On possible spectral structure of linear continuous operators

Gallia est omnis divisa in partes tres

Ceasar,
Bellum Gallicum

X - a topological vector space (over \mathbb{C})

$T : X \to X$ - a continuous linear operator

$\sigma(T) = \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not invertible} \}$;

$\sigma_p(T) = \{ \lambda \in \mathbb{C} : \ker(\lambda I - T) = (\lambda I - T)^2(0) \neq \{0\} \}$;

$\sigma_c(T) = \{ \lambda \in \sigma(T) \setminus \sigma_p(T) : (\lambda I - T)(X) \text{ is dense in } X \}$;

$\sigma_e(T) = \sigma(T) \setminus (\sigma_p(T) \cup \sigma_c(T))$;

$\sigma^{(n)}(T) = \{ \lambda \in \mathbb{C} : \dim \ker(\lambda I - T) = n \}$;

$\sigma_{p,n}(T) = \{ \lambda \in \mathbb{C} : \dim \ker(\lambda I - T) = n \}$.

Question 1. For a given class X of topological vector spaces, which triples of subsets of \mathbb{C} are point, continuous and residual spectra of continuous linear operators acting on a space from X.
1. Necessary conditions

Theorem 1. Let \(X \) be a separable Fréchet space and \(T: X \to X \) be a closed densely defined linear operator. Then the sets \(\delta^n_p(T) \) are Souslin for \(n = 1, \ldots, \infty \), \(\delta_c(T), \delta_r(T) \) and \(\delta_{p,n}(T) \) are co-Souslin.

Morozevich\(\exists \) an \(F_\sigma \)-set \(D = \bigcap_{n \in \mathbb{N}} \delta_p(T) \cup \delta_r(T) = \delta_p(T) \cup D \)

Remark. If \(\delta_{p,\infty}(T) \) is a Borel measurable set, then all above sets are Borel measurable.

Theorem 2. Let \(X \) be a reflexive separable Banach space and \(T \) be a closed densely defined linear operator acting on \(X \). Then the set \(\delta_c(T) \) is \(G_\sigma \)
\(\delta^n_p(T) \) is \(F_\sigma \) for any \(n = 1, \ldots, \infty \).

Remark. Reflexivity can be replaced by quasireflexivity.

2. Spectral synthesis

Theorem 3. Let \(A_1, A_2, \ldots \) be a decreasing sequence of \(F_\sigma \)-sets (subsets of \(C \)), \(A_0 \) be a \(G_\delta \)-set, and \(A \subseteq C \) be such that

\(A_{-1}, A_0, A_1 \) are disjoint

\(A_{-1} \cup A_0 \cup A_1 \) is a non-empty compact set. Then there exists a continuous linear operator \(T \) on \(l_2 \) such that \(\delta_r(T) = A_{-1}, \delta_c(T) = A_0 \) and \(\delta^n_p(T) = A_n \) for \(n = 1, \ldots \).
Theorem 4. Let $K \subseteq C$ be a non-empty compact set, being a disjoint union of A, B and C, where A is Souslin, B is co-Souslin and there exists an F_σ-set D for which $A \cup D = A \cup C$. Then there exists a separable Banach space X and a continuous linear operator $T : X \to X$ for which $6^p (T) = A$, $6^c (T) = B$ and $6^r (T) = C$.

Theorem 5. Let A_1, A_2, \ldots be a decreasing sequence of Borel sets, A_0, A_1 be Borel sets such that A_0, A_0, A_1 are disjoint $A_0 \cup A_0 \cup A_1$ is a non-empty compact set and there exists an F_σ-set D for which $A_0 \cup A_\infty = A_0 \cup D$. Then there exists a separable Banach space X and a continuous linear operator $T : X \to X$ for which $6^p (T) = A_0$, $6^c (T) = A_0$ and $6^r (T) = A_0$, $n \in \mathbb{N}$.

Theorem 6. Let X be a separable Fréchet space and T be a closed densely defined linear operator acting on X. Then $6(T)$ is a $G_{\delta , c}$-set. Conversely, for any $G_{\delta , c}$-set $A \subseteq C$, there exists a separable Fréchet space X and a continuous linear operator $T : X \to X$ for which $6^c (T) = A$.
of subsets of \(C \) there exists \(T \) acting on \(X \in C \) for which
\[
\varepsilon (T) = A_{\infty}, \quad \varepsilon_c (T) = A_0, \quad \varepsilon^\infty (T) = A_n, \quad n \neq 1
\]

History:

1) G. Kalisch [1972]: for any nonempty compact set \(K \in \mathbb{R} \) there exists a \(L^0 \)
\(T \) on a separable Hilbert space for which
\[
\varepsilon (T) = \varepsilon_p (T) = \varepsilon_{p,1} (T) = K
\]

2) L. Nikol'skiaia [1974]: the point spectrum of a closed densely defined linear operator acting on a separable reflexive Banach space is an \(F_\sigma \) -set. Any \(F_\sigma \) -set is the point spectrum of such an operator acting on a separable Hilbert space.

3) R. Kaufman [1981, 1985]: the point spectrum of a continuous linear operator acting on a separable Banach space is a Souslin set. Any bounded Souslin set is the point spectrum of such an operator.

O. Smolyanov and S. Shkarin 1999
S. Shkarin 2001