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Abstract. We provide a summary of some results and methodol-
ogy of our recent paper [4]. In particular we advocate working
with a geometrical definition of an infinity-algebra. We men-
tion how it is possible to treat the associated cohomology theo-
ries in this framework and describe a remarkable result linking
symplectic and nonsymplectic C∞-structures. Applications to
string topology are subsequently discussed.

Homotopy algebras, or more accurately strong homo-
topy algebras, were originally introduced by Stasheff
in [9] where they were used to study group like struc-
tures on a topological space which were associative only
up to homotopy. Here he introduced the term ‘A∞-
algebra’ to describe such structures satisfying an infinite
sequence of higher homotopy associativity conditions;
hence an A∞-algebra may be regarded as the homo-
topy invariant notion of an associative algebra. The
homotopy invariant notions of a commutative and Lie
algebra, called C∞ and L∞-algebras respectively, subse-
quently appeared and were used extensively in rational
homotopy theory, cf. [10]. Relatively recently they have
found applications in mathematical physics; a prime
example of this is Kontsevich’s interpretation of mirror
symmetry as an equivalence between A∞-categories [7].
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We wish to advocate working with a more geometri-
cal definition of an infinity-algebra. In this context an
infinity-structure is described by a homological vector
field on a certain formal supermanifold. This approach
is not new, cf. [1] and [8], but we feel that it has been
rather undersubscribed. In certain situations this no-
tion is indispensable.

Definition. Given a vector space V , an A∞-structure
on V is a continuous derivation

m : T̂ΣV ∗ → T̂ΣV ∗

of degree one and vanishing at zero, such that m2 = 0.
Here Σ denotes the suspension, ∗ denotes the dual and
T̂ denotes the completed tensor algebra. There are sim-
ilar definitions of a C∞ and L∞-structure where T̂ΣV ∗

is replaced with L̂ΣV ∗ and ŜΣV ∗.

In [6] Kontsevich introduced the notion of an ‘infinity-
algebra with an invariant inner product ’. In the C∞
case this is a higher homotopy generalisation of a com-
mutative Frobenius algebra. He showed that infinity-
algebras with invariant inner products have a close re-
lationship with graph homology and therefore with the
intersection theory on the moduli spaces of complex
algebraic curves and invariants of differentiable mani-
folds. The advantage of the above definition is that it
is possible to describe such an infinity-structure as a
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symplectic vector field on a certain formal symplectic
supermanifold.
There is a noncommutative version of differential ge-

ometry developed by Connes [3] with further crucial in-
put by Kontsevich [5], which allows one to define a com-
plex DR•(A) for any associative algebra A. This com-
plex is the noncommutative analogue of the de Rham
complex. A symplectic form is then defined to be a
nondegenerate closed 2-form ω ∈ DR2(A). We can
now give the definition of a symplectic infinity-algebra:

Definition. Given a vector space V , a symplectic
A∞-structure on V is a pair (m, ω) such that:

(1) ω ∈ DR2(T̂ΣV ∗) is a symplectic form.

(2) m : T̂ΣV ∗ → T̂ΣV ∗ is an A∞-structure.
(3) m is a symplectic vector field, i.e. Lmω = 0.

It turns out that the notion of a symplectic infinity-
algebra is equivalent to the notion of an infinity-algebra
with an invariant inner product. A proof of this fact
is contained in [4] although it seems to have previously
been known to a few experts in the field, e.g. Kontse-
vich.
Another advantage of working with the above def-

initions of an infinity-algebra is that we can engage
the apparatus of noncommutative differential geome-
try in order to define their associated cohomology the-
ories. These cohomology theories can be interpreted
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as spaces of formal noncommutative differential forms
where the differential is provided by the Lie deriva-
tive of the homological vector field defining the infinity-
structure. This definition is very practical, for instance
we were able to construct the Hodge decomposition of
Hochschild cohomology for an arbitrary C∞-algebra;
our geometrical approach allowed us to considerably
simplify the combinatorics of previous authors.
In [4] we used our description of these cohomology the-

ories to develop an obstruction theory for C∞-structures.
Using our main tool, the Hodge decomposition, this
enabled us to prove a remarkable result describing the
similarity between C∞-structures and symplectic C∞-
structures:

Theorem. Any unital C∞-algebra whose homology
algebra can be given the structure of a Frobenius al-
gebra has a minimal model which has the structure
of a symplectic C∞-algebra.

This theorem is very powerful and as an application
we were able to construct ‘string topology’ operations
on the ordinary and equivariant homology of the loop
space of a formal Poincaré duality space X in a ho-
motopy invariant way by interpreting these structures
as the natural Gerstenhaber algebra structures on the
Hochschild cohomology of the singular cochain algebra
of X ; such operations were originally introduced by
Chas and Sullivan in their influential paper [2].
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[7] M. Kontsevich, Homological algebra of mirror symmetry. Proceedings
of the International Congress of Mathematicians, Vol. 1, 2 (Zürich,
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