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Bayesian networks, with inferences computed by
probability propagation methods (“junction tree
algorithms”), offer an appealing practical modelling
framework for structured systems involving discrete
variables in numerous domains, including forensic
genetics.

However, when allowing for uncertainty in some of the
probability distributions specifying the model, exact
calculation of conditional probabilities by propagation
methods is not so straightforward.

In forensic genetics there is uncertainty about the gene
frequency distribution.
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The algorithms cannot be applied in systems where the
discrete variables have continuous parents. This rules
out having continuously distributed unknown parameters
in the distributions of the discrete variables.
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Forensic Identification

Example 1: Criminal Identification

Object-Oriented Bayesian Networks (OOBN)

Variations in Standard Assumptions Uncertain Gene
Frequency UGF; Identity by Descent IBD;
Subpopulations

Example 2: DNA Mixtures

Results
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Forensic Identification

The following hypotheses (queries) are typical of
forensic identification:

Criminal case Did individual A leave the DNA trace
found at the scene of the crime?

Criminal case- mixed trace: Did A and B both
contribute to a stain found at the scene of the
crime? Who contributed to the stain?

Disputed paternity: Is individual A the father of
individual B?

Immigration: Is A the mother of B? How is A related to
B?
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Computation of LR

The weight of the evidence is reported as a likelihood
ratio

LR =
P (E|H = true)
P (E|H = false)

.

This can be computed in a Bayesian network using
uniform prior probabilities Pr(H = false)/Pr(H = true)
from:

LR =
Pr(E |H = true)
Pr(E |H = false)

=
Pr(H = true |E)
Pr(H = false |E)

Pr(H = false)
Pr(H = true)

.
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Forensic Genetics: Criminal Identification

A simple case of criminal identification we have a DNA
profile found at the scene of the crime and the DNA
profile of a suspect which matches the crime profile. We
denote this evidence by E.

The query or hypothesis H to be investigated: Did the
suspect leave the trace at the crime scene? (suspect is
guilty?)
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Genetic Background

An identified area (locus)on a chromosome is a gene
and the DNA composition on that area is an allele.

A gene thus corresponds to a (random) variable and an
allele to its realised state.

A DNA marker is a known locus where the allele can be
identified in the laboratory.

Short Tandem Repeats (STR) are markers with alleles
given by integers. If an STR allele is 5, a certain word
(e.g. CAGGTG) is repeated exactly 5 times at that locus:

. . . CAGGTGCAGGTGCAGGTGCAGGTGCAGGTG. . .
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Standard Assumptions

A genotype of an individual at a locus is an unordered
pair of genes.

Marker Genotype Frequency f0

D13 {9, 14} {0.08,0.05}
FGA {21, 22} {0.19, 0.22}

It’s customary to assume that all individuals are drawn
from a homogeneous population in Hardy-Weinberg
equilibrium, with known gene frequencies f0.
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Forensic Genetics: Criminal Identification

Table 1: Crime and suspect’s DNA profile (excerpt)

Marker D13 D3 D5 D7 FGA

EvidenceEm 9 14 11 17 9 11 10 21 22

Frequencyf0 .08 .05 .002 .125 .05 .38 .24 .19 .22

10



OOBN for Criminal Identification
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Joint distribution of all Variables

p(S guilty? )
∏
m

[p(spg m)p(smgm)p(opg m)p(omgm)]

×
∏
m

[p(sgt m|spg m, smgm)p(ogt m|opg m, omgm)

× p(trace m|sgt m, ogt m, S guilty? )]
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Marginal posteriors in a Bayesian network

The set of nodes in a BN for forensic genetics can be
partitioned disjointly as

X = F ∪ T ∪O ∪ E,

F Founding genes, T Targets (T = 0, 1 corresponding to
the hypotheses H = true and H = false), O Others and
E Evidence. Interest is in

h(f) = log LR = log
P{T = 1|E}
P{T = 0|E}

= log
pt
1f

pt
0f

,

as a function of the distribution f of F with
P{F = i} = fi. We wish to evaluate variations in h(f)
as f varies from the baseline f0.
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Bayesian Network: BN

We wish to assess sensitivity by devising a BN whose
structure implies a variety of alternative settings for f :

• unknown allele frequencies (UGF)

• identity by descent(IBD) among founders

• heterogeneity(HET), i.e. the existence of
subpopulations

These variations in standard assumptions generate
dependence between founding genes. This can be
studied by considering the effect of perturbing the joint
distribution of the founding genes on the posterior
inferences of interest.
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Marker data may not be CI

Usually, the likelihood ratio LR for E = {Em} on
m = 1, 2, . . . ,M markers is given by the product rule:

LR =
P{E|T = 1}
P{E|T = 0}

=
M∏

m=1

{
P{Em|T = 1}
P{Em|T = 0}

}
.

For IBD and HET the product rule (PR) fails to apply
(they have latent variables common to all markers).
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Uncertain Allele Frequencies

Allele frequencies are not fixed probabilities, but
empirical frequencies in a database.

Assuming a Dirichlet prior and multinomial sampling the
posterior distribution of a set of probabilities r is Dirichlet
(Mρ(1),Mρ(2), . . . ,Mρ(k)).

The founding genes (spg , smg, opg , omg) are drawn
i.i.d. from the distribution r across alleles, which has the
above Dirichlet distribution where M is the sample size
and ρ are the database allele frequencies.

This corresponds to the standard set-up for a Dirichlet
process model and can be represented in a BN using
the Pòlya urn scheme
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UGF
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Node UGF: P ólya urn scheme

where Choicei ∼ Bin(1, i/(M + i)).
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Divorcing

where all choices are now binary, thus reducing the
clique table sizes.
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OOBN network for criminal identification
with IBD for 2 Markers
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Networks representing relation R and IBD
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Network for genotype when uncertainty in
subpopulation

This induces dependence between markers, m. S is
same for all m so mixing across supopulations is not the
same as using mixture of allele frequencies.
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Computing across-marker inferences using
within-marker BNs

Let R be a latent variable (codes for relationship among
individuals), then since T ⊥⊥ R a priori:

p(E|T ) = p(T )−#(M)
∑
R

p(R)
∏
m

p(Em, T |R)

Now p(Em, T |R)=p(Em|R)p(T |Em, R) can be obtained
from a BN (directly in GRAPPA). The per-marker LRs

p(Em|T ) = p(T )−1
∑
R

p(R)p(Em, T |R)

and the PR does not hold.
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Within-marker latent variables

Let π = {πm,m = 1, 2, . . . ,M} be within-marker latent
variables (for IBD these code the pattern of identity
among genes). Assume
p(T,R, π, E) = p(T )p(R)

∏M
m=1{p(πm|R)p(Em|T, πm)}

then

p(E|T ) =
1

p(T )#(M)

∑
R

p(R)
∏
m

{∑
πm

p(πm|R)p(Em, T |πm)

}

Can get the combined inference from within-marker BN
(for each m and πm). The BN is simpler, since R not
needed. Computational cost of each depends on the
numbers of values in R and {πm}.

24



Likelihood ratios LRs

Standard UGF IBD Subpop

D13 138.9 106.6 88.7 126.7

D3 1162.8 194.6 111.9 3488.4

D5 27.7 23.6 20.5 35.6

D7 16.9 14.6 13.7 11.8

Overall Log10LR for 8 markers

exact 13.38 12.10 7.71 13.85

product rule 13.38 12.10 11.54 13.57
Overall LR for UGF is about 20 times smaller than
baseline, whereas true IBD it is roughly 460× 103 smaller
than baseline and 7× 103 smaller than product rule.
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LRs for Subpopulation

suspect mixed population

other mixed Cauc Afro-Car Hisp

D13 126.70 138.89 432.90 70.58

D3 3488.37 1162.79 ∞ ∞
D5 35.56 27.70 55.02 33.22

Overall Log10LR for 8 markers

true 13.85 13.38 ∞ ∞
product rule 13.57 13.38 ∞ ∞

The LR when suspect and alternative are both from a
heterogeneous mixed SUBPOP is twice as large than for
product rule.
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Combination of Scenarios

Thanks to the modularity of BN we can combine
UGF+IBD and UGF+HET
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Results: Overall log10LR

UGF+ UGF+

Base UGF IBD HET IBD HET

D13 138.9 106.6 88.7 126.7 71.7 113.9

D3 1162.8 194.6 111.9 3488.4 74.3 583.7

D5 27.7 23.6 20.5 35.6 18.2 33.4

Overall Log10LR for 8 markers

exact 13.38 12.10 7.71 13.85 7.49 12.57

PR 13.38 12.10 11.54 13.57 10.95 12.96
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OOBN for DNA Mixture

Note: 4× 2 = 8 founding genes in this case.
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UGF plus IBD for a DNA Mixture
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LR for UGF plus IBD

Target: H0 : s&v vs. H1 : v&u
UGF with M = 99 (θ = 0.01 Balding correction)

D3 VWA FGA

unrelated 50.90 11.52 14.61

parent-child 7.12 2.94 2.94

half-sibs 12.49 4.69 4.89

mix over R 34.84 9.45 11.25

Suspect and U1 (alternative suspect) possibly related
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Conclusions

• Freeware software GRAPPA in R by Peter Green
(http://www.stats.bris.ac.uk/∼peter/Grappa) for
construction of and inference in discrete BNs.

• We have a range of different methods. Possibly
some of these could be applicable to other areas.
UGF → Pólya urn could be useful for other BN with
uncertainty on founders?

• Other examples: simple and complex paternity
testing have been analysed.

• Can infer the posterior probability of a specific
relationship R among actors conditional on their
DNA profiles. Useful in immigration cases.
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• IBD and HET induce dependence among markers
which can be handled it in one big net or using
smaller nets and looping over latent variables.

• IBD more subtle than the standard θ (FST)
approach.

• Results show that effects of IBD, UGF and HET
can be quite dramatic.

• Constrained Steepest descent: CSD
Aim: bound differences |h(f)− h(f0)| in terms of
||f − f0|| subject to constraints, e.g. fi ≥ 0,∑

fi = 1 and for fixed marginals at each f .

• Linear Fractional Programming: LFP
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Aim: Find min and max of h(f), subject to linear
constraints and linear bounds, e.g.
maxi |(f − f0)i| ≤ ε.
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