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Problem Formulation

We are concerned with the solution of large linear systems of

the form

[
A BT

B O

] [
u
p

]
=

[
f
0

]
(1)

where

• A is n× n, B is m× n, m < n;

• A represents reactive, diffusive and advective terms;

• B represents the discrete divergence, BT the gradient;

We further assume that system (1) is nonsingular.

Systems of this kind arise from discretizations of various

linearizations of the incompressible Navier–Stokes equations

(Oseen, Newton).



The Augmented Lagrangian Formulation

In the Oseen problem, A ≈ σ − ν∆ + w · ∇ (where σ = 0 for

steady problems).

Typically, many such linear systems have to be solved in the

course of a simulation. Especially in 3D, iterative methods

are virtually mandatory. Efficient preconditioning techniques

are essential for fast convergence.

Notice that the original system is equivalent to

[
A + γBTW−1B BT

B O

] [
u
p

]
=

[
f
0

]
. (2)

Here γ > 0 is a parameter and W an arbitrary invertible ma-

trix. This is called an Augmented Lagrangian formulation

(Fortin & Glowinski, 1982).



Block Triangular Preconditioner for AL System

We are interested in preconditioners for the AL system (2).

Let A be the coefficient matrix of the AL system, and let

P =

[
A + γBTW−1B BT

O −1
γW

]
.

For LBB-stable discretizations, we have the following result:

Theorem (B. & Olshanskii, 2006): Assume W = Mp (the

pressure mass matrix). Then for all γ > 0 the precondi-

tioned matrix P−1A has the eigenvalue 1 of multiplicity

n; the remaining m eigenvalues λi lie inside a rectangle

R in the right half-plane which does not depend on the

mesh size h. Furthermore, γ can be chosen so that R does

not depend on ν, and all the eigenvalues tend to 1 for γ →∞.



Block Triangular Preconditioner for AL System

In the case of Galerkin FE methods (with no stabilization),

a result by Elman and Silvester implies that it is sufficient

to set γ = O(ν−1) to ensure that all non-unit eigenvalues of

P−1A are contained in a box [a, b]× [−c, c], a > 0, with a, b, c

independent of both ν and h.

However, a very large value of γ makes the solution of the

(1,1) block more difficult, and it is better to use moderate

or small values of γ in the computations.

Indeed, for very large γ the highly singular term γBTW−1B

will ‘swamp’ the other terms in the (1,1) block.



Block Triangular Preconditioner for AL System

Motivated by the previous result, we look for a practically

feasible block triangular preconditioner for the AL system, of

the form

P =

[
Âγ BT

O Ŝ

]

where Âγ ≈ A + γBTW−1B and Ŝ ≈ −1
γW .

Clearly, the critical component is Âγ. We implement the

action of Â−1
γ by a single iteration (W-cycle) of a suitable

multigrid method.

In the FEM context it is natural to take W = Mp (pressure

mass matrix) or, in practice, a diagonal approximation M̄p of

it, and to set Ŝ−1 := −νM−1
p − γM̄−1

p .



Block Triangular Preconditioner for AL System

The matrix A + γBTM̄−1
p B can be regarded as a FEM

discretization of a (non-standard) differential operator of

the form “linear elasticity + convection”.

For large values of ν, this is essentially the operator arising

from the linear elasticity equations. Note that γ can be

tuned to provide the appropriate scaling.

We have combined a multigrid method for linear elasticity

problems due to Schöberl (Numer. Math., 1999) with an

appropriate block smoother with overlapping blocks.

See paper by M. B. and M. Olshanskii (SISC, 2006) for de-

tails.



Numerical Experiments, I

We experimented with the AL-based preconditioner on a

few steady problems on the unit square Ω = [0,1]× [0,1]:

• A constant wind problem (Oseen)

• A recirculating flow (vortex) problem (Oseen)

• A lid-driven cavity problem with different winds (Oseen)

• Two indefinite problems (σ = −α < 0) from linear stabil-

ity analysis (Newton)

We implemented two uniform FEM discretizations (isoP2-P0

and isoP2-P1) and an unstructured one (P2-P1). These

discretizations satisfy the inf-sup condition: no pressure

stabilization is needed.

SUPG stabilization is used for the velocity.



Numerical Experiments, I

The Krylov subspace methods used are Bi-CGStab and

GMRES, except for the indefinite problem where we used

FGMRES.

This is because for the indefinite problem we used a non-

stationary multigrid method (similar to the one proposed by

Elman, Ernst and O’Leary for the Helmholtz equation) to

approximately solve linear systems involving the (1,1) block.

Hence, the preconditioner varies from one iteration to the

next, necessitating a flexible outer iteration.

The cost of each iteration is linear in the number of un-

knowns.



Numerical Experiments, I

Results for AL approach, isoP2-P0 FEM.

mesh size h viscosity ν

1 0.1 0.01 10−3 10−4

constant wind

1/16 7 5 5 6 6
1/32 7 5 6 7 8
1/64 5 5 6 5 7
1/128 5 5 5 5 6
rotating vortex

1/16 5 5 6 10 15
1/32 4 4 5 10 21
1/64 4 4 5 9 18
1/128 4 5 5 7 14

Number of preconditioned Bi-CGStab iterations
(Â−1

γ is one W(1,1)-cycle, γ = 1).



Numerical Experiments, I

Results for AL approach, isoP2-P1 FEM.

mesh size h viscosity ν

1. 0.1 0.01 10−3 10−4

parameter γ
1. 1. 1. 0.1 0.02

constant wind

1/16 6 6 7 8 24
1/32 7 6 10 8 22
1/64 7 6 8 7 19
1/128 7 6 9 9 18
rotating vortex

1/16 6 6 7 13 25
1/32 5 6 9 11 32
1/64 4 5 10 11 37
1/128 4 4 10 12 34

Number of preconditioned Bi-CGStab iterations
(Â−1

γ is one W(1,1)-cycle).



Numerical Experiments, I

# elem
h
↓ \

Re
→ 1 10 100 1000 10000

656 1/8 13/14 13/15 13/21 13/24 13/28
2596 1/16 13/14 13/15 13/20 13/23 13/26
10480 1/32 13/14 13/15 13/20 13/22 12/24
41852 1/64 13/14 13/15 13/20 13/22 12/22

Lid-driven cavity problem, unstructured mesh.

Test case with “rotating-vortex” wind: number of outer GM-

RES iterations for different values of the space discretization

and of the Reynolds number. The first number is for γ = 1.

The second one is for γ = 0.1.



Numerical Experiments, I

FGMRES its/timings for 2D indefinite problems, Newton

linearization about U , inexact solves via a single multigrid

V(1,1)-cycle, isoP2-P0 FEM.

Note: Here γ = α = 1; the problems become more indefinite

as Re →∞.

h Reynolds number Re = ν−1

1 10 100 1000

U=Poiseuille flow

1/256 13 (57s) 13 (57s) 16 (71s) 31 (140s)
1/512 13 (268s) 13 (269s) 16 (339s) 26 (545s)

U=rotating vortex

1/256 13 (56s) 12 (53s) 18 (79s) 45 (203s)
1/512 13 (264s) 12 (242s) 18 (370s) 46 (976s)

Note the near-perfect scaling with respect to CPU time.



Numerical Experiments, I

Same as before, but now using isoP2-P1 FEM.

Note: Here α = 1; the problems become more indefinite as

Re → ∞. We use γ = 1 in all cases except for Re = 1000,

where we use γ = 0.1.

h Reynolds number Re = ν−1

1 10 100 1000

U=Poiseuille flow

1/256 13 (59s) 13 (59s) 16 (92s) 31 (148s)
1/512 13 (271s) 13 (254s) 16 (444s) 26 (554s)

U=rotating vortex

1/256 13 (58s) 12 (59s) 18 (102s) 45 (221s)
1/512 13 (273s) 12 (253s) 18 (458s) 46 (995s)

Again, the scaling with respect to CPU time is excellent.



Modified AL Preconditioner

The previous test cases indicate that the AL-based precon-

ditioner is effective and robust.

Moreover, experimental comparisons show that this approach

is superior to block preconditioners based on approximations

of the pressure Schur complement, especially for small ν.

The main issue is the approximate solution of linear systems

involving the (1,1) block, i.e., the block matrix

Aγ =

 A1 + γBT
1 W−1B1 γBT

1 W−1B2

γBT
2 W−1B1 A2 + γBT

2 W−1B2

 . (3)

The challenge is to make this approach viable for general

geometries and discretizations.



Modified AL Preconditioner

Here we consider a simple modification of the AL-based

preconditioner that results in subproblems of simpler form.

For simplicity, we consider the 2D case only.

Dropping the (2,1) sub-block in Aγ results in a block trian-

gular matrix of the form

Ãγ =

[
A1 + γBT

1 W−1B1 γBT
1 W−1B2

O A2 + γBT
2 W−1B2

]
. (4)

Applying the preconditioner with the approximation given by

(4) only requires approximately solving linear systems with

coefficient matrices of the form Ai + γBT
i W−1Bi; these ma-

trices are discrete analogues of scalar anisotropic convection-

diffusion (or convection-diffusion-reaction) operators, with

anisotropy ratio ≈ 1 + γ/ν.



Modified AL Preconditioner

For the generalized Stokes case (Re = 0), the continuous

counterpart of the previous block triangular matrix is the

operator matrix

[
σ − ν∆− γ∂2

xx −γ∂2
xy

O σ − ν∆− γ∂2
yy

]
. (5)

Note that the diagonal ‘blocks’ are

σ − ν∆− γ∂2
xx = σ − ν

((
1 +

γ

ν

)
∂2

xx + ∂2
yy

)
and

σ − ν∆− γ∂2
yy = σ − ν

(
∂2

xx +
(
1 +

γ

ν

)
∂2

yy

)
.

The dropped term is γBT
2 W−1B1 ≈ −γ∂2

yx.

All this suggests taking γ small.



Numerical Experiments, II

h
↓ \

Re
→ 10 20 100 200 1000

1/32 16/20 16/20 17/21 17/24 17/26
1/64 19/23 20/24 21/25 21/26 21/30
1/128 24/28 25/28 26/29 26/30 26/36

Unsteady Oseen problem, σ = 1/∆t = O(h−1), MAC spatial

discretization, original vs. modified AL preconditioner,

γ = 0.1. The first number is the number of GMRES

iterations with the original AL approach. The second one

refers to the modified AL approach.

In terms of timings, the modified AL method is about 50%

faster on average. It also requires less storage.



Numerical Experiments, II

h
↓ \

Re
→ 10 20 100 200 1000

1/32 14/22 16/27 19/36 29/46 32/111
1/64 14/22 16/26 18/35 19/45 31/104
1/128 14/22 15/25 18/35 19/45 30/102

Same as previous slide, but now steady case (σ = 0). Original

vs. modified AL scheme, GMRES iterations, γ = 0.1 except

for Re = 1000, where γ = 0.05.

In terms of timings, the modified AL method is always

faster (between 20% and 40%) for the finest grid, except

for Re = 1000.

Note the degradation in the performance of the modified AL

preconditioner for large Re.



Conclusions and Future Work

• AL-based block preconditioner is effective and robust

• Optimal behavior with respect to mesh size observed in

all our experiments; very mild dependency on ν

• Modified AL preconditioner is much cheaper/easier to

implement

• Tests indicate good performance for unsteady Oseen

• Performance not as good for very small ν for steady

Oseen

• Spectral analysis for modified AL is being worked out

• Next: 3D unstructured implementation
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