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Goal
• To model sparse distributions subject to 
marginal independence constraints

• For continuous data
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General context
• Yi = fi(X, Y) + Ei, where Ei is an error term
• E is not a vector of independent variables

• Assumed: sparse structure of marginally 
dependent/independent variables

• Goal: estimating E-like distributions



Why not latent variable models?
• Requires further decisions
▫ How many latents? Which children?
▫ Faces redundancy or overconstraining

• In the Bayesian case:
▫ Punishes MCMC methods with (sometimes much) 
extra autocorrelation

▫ Requires priors over parameters that you didn’t 
even care in the first place
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Bi-directed models: The story so far
• Gaussian models
▫ Maximum likelihood (Drton and Richardson, 
2003)

▫ Bayesian inference (Silva and Ghahramani, 2006, 
2008)

• Binary models
▫ Maximum likelihood (Drton and Richardson, 
2008)



New model: mixture of Gaussians
• Latent variables: mixture indicators
▫ Assumed #levels is decided somewhere else

• No “real” latent variables



Outline
• We will focus on maximum likelihood and 
maximum a posteriori estimation

• Computationally hard even in sparse models

• Scalability will not be the focus here



Simple?
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Y1, Y2, Y3 jointly Gaussian with 
sparse covariance matrix Σc indexed by C



Not really
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Required: a factorial mixture of 
Gaussians
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Pairwise model
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Parameterization

Assume Z variables are zero-mean Gaussians, c variables are binary
c1



Parameterization

Assume Z variables are zero-mean Gaussians, c variables are binary
c2



Implied indexing



Factorial mixture of Gaussians and the 
marginal independence model
• The general case for all latent structures

• Parameter pool:



Size of the parameter space
• Let
▫ m = number of edges
▫ p = number of vertices
▫ k = largest number of values among mixture 
indicators

• Total number of parameters:

• For k = 2, fewer parameters than a Gaussian if 
m < O(p2 / 8)O(mk2 + pk)



Maximum likelihood estimation
• An EM framework



Maximum likelihood estimation
• An EM framework



Maximum a posteriori estimation
• A product of experts prior

• where 
▫ pN(⋅) is a Gaussian density function
▫ pG(⋅) is an inverse gamma density function
▫ I(⋅) is a indicator function (zero if some Σc not p.d.)



Algorithms
• Constraints
▫ Positive definite constraints
▫ Marginal independence constraints

• Nonlinear optimization methods
▫ Move over a subset of the parameter space while 
fixing the rest



Iterative conditional fitting: 
Gaussian case (Drton and Richardson, 2003)
• Choose some Yi ∈ Y

• Fix the covariance of Y\i ≡ Y \ Yi
• Fit the covariance of Yi with Y\i, and its variance
• Marginal independence constraints introduced 
directly 
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Gaussian ICFY1 Y2 Y3 Y1 Y2 Y3 γ3Y1 Y2 Y323R2.1
where R2.1 is the residual of the regression of Y2 on Y1

b

Y3 = b23R2.1 + ζ3, 



How does it change in the mixture of 
Gaussians case?
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Parameter expansion

• Positive-definite constraints automatically 
satisfied

• No free lunch: an exponential number of 
parameters
▫ Which means an exponential number of equality 
constraints



Parameter constraints
,



Quadratic constraints

• Density function f(Yi | c, Y\i) is not convex in γand b



A relaxation
• Fix all γ
• Ignore variance (quadratic) constraints
• Optimize conditional (penalized) expected log-
likelihood for b, given only linear constraints

• “Doable” in closed formula
• Then optimize for γ with fixed b
▫ Non-linear program, linear constraints only



Projecting back
• Before optimizing for γ, must guarantee feasible 
point

• For each value v of ci, choose the instantiation csuch that                   is maximal, since

will always be positive (necessary and sufficient 
condition)



Caveat emptor
• Overall method not guaranteed to always 
increase expected log-likelihood
▫ I still found it to be very useful in practice

• In my implementation, I switch to a constrained 
non-linear optimizer when this happens
▫ fmincon (MATLAB)



Recap
• Iterative conditional fitting: maximize expected 
conditional log-likelihood

• Transform to other parameter space
▫ Exact algorithm: quadratic constraints, non-
convex program

▫ Relaxed algorithm: 
� only linear constraints
� requires iterative method only for the (small) set of 
residual variances γ� size of independent γ = cardinality of ci



Approximations
• Taking expectations is expensive what to do?

• Standard approximations use a “nice’’ π’(c)
▫ E.g., mean-field methods (as in variational EM)

• Not enough!



Approximations: message-passing for 
free energy minimization?



A simple approach?
• The Budgeted Variational Approximation
• As simple as it gets: maximize a variational
bound forcing most combinations of c to give a 
zero value to π’(c)
▫ Up to a pre-fixed budget

• How to choose which values?
• This guarantees positive-definitess only of those 

Σ(c) with non-zero conditionals π’(c)
▫ For predictions, project matrices first into PD 
cone



Experiments
• Some experiments evaluating predictive log-
likelihood in test sets (UCI datasets)

• 5-fold cross-validation
• Learn structure by non-parametric tests of 
marginal independence (Gretton et al., 2007)

• Compare against latent variable models
▫ For each clique in the bi-directed graph, introduce 
a latent, make it parent of the corresponding 
observed nodes 



Experiment I (graph examples)

“Glass” dataset “Wine” dataset



Experiment I
• Maximum likelihood, set k = 2
• Start bi-directed model from latent variable 
model solution

Relaxed algorithm: increases target function 
50%-70% of the time



Experiment II
• Simple maximum a posteriori
▫ standard Gaussian “experts” for the covariances, 
inverse gamma (2, 2) “experts” for the variances

• Data: YEAST (1484 points, 6 variables)
• Results: between -7.18 to -7.31
• Latent variable model (via maximum 
likelihood): -9.68 to -10.78



Conclusion
• Approximation methods are needed

• Development of full mixed graph solution

• Applications in sparse multiple regression, 
sparse heteroscedastic regression, causal 
inference, etc.



Thoughts on Bayesian methods
• MCMC method: a M-H proposal based on the 
relaxed fitting algorithm
▫ Is that going to work well?

• Other priors?
• Problem is “doubly-intractable”
▫ Not because of a partition function, but because of 
constraints

▫ Are there any analogues to methods such as 
Murray/Ghahramani/McKay’s?
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