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1. Theta function

Wi, W, M1, Mo - -+ g X g complex matrices
S.t.

e det(wy) # 0,

t 1

T=7,Im7 >0, if 7 =w; wy,

1 _ 1
o M tM = - Gf M= )
—1 —1 o2

Such matrices arise as period matrices of a compact Riemann

surfaces of genus g.
Then (F.Klein 1888, Buchstaber-Enolski-Leykin 1997)

U= (U, ..., Uy), §="8,0") € R¥,
o[d](u): a holomorphic function on CY,

S.t.

bmyma+2mit (6'mq —6"ms)

a0](u + Q(my, ms)) = e ™
><etE(m1,m2)(u+%Q(m1,m2))g[5] (u),

Q(ml, mg) = 2w1m1 + QWQTTLQ,

E(my, my) = 2mmy + 2myma,

my, mg € 7.9,



It is known that, for each §, the function o[d](u) exists and is
unique up to constant multiples. It is explicitly written using

Riemann’s theta function 0[d](z, 7) as

1
old](u) = C’exp(§tu771w1_1u) 0[6]((2w1) u, 7).
The matrices wq, wy determine an abelian variety

X = Cg/leZg + QCUQZg

Fix a 6 and define the theta divisor as the zero set of the

sigma, function:



2. Abelian function

The function
82
- (9u2 8uj

Gij(u) log o[d](u)

satisfies
Gij(u + Q2(ma, ma)) = Gjj(u).
This is an example of an abelian function of order 2.

Introduce the sapce A as

A = {meromorphic functions on X which are regular

on X — O}
~ Ui { 1(0) = S|+ mma)) = S0
= U2 A(n).

Notice that
da da

a(u+Q(my, mo)) = alu) = 8u'(u+Q(m1’ ms)) = 8u(u)

If we set 5
D:C[aup'“aaUg]) aul - (9%’7

then

A becomes a D-module.



3. Example—g=1—
In this case we take 6 = 7(1/2,1/2). Then

o -+ Welerstrass’ o- function
32
p(u) = —Cu(u) = —g-log o(u),
D=Cl0,), ©={u=0} C X =C/2uwZ + 2wy 7.

and

An) =C® Cp(u) ®Ce'(u) @ --- @ Cpl"2(u),
A =CoCpu)Co'(u)y®---,

= D1 + Dyp.

As a D-module
e generators - -+ 1, @

e relations - - - 0,(1) = 0.

This structure can conveniently be described in a D-free res-

olution:




Problem Determine

1. generators — cohomologies
2. relations — a Iree resolution

3. a linear basis of A.

We study this problem for g = 3 hyperelliptic Jacobians.



4. g = 3 hyperelliptic Jacobian

Consider the hyperelliptic curve
OIy2:4$7+)\25L’6+>\4CL’5+"°+)\14.

Take a canonical homology basis {a;, 3;} and a canonical
cohomology basis {du;, dv;} such that du; = x* 'dz/y and
dv; 1s a 2nd kind differential. Define

(/d) w2<(/jdm), (/d) M(/jdw).

We specify 0 in the definition of o-function as
111 3

5:155/5// 5/:15___ 5//:15_

( ) )7 (27 27 2)7 (27

This 0 corresponds to the Riemann constant for the base

point oo and some choice of canonical homology basis.



Set

o(u) = a0)(u),

u = (ug, ug, ug) = (t1, ts, ts),

To study the D-module structure of A it is important to in-
troduce a filtration on A and to consider the associated graded

module. We consider two filtrations on A.



5. Pole filtration

We have already defined an increasing filtration in defining

A.

A= U%O:OA(n%
A(n) ={f € A|the order of poles on © < n },

The associated graded space is

g’ A = @,A(n)/A(n — 1).

The relations

0;A(n) C A(n+ 1),
imply that

or?! A becomes a D-module.

A minimal set of generators of gr’® A is given by a basis of
grpol A
> O A

~ H3(g" A ®Q°).
Arguments using the grading show that

dim H? < co = g’ A is finitely generated.

—> A is finitely generated.



6. KP filtration

In general set
Qiy.in = —04, -+ 0, log o(u).
It is known that A is described as
A=Clgi, i, |n>2 1i,€{1,3,5}].
Define a filtration {A,} by specifying

©ii, € Ap forany n > i 4+ - - i

Then

A=U2 A,

Ay= A, =C,

Ay = C+ Cpyy,

Az =C+ Cpn + Cpu,

Ay = C+ Cpii + Cpi1 + Cpin + Cpty + Cprs.
ete.

The associated graded space is
g A=, A, A, 1.

Then

0;A, C A,.; = gr*? A becomes a D-module.
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Generators are given by a basis of
orkP A
Zle (92 grpol A

~ H3(gr"? A ® Q°).
Arguments using the grading show that

dim H? < co = gr'? A is finitely generated.

—> A is finitely generated.
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7. Algebraic de Rham complex

Set
O = > Cdty, A--- Ay,
1 <<y

The operator

3
d:28¢®dt¢:A®Qk—>A®Qk“

1=1

determines a complex, called algebraic de Rham complex,

(A®Q°,d).

algebraic de Rham theorem

H(A® Q) ~ H(X —-06,C).

Similarly the following two complexes are defined.

(@ A® Q% d), (a7 A®0",d).
The highest cohomology group becomes

(grpol A)dtl N dtg N dt5 N grpol A

H3 polA 0O°) = ~ .
(" AS) = S e Dy A )~ 3 0 A)
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8. Predictions on Euler characteristic — pole filtration —

In general, for a graded vector space
V =®,Vy
define its character by
chV = qudim V.
d

Now

degdt; = —1 = g’ A @ OF is graded.

—> ch (grpoz A® Qk) is defined.

These definitions are straightforwardly generalized for g-dimensional
case.
Using the well known formula
1 n=>0
dim gr’”' A = dim A(n)—dim A(n—1)=<{ 0 n=1
n—n—-19 n>2

we get

bl 4) = (1= ) (14 (o= )

chQF = (i) q_k.



The g-Euler characteristic is calculated as

Y

X];Ol = Z(—l)ich (grpoz A® Qz)
i=0
d 1
_ —1VYg9(1 =)L 1 '\
A (N )
= (-1)g!
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The following is known (can be easily proved).

Proposition

Suppose that © is non-singular. Then

X(X —0)=(=1)7g.

This suggests that the pole filtration works well for generic

abelian varieties. In fact we can prove the following theorem.

Theorem| (Cho-N, "06)

Suppose that © is non-singular.

(1) Hi(gr" A ®Q*) ~ H (X — ©). In particular it is finite

dimensional.

(2) It is possible to construct a D-free resolution of both

ar’ A and A explicitly.

15



Notice that

e the theta divisor of 3-dimensional hyperelliptic Jacobian is singular,

o (X —0)=-54#(-1)3 = —6.
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9. Predictions on Euler characteristic — KP filtration —

The ¢-Euler characteristic is already known (Smirnov-N, "01)

as o el
3] 2![4] 23] 2

KP
Xq = —q

q q° 12

lim1 Xffp = -5 =x(X —-0).

q—>

It seems that the KP-filtration works well for our case. In

fact we can prove the following.

Proposition

(1) dim H(gr*? A ® Q°) = dim HY(X — 6, C)

(1)-(%)

(2) dim H3(gr*! A @ Q°) = oo.

This means that g’ A is not finitely generated but A is
finitely generated.
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Set

(il, PN ik;jl; ,]k) = det(pms).

Theorem

(1) As a D-module A is generated by

1, @i, (i102;7192), (123;123).

(2) We have the explicitly described minimal D-free resolu-
tion of A of the form

0—DRIW! —DIW? —DIW? — 0.

Remark The theorem solves the conjecture in [Smirnov-N

'01] for g = 3 case.
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10. The singularity of O

© = {o(u) =0}
Sing® = {(0,0,0)}.

The function ¢ has the following expansion (H.F.Baker 1898,
[BEL] 1999):

o(u) =3 ag MY, t* =t71335°,  an(N) € Chg, ...y Ay

o(w)|n—0=5s@321)(t) -+ Schur function
= t5t1 — 13 — 515 + =8
= t)(t5 — 5tsti + 35t7) — 13
2

=2y — 2 -+ Aj singularity.

Similarly

o(u)=XY —Z*  near(0,0,0).
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Example g =2

u = (tla t3)

£11 13

1, ©ii(u), 13;13) =
]< ) ( ) 13 933

i=1 + 3 + 1 =5
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Example g = 3 hyperelliptic y* =27 + - -

u = (tla t37 t5)

1, pij(u), (1122; J1J2), (135;135)

fi=1 + 6 4+ 6 + 1 =14
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Example g = 3 non-hyperelliptic y* = 2% + - -

u = (tla t27 t5)

1, pij(u), (1122; J1J2), (125;125)

v = 02227 — B¢y

=14 + 1 = 10.
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