very large dimensions with a consistent leading order 
behaviour. 

• Radius of convergence is around D~25 from different 
approximations. Physical meaning to be explored.  

• Scaling exponent (leading order) for the gravitational 
constant, “2D” is consistent with the literature. (lattice 
results, previous AS studies.) 

• Open questions: What causes bifurcation? What causes 
the divergence in both cases?


