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Turbulence: A walk through
a repertoire of unstable recurrent patterns?

As a turbulent flow evolves, every so often we catch a glimpse of
a familiar pattern:

=) other swirls =)

For any finite spatial resolution, the system follows approximately
for a finite time a pattern belonging to a finite alphabet of
admissible patterns. The long term dynamics = a walk through the
space of such unstable patterns.
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New experiments:
Unstable Coherent Structures

Stereoscopic Particle Image Velocimetry ! 3-d velocity field over
the entire pipe1

Observed structures resemble numerically computed traveling waves

What lies beyond?

1Casimir W.H. van Doorne (PhD thesis, Delft 2004); Hof et al., Science (Sep 10, 2004)
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Theory: 3-d Navier-Stokes steady solutions

Unstable 3D steady state and traveling wave solutions of the
Navier-Stokes equations

in plane Couette: first discovered by Nagata2

in plane shear flows: Exact Coherent Structures by Waleffe3

(+ many more recent numerical results)

2M. Nagata, "Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from
infinity. ", J. Fluid Mech. 217, 519 (1990)

3F. Waleffe, "3-D Coherent States in Plane Shear Flows", Phys. Rev. Lett. 81, 4140 (1998)
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2001: 3-d Navier-Stokes periodic solution

Kawahara and Kida4

the first demonstration of existence of an unstable recurrent
pattern in a turbulent hydrodynamic flow.

full numerical dynamicals simulation, a 15,422-dimensional dis-
cretization of the 3-d Plane Couette turbulence at Re = 400.

4G. Kawahara and S. Kida, ‘‘Periodic motion embedded in plane Couette turbulence: regeneration
cycle and burst’’, J. Fluid Mech. 449, 291 (2001)



Found: an important unstable spatio-temporally periodic (?) solu-
tion. A 9 consecutive snapshots of a periodic video:

colored: high vorticity regions - look like steady turbulent state
snapshots (but these are periodic)
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Theory: 3-d Navier-Stokes
relative periodic solutions

Unstable 3D relative periodic solutions of the Navier-Stokes equa-
tions

in plane Couette: several computed by Viswanath5

5D. Viswanath, ‘‘Recurrent motions within plane Couette turbulence’’, arXiv.org:physics/0604062



Turbulence = geometry of the phase space

Three examples, in order of increasing complexity

1. Rössler ‘‘chaos" 3-d state space

2. Kuramoto-Sivashinsky ‘‘turbulence’’

1-d state space

3. Navier-Stokes ‘‘turbulence’’

1-d state space
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Rössler flow

_x = `y ` z

_y = x + ay

_z = b + z(x ` c) ;

a = b = 0:2 ; c = 5:7 :

A typical numerically inte-
grated long-time trajec-
tory
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1-d ‘‘Navier-Stokes’’ equation

Navier-Stokes !

ut = (u2)x ` uxx ` �uxxxx

› ‘‘inertial’’ term u@xu; nonlinear

› ‘‘diffusive’’ terms @2
xu, @4

x u

› ‘‘viscosity’’ � - suppresses fast spatial variations

only parameter: dimensionless length ~L = L
2ı

p
�
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Flame front flutter

u(x,t)

x
Bunsen burner

Q : 1-d turbulence -
flutter of a flame front?

6

6R.W. Bunsen (1811-1899), Doctorate U. Göttingen, age 19



Kuramoto-Sivashinsky 45h–i wide

the ‘‘Reynolds’’ pa-
rameter: dimension-
less length

~L = L
2ı

p
�

spatial wavelength: h–i =
p

2 in units of ~L
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A small Kuramoto-Sivashinsky system

(empirical: ‘‘smallest" cell that exhibits turbulence) 7 , 8

weakly turbulent regime:

L = 22

or

ı 2:5h–i mean spatial wavelengths

7Y. Lan and P. Cvitanovic’, in preparation
8R.L. Davichack, in preparation



A long time series:
jumps between

center ‘‘wobble’’

side ‘‘traveling
waves’’
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Navier-Stokes equation



„
@u

@t
+ u ´ ru

«
= `rp + ”r2

u + f :

requires at least 15,000 dimensional discretization,



Plane Couette at Re = 400

a snapshot of a "typical" turbulent flow9.

Periodic [Lx = 2ı=1:14, Lz = 2ı=2:5] box
in x (streamwise) and z (spanwise),

Chebyshev wall normal.

9John F. Gibson - www.nongnu.org/channelflow
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THE POINT OF THIS TALK
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!!! THE POINT OF THIS TALK !!!

UNLEARN:
3-d VISUALIZATION

instant in turbulent evolution:

a 3-d video frame,
each pixel a 3-d velocity field

THINK:
1-d PHASE SPACE

instant in turbulent evolution:
a unique point

theory of turbulence =
geometry of the phase space

[E. Hopf 1948]
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Rössler flow

_x = `y ` z

_y = x + ay

_z = b + z(x ` c) ;

a = b = 0:2 ; c = 5:7 :

A typical numerically inte-
grated long-time trajec-
tory
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THINK IN PHASE SPACE!
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Fourier representation

spatial Fourier basis:

u(x; t) = i
+1X

k=`1
ak(t)e

ikx :

odd solutions subspace: u(x; t) = `u(`x; t):

_ak = (k2`�k4)ak` k
1X

m=`1
amak`m :

minimal number of modes:

1-d Kuramoto-Sivashinsky system: 16 - 103

3-d plane Couette: 104 - 105



A ‘‘turbulent KS’’ trajectory
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A ‘‘turbulent Plane Couette’’ trajectory Re = 400
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a transient starting close to the upper branch, ending in the laminar
state (30K modes 3-D Navier-Stokes DNS, a projection from Fourierˆ Fourierˆ Chebyshev

! unstable spiral plane of Waleffe’s upper branch)
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Equilibria / Traveling waves



Role of Rössler flow equilibria

‘‘+’’ equilibrium point
stable manifold
= basin boundary
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right of the ‘‘+’’ trajectories escape

left of the ‘‘+’’ fall into chaotic attractor circling the ‘‘`’’ equilib-
rium point
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Kuramoto-Sivashinsky equilibria

find u(x; t) = u(x + L; t) spatially periodic Kuramoto-Sivashinsky
equilibria using the variational method for ODE with ‘‘time’’ x

(u2)x ` uxx ` �uxxxx = 0 :

number of equilibria increases rapidly with the system size L.

need to classify them according to their importance for asymptotic
dynamics
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Important Kuramoto-Sivashinsky equilibria

The non-wondering set dynamics for L = 22 is qualitatively con-
troled by unstable 2-wavelength and 3-wavelength equilibria, and
a dual pair of discrete symmetry related unstable 1-wavelength
relative equilibria/travelling waves.



2-wavelength equilibrium 3-wavelength equilibrium
on the interval [0; L]

a typical instantaneous ‘‘turbulent’’ Kuramoto-Sivashinsky profile
bears resemblance to one of these equilibria.



F. Wallefe Exact Coherent Structure10, plotted by John F. Gibson11.

Plane Couette at Re = 400

"upper branch"
unstable equilibrium

Periodic [Lx = 2ı=1:14, Lz = 2ı=2:5] box
in x (streamwise) and z (spanwise),

Chebyshev wall normal.

10www.math.wisc.edu/‰waleffe/ECS/RRC-data.html
11www.nongnu.org/channelflow
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Stability of Rössler flow equilibria

two equilibrium points
(x`; y`; z`) (x+; y+; z+)

stable manifold of
‘‘+’’ equilibrium point
= attraction basin
boundary: xy

z
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right of the ‘‘+’’ equilibrium trajectories escape,

left of the ‘‘+’’ spiral toward the ‘‘`’’ equilibrium point

! seem to wander chaotically for all times.
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linearized stability exponents

(–1̀ ; –2̀ ˚ i „2̀) = ( `5:686; 0:0970 ˚ i0:9951 )

(–+
1 ; –

+
2 ˚ i „+

2) = ( 0:1929; `4:596 ˆ 10`6 ˚ i5:428 )

The –2̀ ˚ i „2̀ eigenvectors span a plane
this plane rotates with angular period T` ı

˛̨
2ı=„2̀

˛̨
= 6:313

a trajectory that starts near the ‘‘`’’ equilibrium point spirals away
per one rotation with multiplier ˜radial ı exp(–2̀T`) = 1:84

each Poincaré section return, contracted into the stable manifold
by amazing factor of ˜1 ı exp(–1̀T`) = 10`15:6 (!)
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Important Kuramoto-Sivashinsky equation equilibria:
the first few stability exponents

S –1 ˚ i „1 –2 ˚ i „2 –3 ˚ i „3

C1 0.04422 ˚ i 0.26160 -0.255 ˚ i 0.431 -0.347 ˚ i 0.463
C2 0.33053 0.097 ˚ i 0.243 -0.101 ˚ i 0.233

R1 0.01135 ˚ i 0.79651 -0.215 ˚ i 0.549 -0.358 ˚ i 0.262
R2 0.33223 -0.001 ˚ i 0.703 -0.281 ˚ i 0.399

T 0.25480 -0.07 ˚ i 0.645 -0.264

spiraling out in a plane, all other directions contracting



F. Wallefe Exact Coherent Structure12, plotted by John F. Gibson13.

Plane Couette at Re = 400

"upper branch"
unstable equilibrium

Periodic [Lx = 2ı=1:14, Lz = 2ı=2:5] box
in x (streamwise) and z (spanwise),

Chebyshev wall normal.

12www.math.wisc.edu/‰waleffe/ECS/RRC-data.html
13www.nongnu.org/channelflow



Unstable manifold, upper-branch equilibrium

Black: from ‘‘upper branch’’
to laminar fixed point

Blue: trajectories started
near unstable equilibrium !
2-d unstable manifold over
large region of phase space

-----------------
R = 400 plane Coutte phase
space, projection 30 ˆ 103 ! 2
dimensions

[J.F. Gibson]
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Equivaraint trace formulae



Dynamical systems

state space M
representative point x(t) 2 M : a physical system at instant in
time

dynamics: ft(x0) = representative point time t later

deterministic dynamics: evolution rule f maps a point into exactly
one point at time t.

dynamical system: the pair (M; f)

M ı R
d, d numbers determine next state.



Flows

For infinitesimal times, flows can be defined by differential equa-
tions - a generalized vector field

v(x) = _x(t) :

Examples:

Newton’s laws for a mechanical system

general flows, mechanical or not, defined by a time-independent
vector field v(x)



Trajectories

f (x)f (x)
t

x

trajectory: evolution rule ft traces out curve x(t) = ft(x0), through
the point x0 = x(0):

x(t) = ft(x0) = x0 + Z t

0
dfi v(x(fi)) ; x(0) = x0 :



Types of trajectories?

stationary: ft(x) = x for all t
periodic: ft(x) = ft+Tp(x) for a given minimum period Tp

aperiodic: ft(x) 6= ft
0
(x) for all t 6= t0 .

A periodic orbit corresponds to a trajectory that returns exactly
to the initial point in a finite time.

Periodic orbits: a very small subset of the phase space, in the
same sense that rational numbers are a set of zero measure on
the unit interval.

for a generic dynamical system most motions are aperiodic
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Evolution operators

rewrite asD
e˛´A

t
E

=
1

jMj
Z
M

dx Z
M

dy ‹
`
y ` ft(x)

´
e˛´A

t(x) :

‹
`
y ` ft(x)

´
is the Dirac delta function.

evolution operator

Lt(y; x) = ‹
`
y ` ft(x)

´
e˛´A

t(x) :

replaces individual trajectories ft(x) by evolution of a density of
the totality of initial conditions:

probe the entire phase space with finite time pieces of trajectories
originating from every point in M.

leading eigenvalue

Lt(y; x) ! es0 ! expectation values
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Trace formula for a deterministic flow

The classical trace formula for flows:
1X̧
=0

1

s ` s¸
= X

p
Tp

1X
r=1

er(˛´Ap`sTp)˛̨
˛det

“
1 ` Jrp

”˛̨
˛ :
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Hyperbolicity assumption

stabilities of all cycles exponentially bounded

j˜p;ej > e–eTp any p, any expanding j˜p;ej > 1

j˜p;cj < e`–cTp any p, any contracting j˜p;cj < 1 ;

–e; –c > 0 are strictly positive bounds on the expanding, contract-
ing cycle Lyapunov exponents.

for long times, t = rTp ! 1 , only the product of expanding
eigenvalues matters:

˛̨
˛det

“
1 ` J

r
p

”˛̨
˛ ! j˜pjr
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Local trace

Trace over prime cycle p of period np, neighborhood Mp

tr pLnp = Z
Mp

dx ‹
`
x ` fnp(x)

´
=

np˛̨
˛det

“
1 ` Jp

”˛̨
˛

Assume that no marginal eigenvalue

factor eigenvalues of Jacobian matrix Jp into expanding and
contracting sets f e; cg :˛̨

˛det
“
1 ` Jp

”˛̨
˛`1

=
1

j˜pj
Y
e

1

1 ` 1=˜p;e

Y
c

1

1 ` ˜p;c
;

˜p =
Q

e ˜p;e = product of expanding eigenvalues.
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Relative periodic orbits: how to find them



Durham 2006 -- 23 -- ChaosBook.org

.

ask Ruslan Davidchack











Kuramoto-Sivashinsky: Hopf’s vision

A long time series:
jumps between

!

!

! etc.
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Future looks bright
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Recurrent patterns vs. models of turbulence

What new does recurrent patterns program offer?

Normal form models of applied mathematics - such as the Lorenz
model - capture qualitatively some bifurcations and chaos similar
to those observed in hydrodynamics

Periodic orbit theory provides accurate quantitative predictions
for given flow, given boundary conditions, given ‘‘Reynolds’’ and
other parameters.



Conclusion: Hof is hope renewed for
Hopf’s Last Hope for a Theory of Turbulence

Hopf’s vision: repertoire of recurrent spatio-temporal patterns
explored by turbulent dynamics

detailed dynamics horrible, but much less so than feared:
pieced together from 1-d return maps (!)

‘‘To do’’ list:

Q: plane Couette-Taylor shear flow?
Waleffe; Kawahara & Kida: it can be done!
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.

In theory there is no difference between theory and practice.
In practice there is. Yogi Berra

not Snepscheut! appologies to Lyonia,
thanks to Mason Porter.


