A.A. Shkalikov (Moscow State Univ.)

Invariant subspaces of dissipative operators in Krein spaces

Let H be a separable Hilbert space and $J = P_+ - P_-$ be a canonical symmetry ($J^2 = P_+ + P_- = 1$).

$K = \{H, J\}$ equiped with indefinite inner product

$[x, y] = (Jx, y), \quad x, y \in H$

is called Krein space (or Pontrjagin space $\Pi_x = \{H, J\}$ if rank $P_+ = x < \infty$).

Def. A subspace L is nonnegative in K if $[x, x] \geq 0 \forall x \in L$.

It is maximal nonnegative if there are no proper extensions of L.
Def. An operator A is dissipative in H if
\[\text{Im} \ (Ax, x) \geq 0 \quad \forall x \in D(A). \]
It is max. dissipative if there are no proper extensions of A ($\iff \mathcal{C}^- \subset \rho(A)$, where \mathcal{C}^- is open lower-half plane).

Def. A is dissipative in Krein space $K = \{H, J\}$ if JA is dissipative in H. A is m-dissipative in K if JA is m-dissipative in H.

Symmetric and selfadjoint operators in K are defined analogously.

Let $H = H_+ \oplus H_-$, $H_\pm = P_\pm(H)$, $D_\pm = D(A) \cap H_\pm$.

Assumption: $D(A) = D_+ \oplus D_-$ (it is sufficient to assume that $D_+ \oplus D_-$ is a core of A) $\iff A$ admits matrix representation
\[
A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} P_+ A P_+ & P_+ A P_- \\ P_- A P_+ & P_- A P_- \end{pmatrix},
\]
where $x = x_+ + x_-$ are identified with columns $x = (x_+)$.
Background:

Th. (Sobolev, 1941, 1962). A selfadjoint operator in Π has at least one eigenvector corresponding to an eigenvalue $\lambda \in \mathbb{C}^+$.

Th. (Pontrjagin, 1944). Let A be self-adjoint in Π_α, $\alpha < \infty$. Then

(a) \exists max. nonnegative subspace L^+ invariant with respect to A;
(b) among these subspaces $\exists L^+$ such that $\overline{\sigma(A^+)} \subseteq \mathbb{C}^+$, $A^+ = A / L^+$.

Th. (Langer, 1961). Let A be selfadjoint in K and

(i) $D(A) = H^+$ ($\iff A_{11}$ and A_{21} are bounded);
(ii) A_{12} is compact.

Then (a) & (b) hold.

Th. (Krein, 1948, 1964). Analogues of Pontrjagin and Langer theorems are true for unitary operators in Π_α and K, respectively.

M. Krein proposed a shorter elegant approach to prove (a) by means of Schauder-Tikhonov fixed point theorem.
Th. (Krein and Langer, 1971; Azizov 1972). Let \(A \) be \(m \)-dissipative in \(H \). Then (a) and (b) hold.

Th. (Azizov, Khoroshavin 1981). Let \(A \) be a contraction in Krein space and \(A_{12} \) be compact. Then (a)\&(b) hold if \(C^- \) is replaced by the open unit disk.

Th. (Azizov, 1985). Analogue of the previous result holds for \(m \)-dissipative operators in \(K \) provided that \(D(A) = H_+ \) and \(A_{12} \) is \(A_{22} \)-compact.

Th. (Shkalikov, 2004). Let

(i) \(A \) be dissipative in \(K \);
(ii) \(A_{22} \) be \(m \)-dissipative in \(H_- \);
\(\Leftrightarrow \exists (A_{22}-\mu)^{-1} \) for some \(\mu \in C^- \);
(iii) \(F(\mu) := (A_{22}-\mu)^{-1}A_{21} \) be bounded;
(iv) \(G(\mu) := A_{12}(A_{22}-\mu)^{-1} \) be compact;
(v) \(S(\mu) := A_{11} - A_{12}(A_{22}-\mu)^{-1}A_{21} \) be bounded.

Then (a) and (b) hold.
The main result in the paper is that firstly the larger condition $\mathcal{D}(A) \supset H^+$ was dropped out. In particular, for a model matrix operator

$$A = \begin{pmatrix} u(x) & \frac{d}{dx} \\ \frac{d}{dx} & \frac{d^2}{dx^2} \end{pmatrix}, \quad g = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix},$$

which is self-adjoint in $\mathcal{K} = \{H, I\}$, $H = L^2(0,1) \times L^2(0,1)$, provided that the domain of A is chosen properly, one can guarantee the validity of properties (a) and (b).

The main goal of this talk is to prove (a) and (b) provided that only assumptions (i) - (iv) are valid.

It turns out that we need no assumptions for the transfer function $S(\mu)$.

New problems arise if we start working with unbounded entries and reject larger condition $\mathcal{D}(A) \supset H^+$. In this case, if we
succeed to prove (a) & (b), we come to the following interesting problems
(c) does the operator $A^+ = A / x^+$ generate a C_0-semigroup, or holomorphic semigroup?
We shall provide some sufficient conditions for positive answer to this question.
A subspace L is A-invariant in classical sense if $L \subset D(A)$ and $A(L) \subset L$. We accept the following
\begin{definition}
L is A-invariant if
\[D(A) \cap L \text{ is dense in } L \text{ and } Ax \in L \text{ for all } x \in D(A) \cap L. \]
\end{definition}
Let us formulate the main results.
\begin{theorem}
A. Conditions (i)-(iv) imply (a).
\end{theorem}
\begin{theorem}
B. Property (b) holds if and only if assumption (i) is replaced by
(i') A is m-dissipative in K.
\end{theorem}
For convenience we accept

Def. B is a generator of H_0-semigroup if $A_{>0}$ $B - \varepsilon$ generates a holomorphic semigroup.

Theorem C. iA^+ generates a C_0-semigroup of exponential type 0 is one of the following conditions holds

1. A_{12} is compact
2. $-iA_{22}$ generates an H_0-semigroup.

Theorem D. iA^+ generates an exponentially stable semigroup if either (1) or (2) holds and A is uniformly dissipative in I_K.

Theorem E. There is $\mu \in C^+$ such that $iS(\mu)$ generates an H_0-semigroup. Then iA^+ generates H_0-semigroup.
The main steps of the proof of the first two theorems.

Assumptions (ii)–(iv) allow to use Frobenious–Shur factorization
\[A - \mu = \begin{pmatrix} 1 & A \\ 0 & 1 \end{pmatrix} \begin{pmatrix} S - \mu & 0 \\ 0 & A_{22} - \mu \end{pmatrix} \begin{pmatrix} 1 & 0 \\ F & 1 \end{pmatrix} \]
where \(A = A(\mu) \), \(F = F(\mu) \) and \(S = S(\mu) \) is the transfer function defined on the domain \(\mathcal{D}(S) = \mathcal{D}_+ \).

Lemma 1
\[JA + \mu = J \begin{pmatrix} 1 & A \\ 0 & 1 \end{pmatrix} \begin{pmatrix} S + \mu & 0 \\ 0 & A_{22} - \mu \end{pmatrix} \begin{pmatrix} 1 & 0 \\ F & 1 \end{pmatrix} \]
Proof by direct verification.

Lemma 2 \(\forall \mu \in \mathbb{C}^+ \) and \(\forall x \in \mathcal{D}_+ \)
we have
\[(Sx_+, x_+) = (JA (x_+, -Fx_+), (x_+)) + \]
\[+ \mu (Fx_+, Fx_+). \]
Proof by direct verification.
Corollary (important). \(S = S(\mu) \) with domain \(D(S) = D_+ \) is dissipative in \(H_+ \) provided that assumption \((i)\) holds. Also, \(S \) is closable. The closure of \(S \) is \(m \)-dissipative in \(H_+ \). \(\iff \) \(A \) is \(m \)-dissipative in \(K \).

Lemma 3 (important). Let a subspace \(\mathcal{L} \) have a representation of the form
\[
\mathcal{L} = \{ x : x = (x_+^T), x_+ \in H_+ \}
\]
where \(K : H_+ \to H_- \) is a bounded operator. Then \(\mathcal{L} \) is \(\mathcal{A} \)-invariant \(\iff \)
\[
(1 - KG) (A_{22} - \mu) (F + K) = K (S - \mu)
\]
(the so-called Riccati equation for \(K \)).

Proof. For \(x_+ \in D_+ \)
\[
(A - \mu) \begin{pmatrix} x_+ \\ Kx_+ \end{pmatrix} = \begin{pmatrix} (S - \mu)x_+ + G (A_{22} - \mu) (F + K) x_+ \\ (A_{22} - \mu) (F + K) x_+ \end{pmatrix}.
\]
Assuming that \(\mathcal{L} \) is \(\mathcal{A} \)-invariant we find \(y_+ \in H_+ \) such that...
\begin{align*}
 \left[(S - \mu) + G \left(A_{22} - \mu\right) (F + k)\right] x^+ = y^+, \\
 (A_{22} - \mu) (F + k) x^+ = Ky^+.
\end{align*}

Substituting the first equality in the second one we come to Riccati equation for \(k \).

Conversely, Riccati equation for \(k \) implies the last two equations with some \(y^+ \), therefore the graph subspace \(S \) is \(A \)-invariant. \(\square \)

\underline{Remark.} Pontrjagin used:
\[S \text{ is } A \text{-invariant} \iff \]
\[A_{21} + A_{22} K - K A_{11} - K A_{12} K = 0 \]

However this form of Riccati equation is inconvenient while working with unbounded entries \(A_{ij} \).

\underline{Lemma 4.} Assume that \(G(\mu) \) is compact for some \(\mu \in \mathbb{C}^+ \). Then it is compact for all \(\mu \in \mathbb{C}^+ \) and \(\|G(\mu)\| \to 0 \) as \(\mu \to \infty \) and \(\mu \in \Lambda_e^+ \).

\underline{Proof} is simple.
Lemma 5. A subspace L is max nonnegative \iff L has graph representation

$L = \{ x = (x_+, x_-) \mid x_+ \in H_+ \}$

with the angle operator K, $\|K\| \leq 1$.

Corollary. Take $\mu \in \mathbb{C}^+$ such that $\|A(\mu)\| < 1/2$. Then (a) holds $\iff \exists$ a contraction K s. th.

$$K + K = (A_{22} - \mu)^{-1}(1 - KA)^{-1}K(S - \mu).$$

Lemma 6. Denote $H_S = \mathcal{D}(\overline{S}) \cap H_+$ where \overline{S} is the closure of S and the norm in H_S is defined by

$$\|x_+\|_{H_S} = \sqrt{\|\overline{S}x_+\|^2 + \|x_+\|^2}.$$

Then \exists a complete orthogonal system $\{y_k\}_{k=1}^\infty$ in H_+ such that $\{y_k\}_{k=1}^\infty$ is a Riesz basis in H_S.

Proof. If H_S is compactly embedded in H_+ we take $\{y_k\}_{k=1}^\infty$ consisting of eigenvectors of S^*S. In general case
Proof of Theorem A.

Let \(P_n \) be orthogonal projectors onto \(\text{Lin} \{ \Phi_k \}_k^n \) in \(H_+ \). Then \(P_n \rightarrow 1 \) in \(H_+ \) and \(P_n \rightarrow 1 \) in \(H_- \).

Consider

\[
A_n = \begin{pmatrix}
P_n A_{11} P_n & P_n A_{12} \\
A_{21} P_n & A_{22}
\end{pmatrix}
\quad \text{in} \quad H_n^+ \oplus H_n^-,
\]

\(H_n^+ = P_n (H^+) \).

Then \(A_n \) is \(m \)-dissipative in Pontrjagin space \(\Pi_n \) and due to Krein-Bang-Adzizov theorem (a) holds. This implies (Lemma 3) that

\[
(*) \quad F_n + K_n = (A_{22} - \mu)^{-1} (1 - K_n G)^{-1} K_n (S_n - \mu).
\]

Choose \(K_n \rightarrow K \). Since \(\|K_n\| \leq 1 \), we have \(\|K\| \leq 1 \). Then

\[
F_n = F P_n \rightarrow 1
\]

\(K_n G \Rightarrow KG \) and \((1 - K_n G)^{-1} \Rightarrow (1 - KG) \)

(we essentially use here that \(G \) is compact!!)
Further,
\[K_n S_n = K_n S P_n , \]
\[\overline{S} P_n x \to \overline{S} x \quad \forall x \in \mathcal{D}(\overline{S}) , \]
Hence, \[K_n S P_n x \to KS x . \]
Therefore we can pass to the weak limit in the equation (*) and obtain
\[F+K = (A_{22}-\mu)^{-1}(F-KL)^{-1}K(S-\mu) \]
and by virtue of Lemma 3 property (a) holds.
\[\square \]
Let \(A^+ = \overline{A}/\xi^+ \). How to prove
\[(b): \exists \xi^+ \text{ such that } \mathcal{D}(A^+) \subset \mathcal{D}^+ ? \]
We have
\[(\overline{A}-\mu) (Kx^+) = (\overline{S}-\mu + A L) x^+ , \]
where \(L = (A_{22}-\mu)(F+K), \mathcal{D}(L) = \mathcal{D}(\overline{S}). \)
Consider
\[Q: \xi \to H_+ \text{ defined by } Q(Kx^+) = x^+ . \]
\(Q \) is bounded and boundedly invertible \(\| Q^{-1} \| \leq 2 . \)
We have
\[
\bar{A}/\mathcal{L}_+ = Q^{-2}(S + QA)Q =
\]
\[
= Q^{-2}[1 + G(1-KA)^{-2}K(S-\mu)]Q,
\]
hence
\[
(\ast)(\bar{A} - \lambda)/\mathcal{L}_+ = Q^{-1}[1 + T(\lambda)](S(\mu) - \lambda)Q,
\]
where
\[
T(\lambda) = G(1-KA)^{-2}K(S-\mu)(\bar{S} - \lambda)^{-1}
\]
is a holomorphic operator function whose values are compact operators. Here we assumed that \((\bar{S} - \lambda)^{-1}\) exists \(\iff\) \(\bar{S}\) is m-dissipative in \(H_+\) \(\iff\) \(\bar{A}\) is m-dissipative in \(K\).

It can be shown that \(\|T(\lambda)\| \to 0\) as \(\lambda \to \infty\) along negative imaginary axis, therefore \(1 + T(\lambda)\) has only discrete spectrum in \(\mathcal{C}^-\). We use the following

\textbf{Lemma 7.} \(\text{Im} [Ax_0, x_0] = \text{Im}d_0 [x_0, x_0]\)
if \(Ax_0 = d_0 x_0\).
Therefore, all eigenvectors of \(A \) corresponding to the eigenvalues from \(\mathbb{C}^- \) are of negative type provided that \(A \) is strictly dissipative in \(\mathbb{K} \).

This proves Theorem B if we assume in addition that \(A \) is strictly dissipative in \(\mathbb{K} \).

If not, we consider

\[
A_\varepsilon = A + i\varepsilon P^+,
\]

\(\varepsilon > 0 \).

Assertion (a) is valid for \(A_\varepsilon \) and it does not have spectrum in \(\mathbb{C}^- \). Since

\[
\text{Im} \left[(A + i\varepsilon P^+) \left((Kx_+) \right)^t \right] \geq \varepsilon (x_+, x_+).
\]

Write Riccati equation for \(A_\varepsilon \):

\[
F + K_\varepsilon = (A_{22} - \mu)^{-1} (1 - K_\varepsilon G)^{-1} K_\varepsilon (S+i\varepsilon - \mu).
\]

Take \(\varepsilon_n \to 0 \) and \(K_{\varepsilon_n} = :K_n \to K \).

We have
$$A_t^e = Q^{-1} \left[1 + T_e(x) \right] (S + ie - \lambda) Q$$

and

$$T_e(x) = C (1 - K_e Q)^{-1} K_e (S + ie - \mu)(S + ie - \lambda)^{-1} \Rightarrow T^e(x).$$

Since $1 + T_e(x)$ is a holomorphic operator function of Fredholm type in \mathbb{C}^-, boundedly invertible $\forall \lambda \in \mathbb{C}^-$, so is $1 + T^e(x)$. \square

Theorems C-E are proved by analyzing representation $(**)$.