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Goal

- To model sparse distributions subject to
marginal independence constraints

» For continuous data



Why?



Why?



How?



General context

- Y; =1(X,Y) + E; where E; is an error term

- E is not a vector of independent variables

- Assumed: sparse structure of marginally
dependent/independent variables

» Goal: estimating E-like distributions



Why not latent variable models?

 Requires further decisions
s How many latents? Which children?
s Faces redundancy or overconstraining

- In the Bayesian case:

o Punishes MCMC methods with (sometimes much)
extra autocorrelation

= Requires priors over parameters that you didn’t
even care in the first place
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Bi-directed models: The story so far

« Gaussian models

=« Maximum likelihood (Drton and Richardson,
2003)

= Bayesian inference (Silva and Ghahramani, 2006,
2008)

 Binary models

= Maximum likelihood (Drton and Richardson,
2008)



New model: mixture of Gaussians

» Latent variables: mixture indicators
= Assumed #levels is decided somewhere else

« No “real” latent variables



QOutline

« We will focus on maximum likelihood and
maximum a posteriori estimation

- Computationally hard even in sparse models

» Scalability will not be the focus here



Simple?
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Y, Y,, Y, jointly Gaussian with
sparse covariance matrix 2. indexed by C



]

L

Not really




Required: a factorial mixture of
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Pairwise model
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Parameterization &
@
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Y1 = Ao+ A141 + €

A1 = {25, Mg, Ay, Al } and variances {0}, vq }.

Assume Z variables are zero-mean Gaussians, c variables are binary
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Az = {A30, A20, A21, Ag15 Az, Ago } and variances {vy, v; .

Assume Z variables are zero-mean Gaussians, c variables are binary
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Factorial mixture of Gaussians and the
marginal independence model

- The general case for all latent structures

Y | ¢~ N(p" X%

- Parameter pool:
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Size of the parameter space

o Let
= m = number of edges
= p = number of vertices

= k = largest number of values among mixture
indicators

 Total number of parameters:
O(mk? + pk)

- For k = 2, fewer parameters than a Gaussian if
m < O(p?/ 8)



Maximum likelihood estimation

« An EM framework
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Maximum likelihood estimation

« An EM framework
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Yc, X(c) is positive definite



Maximum a posteriori estimation

- A product of experts prior

f{oitAoii}) o HPN(USZ"C:E)S””; v) HPG(Uf§3 a, 8) x Z({oi; 1, {0ii})
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« where
s py(Dis a Gaussian density function
s pe(Dis an inverse gamma density function
= J(DJis a indicator function (zero if some >¢ not p.d.)



Algorithms

« Constraints
= Positive definite constraints
= Marginal independence constraints

- Nonlinear optimization methods

= Move over a subset of the parameter space while
fixing the rest



Iterative conditional fitting:
Gaussian case (Drton and Richardson, 2003)

» Choose some Y; 1Y
- Fix the covariance of Y\; =Y \ Y;
- Fit the covariance of Y; with Y,;, and its variance

- Marginal independence constraints introduced
directly
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Gaussian ICF

Y, b23 21+Z3,

where R, | is the residual of the regression of Y, on Y,

YilYu= ) bR+

Y; adjacent to Y;



How does it change in the mixture of
Gaussians case?
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Parameter expansion

Yil{e, Yy} = > bi; Ry + G

Y; adjacent to Y;

- Positive-definite constraints automatically
satistied

 No free lunch: an exponential number of
parameters

= Which means an exponential number of equality
constraints



Parameter constraints
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Quadratic constraints

Vb SRS =7 b5 TER0E L if e = ¢

» Density function {(Y; | ¢, Y\;) is not convex in y
and b



A relaxation

- Fixall y

- Ignore variance (quadratic) constraints

- Optimize conditional (penalized) expected log-
likelihood for b given only linear constraints

c __
Oij O-?,j y

« “Doable” in closed formula

» Then optimize for y with fixed b
= Non-linear program, linear constraints only

1f ¢; —c and c¢; :cj



Projecting back

- Before optimizing for y, must guarantee feasible
point

» For each value v of ¢;, choose the instantiation ¢
such that p¢7'¥.¢,5¢ is maximal, since

/ T / / !/
Ve =S bST NG — b IR LS, fore; = ¢ = v

will always be positive (necessary and sufficient
condition)



Caveat emptor

» Overall method not guaranteed to always
increase expected log-likelihood
= | still found it to be very useful in practice

- In my implementation, I switch to a constrained
non-linear optimizer when this happens
= fmincon (MATLAB)



Recap

- Tterative conditional fitting: maximize expected
conditional log-likelihood
» Transform to other parameter space
= Exact algorithm: quadratic constraints, non-
convex program
= Relaxed algorithm:

- only linear constraints

* requires iterative method only for the (small) set of
residual variances y
- size of independent y = cardinality of c



Approximations

- Taking expectations is expensive what to do?
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- Standard approximations use a “nice” 1t(c)
» E.g., mean-field methods (as in variational EM)

- Not enough!



Approximations: message-passing for
free energy minimization?
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A simple approach?

- The Budgeted Variational Approximation

- As simple as it gets: maximize a variational
bound forcing most combinations of ¢ to give a
zero value to 17(c)
= Up to a pre-fixed budget

- How to choose which values?

- This guarantees positive-definitess only of those
> (c) with non-zero conditionals 17(c)

= For predictions, project matrices first into PD
cone



Experiments

- Some experiments evaluating predictive log-
likelihood in test sets (UCI datasets)

- 5-fold cross-validation

- Learn structure by non-parametric tests of
marginal independence (Gretton et al., 2007)

- Compare against latent variable models

> For each clique in the bi-directed graph, introduce
a latent, make it parent of the corresponding
observed nodes



Experiment | (graph examples)
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“Glass” dataset “Wine” dataset



Experiment |

» Maximum likelihood, set k = 2
» Start bi-directed model from latent variable

model solution

Glass

Fold GlassLVM Fire | FireLVM || Heart | HeartLVM || Wine | WineLVM
| -8.31 -8.47 -8.62 -8.81 -6.05 -6.11 -8.69 -8.97
2 -8.74 -8.73 -9.29 -9.62 -7.71 -7.73 -8.73 -9.03
3 -5.11 -6.69 -6.89 -6.91 -6.58 -6.76 -8.34 -8.20
4 -7.12 -7.90 -7.94 -7.97 -5.48 -5.52 991 -9.87
5 -3.69 -5.62 -7.49 -7.56 -6.18 -6.63 -8.33 -8.57

Relaxed algorithm: increases target function

50%-70% of the time




Experiment |l

- Simple maximum a posteriori

= standard Gaussian “experts” for the covariances,
inverse gamma (2, 2) “experts” for the variances

 Data: Y

» Results:

LAST (1484 points, 6 variables)
between -7.18 to -7.31 (e

» Latent variable model (via maximum ovh
likelihood): -9.68 to -10.78 ‘
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Conclusion

- Approximation methods are needed
- Development of full mixed graph solution

- Applications in sparse multiple regression,
sparse heteroscedastic regression, causal
inference, etc.



Thoughts on Bayesian methods

- MCMC method: a M-H proposal based on the
relaxed fitting algorithm
= Is that going to work well?

 Other priors?

- Problem is “doubly-intractable”

= Not because of a partition function, but because of
constraints

= Are there any analogues to methods such as
Murray/Ghahramani/McKay’s?
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