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Gene expression

1. Gene expression is the process by which information from a gene is
made into a functional gene product, such as protein or RNA

2. when and in what quantities a gene is expressed, determines differential
protein abundance, thereby inducing different cell functions
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Transcription factors (TFs)

1. In general, each mRNA molecule makes a specific protein (or set of
proteins)

• structural protein: gives the cell particular structural properties

• enzyme: micro-machine that catalyses certain reactions

• transcription factor (TF) : protein which serves to regulate other genes

2. transcription factors bind to the promoter region of other genes turning
them on, thereby initiating the production of another protein

3. a transcription factor may be either an activator or a repressor
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Gene regulatory networks (GRNs)

1. A gene regulatory network (GRN) is a graph where

• vertices : genes or, more generally, DNA segments

• edges : direct regulatory interactions

2. transcription factors are the main players in regulatory networks

3. alternative name: transcriptional regulatory network

4. some specific features

• feedback relationships and self regulation are possible

• regulatory networks are SPARSE

• presence of hubs

• GRNs are dynamic objects which modify their interaction structure to
allow the cell to respond effectively to changes of its internal and
external environments
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Biological pathway construction

1. Pathway building is the process of identifying the entities and interactions
of a network

2. two Construction Processes :

• Data-Driven (DDCP) : relationship information between entities is learnt
from specific experiments such as a microarray study

• Knowledge-Driven (KDCP) : relationship information between entities
is learnt by mining existing databases. Data repositories, which contain
information regarding sequence data, metabolism, signaling, reactions
and interactions are a major source of information for pathway building

3. KDCP can provide benchmark networks useful to validate statistical
procedures
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E.coli and RegulonDB

• RegulonDB is an internationally recognized reference database of
Escherechia coli (E.coli) offering curated knowledge of the regulatory
network and operon organization

• RegulonDB is currently the largest electronically-encoded dababase of the
regulatory network of any free-living organism

• reference:
Socorro, G.C. et al. (2008).
RegulonDB (Version 6.0): gene regulation model of Escherichia coli K-12
beyond transcription, active (experimental) annotated promoters and
textpresso navigation
Nucleic Acids Research, 2008, vol 36, D120-D124
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Gene regulatory network of E.coli

Map of the transcriptional
regulatory network controlling
metabolism in E. coli. There are
genes coding for the TFs (pink
circles), genes coding for en-
zymes (brown circles), external
metabolites (green squares),
certain internal fluxes (purple
parallelograms), stimuli (yellow
triangles) and other conditions
(blue diamonds)
(Areejit and Sanjay, 2008)
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RegulonDB: TF–gene interactions
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1. transcription factor

2. gene regulated by the TF

3. regulatory effect of the TF on the regulated gene
(+ activator, – repressor, +– dual, ? unknown)

4. evidence that supports the existence of the regulatory interaction
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Microarray data

• Microarray data measure the gene expression level by the abundance of
mRNA produced

• the number of variables (genes), p, is very large

• the sample size, n, is small, compared to p
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Structural learning of GRNs

1. Well defined statistical models

2. typically

(a) data are assumed to be i.i.d. observations from a multivariate normal
distribution

(b) exploit background information on the network structure, in particular
network sparseness to overcome the p >> n problem

3. some examples

• Bayesian approach with sparsity inducing prior (Dobra et al., 2004)

• lasso estimate of the inverse covariance matrix (Friedman et al., 2007)

• shrinkage estimate of the covariance matrix (Schäfer and Strimmer,
2005)

• limited order partial correlations (Wille and Bühlmann, 2006)

•
...
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Co-expression networks

• No formal definition: edges represent “associations” between genes,
hopefully a direct regulatory interaction

• main task

−− identify associated genes

−− try to reduce the number of spurious associations

• the goal is not to recover all direct regulatory interactions but rather
to recover some transcriptional interactions with high confidence

• typically the output of these procedures is a ranking of the edges of the
complete graph

• performance of the procedure is evaluated with respect to a benchmark
network

– p. 12/41



Some popular procedures

1. Relevance networks : associations are marginal dependence between
genes (Butte and Kohane, 2000)

2. relevance networks with correction for spurious associati ons

• ARACNE (Margolin et al., 2006)

• CLR (Faith et al., 2007)

3.
...
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Validation of procedures

• ROC-curve : it is not very useful because

specificity =
# missing edges correctly identified

# missing edges

is always close to one, because of sparseness;

• Precision-Recall curve: (recall=sensitivity )

recall =
# present edges correctly identified

# present edges

precision =
# present edges correctly identified

# identified edges
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Example of precision-recall curve
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Pooled datasets

• Typically these procedures are applied to pooled datasets from different
experimental conditions so that

1. sample size is larger

2. more direct regulatory interactions can be identified

• does it make sense to apply graphical models in this context?
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Gaussian graphical models

• Finite set V = {1, 2, . . . , p}

• (sparse) undirected graph G = (V, E)

• random vector XV ∼ N(µ, Σ) Markov w.r.t. G

• i.i.d. random sample of size n form XV

• the subset Q ⊆ V identifies the subvector XQ

• q-order partial correlation : if Q ⊆ V \{i, j} with q = |Q|, then

ρij.Q

is the partial correlation between Xi and Xj given XQ
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Full vs. limited-order partial correlations

• if Q = V \{i, j} then ρij.Q is a full-order partial correlation and we write

ρij.rest

• in a frequentist approach, testing the hypothesis

H0 : ρij.rest = 0

requires the computation of S−1

• the sample covariance matrix S has full rank, with probability one, iif n > p

(Dykstra, 1970)

=⇒ try to use limited-order partial correlations

– p. 18/41



q–order p.c. and missing edges

• If q < (n − 2) then for any Q ⊂ V such that |Q| = q the hypothesis

H0 : ρij.Q = 0

can be verified with standard techniques;

• when G is sparse it seems natural to investigate the possible use of
q-order partial correlations to identify missing edges of the graph (see
Castelo and R., 2006)

• however...
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Learning procedures based onq–order p.c.

• Faithfulness assumption : all the conditional independence relationships
in XV can be read off the graph G through the Markov property

• for every pair of variables, Xi and Xj , there are
(
p−2

q

)
different q-order

partial correlations

• the edge (i, j) should be removed when at least one of the
(
p−2

q

)
q-order

partial correlations is equal to zero

• consequently

1. computational problems unless q is very small;

2. multiple testing problem;

3. what if faithfulness assumption fails?
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Non-rejection rate

NON-REJECTION RATE for the pair (i, j): E(T q
ij)

• Set a value q < (n − 2)

• T
q
ij results from a two stage experiment:

1. select randomly a subset Q ⊂ V \{i, j} with |Q| = q

2. test the hypothesis H0 : ρij.Q = 0

•

T
q
ij =





0 if H0 is rejected

1 otherwise
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Present edges and non-rejection rate

The non-rejection rate takes value between 0 and 1 and behaves differently for
present and missing edges.

If (i, j) ∈ E then

E(T q
ij) = βij

• βij average second type error over all sets Q ⊂ V \{i, j} with |Q| = q

• βij converges to zero as (n − q) increases
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Missing edges and non-rejection rate

If (i, j) 6∈ E then

E(T q
ij) = βij (1 − πij) + (1 − α) πij

• α is the significance level of tests

• πij is the proportion of subsets Q ⊂ V \{i, j} with |Q| = q which separate i

and j in G

• if q = p − 2 then E(T q
ij) = (1 − α).
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Example with p = 150 and n = 20
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Interpretation of the non-rejection rate

• Role of (n − p) in inference for partial correlations

• the quantity n − p is split into two parts:

(n − p) = (n − q) + (q − p)

• (n − q) has to be sufficiently large to guarantee the required power of
statistical tests

• (q − p) is always negative, and has to be sufficiently close to zero to exploit
the sparseness of G

• there is a trade-off between these two requirements but but q can be
chosen accordingly with the real dimension of the problem.
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First possible use of the non-rejection rate

1. Specify a threshold β∗

2. return a graph Ĝ obtained by removing from the complete graph all the
edges whose estimated non-rejection rate is greater than β∗

3. conservative procedure that aims at keeping the number of wrongly
removed edges small: β∗ is set close to one

4. the selected graph Ĝ will contain a large number of edges that are missing
in G

5. typically, Ĝ can be dealt with standard techniques so that the selected
graph is the starting point for further analysis .
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Example: simulated data

• Number of genes: p = 164

• sample size: n = 40

• value of q: q = 20

• block diagonal structure

• number of possible edges
13 366

• present edges 1206

• sparsity degree 9%
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image of the partial correlation matrix
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Visual check for sparsity
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Distribution of non-rejection rates
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Choosing the threshold:qp-clique plot
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Performance of the procedure

ERROR to be controlled: removal of a present edges

threshold 0.96 0.976

max. clique size 20 36

% removed edges 47.2 % 26.7 %

relative error 6.7 % 3.1 %

absolute error 82 38
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True graph vs. selected graph for thr.=0.976
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Second possible use of the non-rejection rate

• co-expression network approach

• main attention on non-rejection rates with small value (close to zero)

• microarray experiments from GEO (GSE1121) from a study by Cover et al.
(2004) that investigated the changes of global gene expression in E. coli
during an oxygen shift

• E. coli antisense Affymetrix chip with 7,312 probesets

• n = 43

• data are filtered and the number of genes reduced to 199

• a subset of 341 interactions is extracted from RegulonDB
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Precision-recall curve
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A closer look at the data

• Two different experimental conditions

1. n1 = 21 aerobic

2. n2 = 22 anaerobic

• generalization of the non-rejection rate to deal with multiple experimental
conditions
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Generalization to multiple datasets

• Set a value q < (n1 − 2), (n2 − 2)

• consider a binary random variable T
q
ij associated to the edge (i, j)

resulting from a three stage experiment

1. select one of the two datasets with probability proportiona l to n1

and n2

2. select randomly a subset Q ⊂ V \{i, j} with |Q| = q

3. test the hypothesis H0 : ρij.Q = 0

• T
q
ij is equal 0 if H0 is rejected and 1 otherwise

• NON-REJECTION RATE: E(T q
ij)
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Precision-recall curve

recall (% RegulonDB interactions)
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Estimation of the non-rejection rate

• For every pair of variables, estimation of the non-rejection rate requires to
carry out

(
p−2

q

)
statistical test

• Monte Carlo sampling of sets Q ∈ V \{i, j}

• computation of non-rejection rates are easy to implement but computer
intensive. R package “qp” can be downloaded from CRAN;

• non-rejection rates can be computed in parallel
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Concluding remarks

1. The distinction between the structural learning approach and the
co-expression network approach is important

2. graphical models can be useful in both approaches

3. formal procedures to deal with pooled datasets are called for

4. non-rejection rate is an empirical quantity, but it is an useful tool

• easy to compute

• no multiple testing problem

• robust with respect to the faithfulness assumption

• sparseness is not assumed but exploited when present
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