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Zoë Slade

under the superivision of Tim Morris

University of Southampton
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Introduction and Motivation

Asymptotic Safety

Open problem in theoretical high energy physics = finding a
fundamental quantum theory of gravity.

Needed to describe Planck scale dynamics.

Perturbative quantization of classical gravity (GR) results in
non-renormalizable quantum theory.

Approach of asymptotic safety based on the
existence of a UV fixed point for gravity
→ physical quantities are safe from
divergences.
→ asymptotically safe theory.

Non-perturbative approach to quantum
gravity.

Zoë Slade Solving the Reconstruction Problem in Asymptotic Safety 4 / 29



Introduction and Motivation

Asymptotic Safety

Open problem in theoretical high energy physics = finding a
fundamental quantum theory of gravity.

Needed to describe Planck scale dynamics.

Perturbative quantization of classical gravity (GR) results in
non-renormalizable quantum theory.

Approach of asymptotic safety based on the
existence of a UV fixed point for gravity
→ physical quantities are safe from
divergences.
→ asymptotically safe theory.

Non-perturbative approach to quantum
gravity.
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Zoë Slade Solving the Reconstruction Problem in Asymptotic Safety 4 / 29



Introduction and Motivation

Asymptotic Safety

Open problem in theoretical high energy physics = finding a
fundamental quantum theory of gravity.

Needed to describe Planck scale dynamics.

Perturbative quantization of classical gravity (GR) results in
non-renormalizable quantum theory.

Approach of asymptotic safety based on the
existence of a UV fixed point for gravity
→ physical quantities are safe from
divergences.
→ asymptotically safe theory.

Non-perturbative approach to quantum
gravity.
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The Renormalization Group

The Renormalization Group

The beta function (from perturbation theory):

β(gR) = µ
∂gR
∂µ

→ Renormalized couplings, independent of Λ, take Λ→∞.

Wilsonian renormalization.

Z [J] =

∫
|p|<Λ

Dφe−S tot
Λ [φ]+J.φ where J.φ =

∫
dxJ(x)φ(x)

Λ is physical e.g. Planck scale, inverse lattice spacing...

Bare action S tot
Λ [φ].

Bare couplings are finite g = g(Λ).
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The Renormalization Group

The Renormalization Group

Wilson’s picture leads to a deeper understanding of renormalizability.

Arbitrarily complicated Lagrangian reduces to one containing only
renormalizable terms as cutoff is lowered.
→ explains why QED is perturbatively renormalizable.

Framework allows us to define flow equations.
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The Renormalization Group

The Renormalization Group

Regulate in UV in smooth way by modifying propagators.

Cutoff in UV at scale k (instead of Λ).

∆ =
1

p2
→ ∆UV =

CUV (p, k)

p2

CUV (p, k) ≈
{

1 for p < k − ε
0 for p > k + ε

Z [J] =

∫
Dφe−

1
2
φ.∆−1

UV .φ−Sk [φ]+J.φ
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The Renormalization Group

The Renormalization Group

UV regulated theory

Z [J] =

∫
Dφe−

1
2
φ.∆−1

UV .φ−Sk [φ]+J.φ

Polchinski’s flow equation:

∂Z [J]

∂k
= 0 =⇒ ∂Sk [φ]

∂k
=

1

2

δSk
δφ

.∆UV .
δSk
δφ
− 1

2
Tr

[
∂∆UV

∂k
.
δ2Sk
δφδφ

]
Integral sum over spacetime indices

Tr

[
∆UV .

δ2S

δφδφ

]
=

∫
x,y

∆UV (x , y)
δ2S

δφ(y)φ(x)
=

∫
p

∆UV (p,−p)
δ2S

δφ(−p)φ(p)
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RG Flows in Theory Space

RG Flows in Theory Space

Evolution of theory represented by trajectory in theory space.

Each point → different Sk [φ].

Sk [φ] =
∞∑
i

gi (k)Oi (φ)

Complete trajectory from UV fixed
point to IR fixed point
↔ divergence-free QFT
↔ {Sk , 0 ≤ k <∞}.
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The Effective Average Action

The Effective Average Action

The effective average action Γ̃k [ϕ]:

Γ̃k [ϕ] +
1

2
ϕ.R(p, k).ϕ , ϕ = 〈φ〉

Smooth IR cutoff function R(p, k)

R(p, k) ≈

{
k2 − p2 for p < k − ε
0 for p > k + ε

R(p, k) is an additive cutoff function

1

p2 + R
≈

{
1
k2 for p < k − ε
1
p2 for p > k + ε

Zoë Slade Solving the Reconstruction Problem in Asymptotic Safety 13 / 29



The Effective Average Action

The Effective Average Action

Flow equation for Γ̃k [ϕ]:

∂Γ̃k [ϕ]

∂k
=

1

2
Tr

{[
Rk +

δ2Γ̃k

δϕϕ

]−1∂Rk

∂k

}
No need for UV regulator.

Complete set of solutions to flow equation ↔ divergence-free QFT.

{Γ̃k , 0 ≤ k <∞} ⇐⇒ complete QFT
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The Effective Average Action

The Effective Average Action

Why Γ̃k and not Sk?

1 Γ̃k is the generator of 1PI Green’s functions - directly related to
scattering amplitudes.

2 Γ̃k gives better approximation to a QFT.
3 Don’t have to construct a regulated path integral.
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The Reconstruction Problem

The Reconstruction Problem

Conceptually nothing wrong with not having a path integral
representation.

But would like one because...

1 Can find the classical system whose quantization gave rise to the
complete QFT.

2 Some properties of QFT analysed more easily e.g. implementation of
symmetries.

3 Approximation schemes (e.g. perturbation theory, large N expansion)
more naturally described.

4 Theory that we put on the lattice is given by Sk .
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The Reconstruction Problem

The Reconstruction Problem

The reconstruction problem: reconstructing the functional integral
which corresponds to the asymptotically safe theory found using Γ̃k .

Γ̃k [ϕ]→ Z [J] =

∫
|p|<Λ

Dφe−S tot
Λ [φ]+J.φ

Regulated with sharp cutoff Λ, take Λ→∞.

E. Manrique and M. Reuter (2008):

Γ̃k=Λ[ϕ] = S tot
Λ [φ] +

1

2
TrΛln

{
RΛ +

δ2S tot
Λ

δφδφ

}
TrΛ{...} ≡ Tr{θ(Λ2 − p2)[...]}

Derived by saddle point expansion - approximate expression.
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Solving the Reconstruction Problem

Solving the Reconstruction Problem

There exists a simple, exact relationship between Γ̃k and S tot
Λ .

Z [J] =

∫
|p|<Λ

Dφe−
1
2
.φ.∆−1.φ−SΛ+J.φ

Split modes φ→ φ> + φ< and propagators ∆→ ∆IR + ∆UV .

Z [J] =

∫
|p|<Λ

Dφ>Dφ<e−
1
2
φ<.∆

−1
UV .φ<−

1
2
φ>.∆

−1
IR .φ>−SΛ0

[φ<+φ>]+J.(φ<+φ>)

∆IR =
CIR(p, k)

p2
, ∆UV =

CUV (p, k)

p2

Cutoff functions obey summation relation:

CIR + CUV = 1
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Solving the Reconstruction Problem

Solving the Reconstruction Problem

Compute integral over high momentum modes.

Z [J, φ<] =

∫
Dφ>e−

1
2
φ>.∆

−1
IR .φ>−SΛ[φ>+φ<]+J.(φ>+φ<)

= e
1
2
J.∆IR .J+J.φ<−Sk [∆IR .J+φ<]

Z [J] =

∫
Dφ<e−

1
2
φ<.∆

−1
UV .φ<+ 1

2
J.∆IR .J+J.φ<−Sk [∆IR .J+φ<]+J.(φ>+φ<)

J(p) = 0 ∀ p > k =⇒ Z [J] =

∫
Dφ<e−

1
2
φ<.∆

−1
UV .φ<−Sk [φ<]+J.φ<

Recognise Sk as the interaction part of the bare
action S tot

k = 1
2φ<.∆

−1
UV .φ< + Sk regulated in

the UV at scale k.
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Zoë Slade Solving the Reconstruction Problem in Asymptotic Safety 21 / 29



Solving the Reconstruction Problem

Solving the Reconstruction Problem

Integral over high momentum modes:

Z [J, φ<] =

∫
Dφ>e−

1
2
φ>.∆

−1
IR .φ>−SΛ[φ>+φ<]+J.(φ>+φ<)

= e
1
2
J.∆IR .J+J.φ<−Sk [∆IR .J+φ<]

Interpret as a functional integral for field φ> regulated in the IR at
scale k (in presence of background field φ<).

Simply related to the generator of connected
Green’s functions Wk (cutoff in the IR):

Z [J, φ<] = eWk [J,φ<]

Legendre transform of Wk gives the Legendre effective action Γtot
k :

Γtot
k [ϕ, φ<] = −Wk [J, φ<] + J.ϕ =

1

2
(ϕ− φ<).∆−1

IR .(ϕ− φ<) + Γk [ϕ]
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Interpret as a functional integral for field φ> regulated in the IR at
scale k (in presence of background field φ<).

Simply related to the generator of connected
Green’s functions Wk (cutoff in the IR):

Z [J, φ<] = eWk [J,φ<]

Legendre transform of Wk gives the Legendre effective action Γtot
k :

Γtot
k [ϕ, φ<] = −Wk [J, φ<] + J.ϕ =

1

2
(ϕ− φ<).∆−1

IR .(ϕ− φ<) + Γk [ϕ]
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Relationship between Γk and Sk :

Γk [ϕ] = Sk [φ] +
1

2
(ϕ− φ).∆−1

IR .(ϕ− φ)

Note that Γk [ϕ] is interaction part of Γtot
k [ϕ, φ<] and Sk [φ] is the

interaction part of S tot
k [φ].
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Zoë Slade Solving the Reconstruction Problem in Asymptotic Safety 23 / 29



Solving the Reconstruction Problem

Solving the Reconstruction Problem

Compare our expression

Γk [ϕ] = Sk [φ] +
1

2
(ϕ− φ).∆−1

IR .(ϕ− φ)

to E. Manrique and M. Reuter’s

Γ̃k=Λ[ϕ] = S tot
Λ [φ] +

1

2
TrΛln

{
RΛ +

δ2SΛ

δφδφ

}

Sk [φ] interation part of S tot
k = 1

2φ.∆
−1
UV .φ+ Sk regulated in the UV

→ S tot
k can play role of S tot

Λ in reconstruction problem.

How is Γk (Legendre effective action) related to Γ̃k(effective average
action)?
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Solving the Reconstruction Problem

Solving the Reconstruction Problem

Legendre effective action (without background field)

Γtot
k [ϕ] = Γk [ϕ] +

1

2
ϕ.∆−1

IR .ϕ

Flow equation for Γk

∂Γk [ϕ]

∂k
= −1

2
Tr

{[
1 + ∆IR

δ2Γk

δϕδϕ

]−1 1

∆IR

∂∆IR

∂k

}

Flow equation for effective average action Γ̃k

∂Γ̃k [ϕ]

∂k
=

1

2
Tr

{[
Rk +

δ2Γ̃k

δϕϕ

]−1∂Rk

∂k

}
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Solving the Reconstruction Problem

Solving the Reconstruction Problem

Split off kinetic part from Γ̃k

Γ̃k = Γ̃int
k +

1

2
ϕ.p2.ϕ

Flow equation becomes

∂Γ̃int
k

∂k
=

1

2
Tr

{[
Rk + p2 +

δ2Γ̃int
k

δϕδϕ

]−1∂Rk

∂k

}

Identify p2 + Rk = p2

CIR
= ∆−1

IR

∂Γ̃int
k [ϕ]

∂k
= −1

2
Tr

{[
1 + ∆IR

δ2Γ̃int
k

δϕδϕ

]−1 1

∆IR

∂∆IR

∂k

}
Γ̃int
k satisfies same flow equation as Γk !

=⇒ Γ̃int
k = Γk
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Summary and Conclusions

Summary and Conclusions

Solved the reconstruction problem.

Found an exact relationship between Γ̃k [ϕ] and Sk [φ].

Making contact with E. Manrique & M. Reuter’s formula:

Γk [ϕ] = Sk [φ] +
1

2
(ϕ− φ).∆−1

IR .(ϕ− φ)

vs

Γ̃[ϕ]k=Λ = S tot
Λ [φ] +

1

2
TrΛln

{
RΛ +

δ2S tot
Λ

δφδφ

}
Next stage: use metric gµν as dynamical degree of freedom.
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Summary and Conclusions

Thank you
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