Dirichlet spaces with no reference measure

Zeev Sobol, Swansea University,
z.sobol@swan.ac.uk
Weak solutions

\[\sum_{|\alpha|,|\beta| \leq m} (-1)^{|\alpha|} \partial_{\alpha} (a_{\alpha\beta} \partial_{\beta} u) = F \text{ (a measure)} \]

\[\mathcal{E}[u, \phi] = \sum_{|\alpha|,|\beta| \leq m} \int a_{\alpha\beta} (\partial_{\beta} u)(\partial_{\alpha} \phi) \, dx = F(\phi), \quad \forall \phi \in \mathcal{D} - \text{test functions} \]

Green function \(G : \mathcal{E}[G(\cdot, x), \phi] = \phi(x), \quad \forall \phi \in \mathcal{D} \)

Super-harmonic \(u : \mathcal{E}[u, \phi] \geq 0, \quad \forall \phi \in \mathcal{D}^+ \)
The Fukushima construction

m - a full support measure

$(\mathcal{E}, \mathcal{D})$ - a closable Markov form in $L^2(m)$, associates Markov SG P_t on $L^p(m)$, $p \in [1, \infty]$

P_t is transient

$\Leftrightarrow \forall f \in L^1_+(m) : Gf = \int_0^\infty P_t f \, dt < \infty \ m$-a.e.

$m(\phi f) - m(\phi P_T f) \quad \left(\rightarrow m(\phi f) \right)

= \int_0^T \mathcal{E}[P_t f, \phi] \, dt \quad \left(\rightarrow \mathcal{E} \left[\int_0^\infty P_t f \, dt, \phi \right] \right)

\exists g \in L^1(m), \ g > 0 \ m$-a.e.: $\sqrt{\mathcal{E}[\phi]} \geq \int |\phi| \, dm, \ \forall \phi \in \mathcal{D}$

Fukushima: transience (recurrence) depends on measure m.
Examples

\(\Omega \subset \mathbb{R}^N \) smooth bdd connected

\[E(u) := \int_{\Omega} |\nabla u|^2 \, dx, \ D_0 = H^1_0(\Omega), \ D_1 = H^1(\Omega). \]

\(\lambda \) be the \(N \)-dim Lebesgue measure on \(\Omega \)

\[\Delta := \sum_{q \in Q^N \cap \Omega} c_q \delta_q. \]

\(H^1 \) is recurrent wr to any reference measure it is closable.

\(H^1_0 \) is transient wr to \(m = \lambda \).

\(H^1_0 \) is recurrent wr to \(m = \lambda + \Delta \).

\(H^1 \) and \(H^1_0 \) are not closable wr to \(m = \Delta \), \(N \geq 3 \).
Philosophy: measure as a clocking device

Let $m_0 \leftrightarrow \frac{du}{dt} = Au$.

Then $dm := \rho dm_0 \leftrightarrow \frac{du}{d\tau} = \frac{1}{\rho} Au$, i.e., $t = \frac{\tau}{\rho}$.

Fukushima: for m not charging sets of zero capacity,

$t = T_\tau(\omega)$:

$$\frac{1}{\tau} \int_0^\tau f(X_\tau)d\tau \to m(f), \quad \tau \to 0$$

$X_t(\omega)$:

$\mathbb{E}_x f(X_t) = P_t f(x)$, $P_t \leftrightarrow (\mathcal{E}, \mathcal{D})$ on $L^2(m_0)$.
Transient Dirichlet space $(\mathcal{H}, [\cdot, \cdot])$

Given: state space Ω, \mathcal{B} - Borel σ-algebra on Ω, $\mathcal{B}(\Omega)$ - \mathcal{B}-measurable functions of Ω

1. \mathcal{H} is a separable Hilbert space.

2. \mathcal{H} is an ordered vector space
 \mathcal{H}^+ closed, $\mathcal{H}^+ \cap (-\mathcal{H}^+) = \{0\}$.

3. \mathcal{H} is a *Stone lattice* i.e. a vector lattice with an order-convex sub-lattice $\mathcal{H}^\wedge \subset \mathcal{H}^+$ of "positive elements not exceeding the unit". \mathcal{H}^\wedge is closed.

4. $\mathcal{H} \overset{\text{dense}}{\hookrightarrow} \mathcal{D} \subset \mathcal{B}(\Omega)$, a Stone sub-lattice in the pointwise order, generating \mathcal{B}.

5. For all $\in \mathcal{H}$: $\|(u^+)^\wedge\|_\mathcal{H} \leq \|u\|_\mathcal{H}$.
Stone lattice \mathcal{V}

- vector lattice (\equiv ordered vector space with \land, \lor operations);

- countable type (\equiv a majorized family of disjoint elements is at most countable);

- \exists order-convex sub-lattice $\mathcal{V}^\land \subset \mathcal{V}^+$ such that:
 $0 = \min \mathcal{V}^\land$;
 $\forall u \in \mathcal{H}^+ : \exists u^\land := \sup\{v \in \mathcal{H}^\land, \ v \leq u\}$;
 $\forall u \in \mathcal{H}^+ : (\forall \alpha \in \mathbb{R}^+ : \alpha u \in \mathcal{H}^\land) \Rightarrow u = 0$.
Daniell Stone integral

A Stone lattice allows for an abstract version of the Lebesgue (Daniell-Stone) integral:

- order completion $\hat{\mathcal{V}} (\hat{\mathcal{V}}^+ = \text{limits of increasing positive sequences})$ is an analog of the measurable functions space;

- $\sigma(\mathcal{V}) := \left\{ \sup_n [(nu)^\wedge] | u \in \mathcal{V}^+ \right\} \subset \hat{\mathcal{V}}$ is a (Boolean) σ-algebra of "(indicators of) supports of elements of \mathcal{V}"

- Daniell-Stone theorem: an order continuous positive linear functional on \mathcal{V} is a positive measure on $\sigma(\mathcal{V})$.
Properties of a transient Dirichlet space

1. $\sigma(\mathcal{H}) \supset B$.

2. $S^+ := \left(\mathcal{H}^*\right)^+$ separates points on \mathcal{H}. They are positive measures on $\sigma(\mathcal{H})$ satisfying $\mu(u) \leq c\|u\|_\mathcal{H}$, $u \in \mathcal{D}^+$

3. $\exists m \in S^+$ of a full support. $\left([,], \mathcal{H} \cap L^2(m)\right)$ is a transient Dirichlet form in $L^2(m)$ in the Fukushima sense.

4. The Green operator G is the Riesz isometry $\mathcal{H}^* \rightarrow \mathcal{H}$ restricted to (signed) measures on $\sigma(\mathcal{H})$.
Construction

$\mathcal{D} \subset C_c(\Omega)$

- Stone lattice with the pointwise order;

- dense in $C_c(\Omega)$;

- $\forall v \in \mathcal{D}^+ \exists u \in \mathcal{D}^\wedge$ such that $\forall \epsilon > 0$
 $(u + \epsilon v)^\wedge = u$ ("$u = 1$ on supp v);

- $\|(u^+)^\wedge\|_\mathcal{H} \leq \|u\|_\mathcal{H}$;

- for any $\|u_n\|_\mathcal{H} \to 0$, $\sup_n \|v_n\|_\mathcal{H} < \infty$:
 $0 \leq v_n \leq u_n \Rightarrow v_n \to 0$ (weakly) in \mathcal{H}.