
STOCHASTIC SAMPLING METHODS



APPROXIMATING QUANTITIES OF INTEREST
USING SAMPLING METHODS

• Recall that quantities of interest often require the evaluation of stochastic
integrals of functions of the solutions

• These integrals usually have to be approximated using quadrature rules, i.e.,
∫

Γ

G
(
u(x, ~y);x, ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqG
(
u(x, ~yq);x, ~yq)

)

or ∫

Γ

G
(
u(x, ~y);x, ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqρ(yq)G
(
u(x, ~yq);x, ~yq)

)

• To use such a rule, one needs to know the solution u(x, ~y) of the SPDE at
each of the quadrature points ~yq, q = 1, . . . , Q, in the probabilistic domain Γ

– for this purpose, one can use a stochastic Galerkin method to obtain an
approximation to the the solution u(x, ~y) and then evaluate that approxi-
mation at the quadrature points



• However, once a quadrature rule is chosen to approximate a quantity of inter-
est,

- i.e., once the quadrature points {~yq}Qq=1 are known

the simplest and most direct means of determining u(x, ~yq) is to simply solve
the PDE Q times, once for each quadrature point ~yq

• This approach is referred to as the stochastic sampling method (SSM) for
SPDEs and for quantities of interest that depend on the solutions of SPDEs

• We have already encountered two SSMs

– we have seen that SGMs based on Lagrange

interpolating polynomials reduce to SSMs

– we have also seen that non-intrusive polynomial

chaos methods are essentially SSMs

- although one does need the additional step of explicitly constructing

the non-intrusive polynomial chaos approximation



• In an SSM, to determine an approximation to a quantity of interest,

– one chooses a quadrature rule for the probabilistic integrals, i.e.,

- one chooses quadrature weights and points {wq, ~yq}Qq=1

– one chooses a finite element method, (i.e., a finite element space and a
basis {φj}Jj=1 for that space) and, for each q, one defines the finite element
approximation of the solution at the quadrature points by

uq(x) =
J∑

j=1

bj,qφj(x) for q = 1, . . . , Q

– then, to determine bj,q for j = 1, . . . , J and q = 1 . . . , Q, one separately,
and if desired, in parallel, solves the Q deterministic problems: for q =
1, . . . , Q,
∫

D
S
( J∑

j=1

bj,qφj, ~yq

)
T (φj′) dx =

∫

D
φj′f(~yq) dx for j ′ = 1, . . . , J



- each of these can be discretized using a finite element method

=⇒ one can use legacy codes as black boxes

=⇒ i.e., without changing a single line of code

=⇒ i.e., one just uses the legacy code Q times

– and finally, one just substitues uq(x) wherever u(x; ~yq) is needed into the
quadrature rule approximation of a quantity of interest

• The cost of determining an approximation to a quantity of interest using the
SSM approach is dominated by

– the cost to determine Q finite element solutions, each of size J

• This should be compared to the cost of using general SGM approaches for the
same purpose that are dominated by

– the cost needed to determine the solution of

a single system of size JK



• Which approach wins, i.e., which one yields a desired accuracy in the statistics
of quantities of interest for the lowest computational cost, depends on

– the value of Q, the number of quadrature points in SSM approaches

– the value ofK, the number of probabilistic terms in the SGM approximation
to the solution

– the cost of solving the systems of discrete equations encountered

- for nonlinear problems and time dependent problems,

one may have to solve such systems many times

– many implementation issues

• Of course, such comparisons do not factor in the relative programming cost
for implementing the different approaches

– SSM approaches allow for the easy use of legacy codes

– general SGM approaches do not allow for this



• In most cases, and certainly due to some recent developments,

SSMs win over SGMs

– which is why polynomial chaos people are now doing non-intrusive

polynomial chaos which is, as we have seen, practically a SSM

• Of course, there are many ways to sample points in parameter space other
than at the quadrature points for some integration rule

– so, we now take a more general view of SSMs



STOCHASTIC SAMPLING METHODS
ARE STOCHASTIC GALERKIN METHODS

• From the previous discussions, it seems that we could have introduced stochas-
tic sampling methods as a special case of stochastic Galerkin methods

– in fact,

every stochastic sampling method
is a stochastic Galerkin method using
Lagrange interpolating polynomials

based on the sample points
and quadrature rules also based on the sample points

• However, stochastic sampling methods are easier to understand through the
straightforward approach we have just taken

– the straightforward approach also avoids difficult questions about the rela-
tions of the cardinality of the set of sample points and the construction of
interpolating polynomials



SURROGATE APPROXIMATIONS AND
STOCHASTIC SAMPLING METHODS

• Stochastic sampling methods (SSMs) for solving stochastic PDEs are based
on

– first determining a sample set of values {~ys}
Nsample
s=1 of the vector of random

parameters ~y ∈ Γ ⊂ R
N

– then determining Nsample (approximate) solutions {u(x; ~ys)}
Nsample
s=1 of the

PDE via, e.g., a finite element method



Evaluating quantities of interest within the SSM framework

• If we want to evaluate quantities of interest that involve integrals over the
parameter set Γ using a Q-point quadrature rule involving the quadrature
points {~yq}Qq=1 ⊂ Γ and quadrature weights {wq}Qq=1

– it is then natural to choose the set of sample points {~ys}
Nsample
s=1 that are

used to solve the PDENsample times to be the same as the set of quadrature

points {~yq}Qq=1 that are used to approximate the quantities of interest

• Alternately, we could choose {~ys}
Nsample
s=1 to be different (and presumably

coarser) than the quadrature points {~yq}Qq=1

– one would then use the sample points {~ys}
Nsample
s=1 to build a surrogate or

response surface usurrogate(x, y) for the solution u(x, y)

– surrogates/response surfaces for the solution u(x, ~y) are (usually polyno-
mial) functions of, in our case, the random parameters ~y



– in fact, they are simply representations, e.g., in terms of Lagrange interpo-
lation polynomials, of the approximate solution in terms of the parameter
vector ~y

– it is usually more efficient to build a surrogate/response surface directly for

the integrand G
(
u(x, ~y);x, ~y

)
of the desired quantity of interest

- one solves for an approximation us(x) to

the solution u(x, ~ys) of the PDE for the

sample parameter points ~ys, s = 1, . . . , Nsample

- one then evaluates the approximations to the integrand

Gs(x) = G
(
us(x);x, ~ys

)
for s = 1, . . . , Nsample

- from these samplings of G at the sample points ~ys,

one builds a surrogate Gsurrogate(x, ~y)

– once a surrogate/response surface is built, it can be used to evaluate the
integrand at the quadrature points {~yq}Qq=1



• To illustrate the different approaches, within the SSM framework, for com-
puting approximations of quantities of interest, consider a quantity of the
form

J (u) =

∫

Γ

∫

D
G
(
u(x, ~y)

)
ρ(~y) dxd~y

– a spatial quadrature rule with the points xr and

weights Wr for r = 1, . . . , R is used to approximate

the spatial integral resulting in the approximation

J (u) ≈
∫

Γ

R∑

r=1

WrG
(
u(xr, ~y)

)
ρ(~y) d~y

– a parameter-space quadrature rule with the points yq and

weights wq for q = 1, . . . , Q is used to approximate

the spatial integral resulting in the approximation

J (u) ≈
Q∑

q=1

R∑

r=1

wqWrρ(~yq)G
(
u(xr, ~yq)

)



– a set of points {~ys}Nsamples=1 is chosen in the parameter domain Γ

- these sample points are used to obtain the set of

realizations {us(x)}Nsamples=1 of a finite element

discretization of the SPDE

- each realization is determined by setting the

parameters ~y = ~ys in the discretized SPDE

– if the probalistic quadrature points {~y}Qq=1 are the same as the sample

points {~y}Nsamples=1 , we directly define the computable approximation

J (u) ≈
Q∑

q=1

R∑

r=1

wqWrρ(~yq)G
(
uq(xr)

)

where we have, of course, renamed us(x) by uq(x) since now they are one
and the same



– if the the sample points {~y}Nsamples=1 are coarser than the

probalistic quadrature points {~y}Qq=1, we first build

a surrogate Gsurrogate(xr, ~y) for G(xr, ~y)

- the simplest means for doing this is to use the

set of Lagrange interpolating polynomials {Ls(~y)}
Nsample
s=1

corresponding to the sample points {~ys}
Nsample
s=1 ,

resulting in the surrogate approximation

Gsurrogate(xr, ~y) =

Nsample∑

s=1

G
(
us(xr)

)
Ls(~y)

- other surrogate constructions may be used,

e.g., least-squares fits to the data {~ys, G
(
us(xr)

)
}Nsamples=1

using global orthogonal polynomials or even piecewise polynomials



- once the surrogate Gsurrogate(xr, ~y) has been constructed,

one defines the indirect computable approximation

J (u) ≈
Q∑

q=1

R∑

r=1

wqWrρ(~yq)Gsurrogate(xr, ~yq)

by evaluating the surrogate at the

probabilistic quadrature points {~yq}Qq=1

- for example, if the surrogate is constructed using

Lagrange interpolating polynomials, we have the approximation

J (u) ≈
Nsample∑

s=1

R∑

r=1

WrG
(
us(xr)

) Q∑

q=1

wqρ(~yq)Ls(~yq)



- of course, if the sample points {~ys}Nsamples=1 are the same as the

probabilistic quadrature points {~yq}Nqq=1 so that Ls(~yq) = δsq,

this approximation reduces to the one obtained before which,

in this example, takes the simple form

J (u) ≈
Q∑

q=1

wqρ(~yq)
R∑

r=1

WrG
(
uq(xr)

)

• Note that if one uses the sample points directly as quadrature points, then
one does not need to construct a representation of the approximate solution
in terms of the random parameters

– if one uses a coarser set of sampling points relative to the quadrature points,
one does have to build such a representation since it needs to be evaluated
at the quadrature points, and not just the sample points

– of course, this is also unlike the case for general SGMs in which one does
build such a representation, e.g., an intrusive polynomial chaos expansion



• We will concentrate on the case where the sample points are used directly as
quadrature points

• So, we next discuss quadrature rules that can be used to approximate quan-
tities of interest

– (coarser) versions of some of these rules can also supply sample points that
can be used to build surrogates or response surfaces

• We will discuss quadrature rules for the N -dimensional hypercube,

the case that most often arises in practice

– other rectangular regions, i.e., bounding boxes, can be mapped in the

obvious way to the unit hypercube

• Unfortunately, we do not have time to discuss sampling in unbounded domains
or in general, non-rectangular domains



QUADRATURE RULES FOR HYPERCUBES

• One is tempted to use well-known quadrature rules to define the sample points
for SSMs

• We will discuss two classes of quadrature rules

for the N -dimensional hypercube

– sampling and simple averaging rules

- the canonical example is Monte Carlo integration

– weighted quadrature rules based on standard one-dimensional rules

- ultimately, we consider sparse grid Smolyak quadrature rules

• Recall that in the SSM framework we are using, the quadrature points are also
the points used to sample the solutions of the SPDE



Sampling and simple averaging quadrature rules

• We consider sampling + simple averaging-based quadrature rules that are
based on

– determining a set of quadrature points {yq}Qq=1

– approximating integrals of a function G(y) by an equal weight rule

∫

Γ

G(~y)ρ(y) dy ≈ 1

Q

Q∑

q=1

G(~yq)
if one samples the points
according to the PDF ρ(~y)

or by
∫

Γ

G(~y)ρ(y) dy ≈ 1

Q

Q∑

q=1

ρ(yq)G(yq)
if one samples the
points uniformly



• The second approach seems simpler, but is wasteful

– the density of points is the same in regions where ρ(·) is small as where it
is large

- unfortunately, many sampling methods can only be used

to sample uniformly or have difficulty, i.e., they are much

less efficient, when sampling nonuniformly

• Note that the weights do not depend on the position of the points {~yq}Qq=1 or
on other geometric quantities



Monte Carlo sampling

• As has already been said, the simplest quadrature rule is based on

Monte Carlo, i.e., random, sampling of the hypercube

– random sampling could be done uniformly in the hypercube

- in which case wq =
ρ(~yq)

Q

– random sampling could instead be done according to the density function
ρ(~y) by, e.g., a rejection method

- in which case wq =
1

Q

• Monte Carlo integration has one very great virtue (other than its simplicity)

– its convergence behavior is independent of the dimension N ,

i.e., of the number of parameters



• Unfortunately, it also has one great fault

– its convergence behavior is slow Error = O
( σ√

Q

)

• The slow convergence of Monte Carlo integration has motivated the huge
amount of effort devoted to improving or replacing Monte Carlo sampling as
an integration rule

– it has also motivated the development of stochastic Galerkin methods



“Improved” sampling + simple averaging-based quadrature rules

• There have been many sampling + simple averaging-based quadrature rules
proposed as replacements for Monte Carlo quadrature, including

variance reduction Monte Carlo methods

quasi-Monte Carlo methods (Halton, Sobol, Faure, Hammersley, . . .)

stratified sampling

Latin hypercube sampling and its many “improved” versions

orthogonal arrays

lattice rules

importance sampling

etc.



• In general, these “improved” rules have, in theory, improved rates of

convergence, at least for not too large N

– the best theoretical result is of the type

Error = O
((lnQ)N

Q

)
⇐= note the dependence on N

– this is often a pessimistic estimate

– for large N , the (lnQ)N term dominates

- the curse of dimensionality is still with us

– also, in many cases, biasing problems exist, especially for a large number
of sample points

• However, if one is careful when using them, the “improved” sampling and
averaging methods often can indeed improve on Monte-Carlo sampling



Monte Carlo and quasi-Monte Carlo point sets

Latin hypercube and lattice rule point sets



Tensor products of standard 1-D quadrature rules

• One is familiar with many quadrature rules in 1D

• On the hypercube, one can easily define multiple integration rules

as tensor products of 1D rules

• As we have already seen, tensor products really suffer from

the curse of dimensionality

• Tensor product rules integrate tensor products of polynomials exactly

• Just as was the case for interpolation and approximation, one can get the same
rate of convergence using quadrature rules that integrate complete polynomi-
als exactly

• The same table of numbers used before applies here



Quadrature rules in hypercubes

N = number of Q = number of
no. random quadrature points quadrature points
parameters in each direction using complete using a tensor

polynomial rule product rule

3 4 20 64
6 56 216

5 4 56 1,024
6 252 7,776

10 4 286 1,048,576
6 3,003 60,046,176

20 4 1,771 > 1×1012

6 53,130 > 3×1015

100 4 176,851 > 1×1060

6 96,560,646 > 6×1077



A tensor product set of quadrature points in 2D

• On the other hand, tensor product rules are easy to define

– the quadrature points are tensor products of

the quadrature points of the 1D rules

– the quadrature weights are products of the weights of the 1D rules



• High-dimensional rules based on complete polynomials

are not so easy to define

– determining a good set of quadrature points and the

corresponding quadrature weights is difficult

– these difficulties further motivated interest in SGM methods

• But now, there is available an intermediate means of defining quadrature rules

– the number of points is much less that that for tensor product rules, but is
somewhat greater than that for complete polynomial rules

– these rules are constructed through

judicious sparsifications of tensor product rules

– the are known as Smolyak or sparse grid quadrature rules



SPARSE (SMOLYAK) QUADRATURE RULE-BASED
STOCHASTIC SAMPLING METHODS

• Let I be a positive integer and for each i = 1, . . . , I ,

let mi denote a positive integer

• For each i = 1, . . . , I , let Θ(i) = {y(i)
1 , . . . , y

(i)
mi}

denote a set of points in [−1, 1]

– note that for convenience, we will be looking at the hypercube [−1, 1]N

• Let N > 1 denote the number of parameters

• Let p = (p1, p2, . . . , pN) denote a multi-index,

– in this case, an N -vector whose components are positive integers

and let |p| =
∑N

n=1 pn



• Let M denote a positive integer

• Let I(M,N) = {p : M + 1 ≤ |p| ≤ N +M}

• Then,
S(M,N) =

⋃

p∈I(M,N)

Θ(p1) ⊗ Θ(p2) ⊗ · · · ⊗ Θ(pN )

defines a sparse grid



• Example

– let I = 3, m1 = 1, m2 = 3, and m3 = 7

– let Θ(i), i = . . . , I = 3 be given by the three one-dimensional nested point
sets

– let N = 2 and M = 2 so that I(2, 2) = {p : 3 ≤ |p| ≤ 4}

– I(2, 2) then contains the combinations

(p1, p2) = (1, 1), (1, 2), (2, 1), (3, 1), (1, 3), (2, 2)

but not the combinations

(p1, p2) = (2, 3), (3, 2), (3, 3)

- for nested point sets, it is enough to include the combinations for

which |p| = N +M , i.e., (3, 1), (1, 3), (2, 2) in the example



– then, S(2, 2) is given by

– this should be contrasted with the full tensor-product point set



• the following diagram shows how the sparse grid comes about

• point sets included in S(2, 2) ◦ point sets not included in S(2, 2)



• What Smolyak showed is that

– if one chooses the underlying one-dimensional grids to be the quadrature
points for some integration rule

then

– the accuracy of the full tensor product point set can be preserved with point
sets with much fewer points

• Along the way, Smolyak also showed how to systematically compute the
weights of the resulting sparse quadrature rule

• The use of Smolyak grids in the SPDE setting has been rigorously analyzed
for some simple linear and nonlinear elliptic PDEs



• Some choices of one-dimensional quadrature rules upon which the Smolyak
grids can be constructed

– Newton-Cotes: nested equidistant abscissas by taking m1 = 1 and mi =
2i−1 + 1 for i > 1

- maximum degree of exactness is mI − 1

- can have (highly) negative weights causing numerical inaccuracies

– Clenshaw-Curtis: nested (same growth as above) Chebyshev points

- maximum degree of exactness is mI − 1

- nested grids keep the number of points down

– Gauss: non-nested abscissas

- maximum degree of exactness is 2mI − 1

– Gauss-Patterson: seems to have good promise

Results that follow are from papers of Nobile, Tempone, and Webster



• For the integral ∫

RN
exp

(
−

N∑

n=1

a2
n(yn − bn)

2

)
d~y

where an and bn are randomly sampled uniformly in (0, 1), we have the fol-
lowing errors for different quadrature rules

Comparisons of errors vs. number of quadrature points for different integration
rules



For N = 2 and M = 5: comparison of full tensor product grids with two Smolyak
grids



For N = 5, 11, and 21: comparison of full tensor product grids with Clenshaw-
Curtis-Smolyak grids for different levels, i.e., for different maximum number of
points in each direction



• There is more good news about Smolyak grids

• Recently, anisotropic Smolyak grids have been developed to take advantage
of anisotropies in the relative importance of random parameters

• For example, in the Karhunen-Loéve expansion for the colored noise case, the
random variables y1, y2, . . . are increasingly less influential

• Adaptive strategies have been developed to determine how to take advantage
of such anisotropies



Anisotropic Clenshaw-Curtis sparse grids for different levels of anisotropy; on the
left is the isotropic case; the anisotropic grids will yield the same accuracy as the
isotropic one, provided the integrand possesess the necessary anisotropy



L2 errors in the expected values of the solution of an SPDE using different
sampling strategies; Monte Carlo is always worst, anisotropic Smolyak best, with
Clenshaw-Curtis being better than Gauss; L is a correlation length for the colored
noise



Number of points needed to reduce to reduce the L2 errors in the expected values
of the solution of an SPDE by a factor of 104



• This shows the effectiveness of using stochastic sampling methods along with
modern sparse grid techniques



LOCAL POLYNOMIAL APPROXIMATING SPACES

IN STOCHASTIC GALERKIN METHODS



PIECEWISE POLYNOMIAL APPROXIMATING SPACES
FOR PARAMETER SPACE DISCRETIZATION

• Emulating finite element spatial discretization methods, one is led to

locally-supported piecewise polynomial spaces for approximating

functions of the random parameters

• One starts by “triangulating” Γ, the set of all possible values for the random
parameters {y1, . . . , yN}
– of course, unless one wants to get fancy, i.e.,

- use infinite elements or other methods for treating unbounded domains

we have to assume that Γ is bounded

– thus, we consider problems for which the Γn, n = 1, . . . , N , themselves
are bounded

- e.g., we cannot consider y1 to be a Gaussian random parameter since,

in this case, Γ1 = (−∞,∞)

- of course, we can considered truncated Gaussian parameters



• One then chooses ZK to be a space of piecewise polynomial functions of
degree less than of equal to M , defined with respect to the triangulation

– since ZK ⊂ Lqρ(Γ), one can choose M = 0, i.e., piecewise constant func-
tions

– however, one can choose higher degree piecewise polynomials as well

– one is free to choose discontinuous finite element spaces

• Unfortunately, the number of parameters N cannot be large

– even for a subdivision with two elements in each direction, N cannot be
big, e.g., K = 2N becomes prohibitively large very quickly



• Also, triangulating in high dimensions is not an easy task

– unless N is small, one can in practice only consider the case of Γ being
rectangular domain in R

N that is “triangulated” into smaller rectangular
domains

• One can choose a standard “finite element”-type basis set

– {ψk(~y)}Kk=1 consists of compactly supported piecewise polynomials

– if ZK is a discontinuous (with respect to the triangulation of Γ) finite
element space, then each basis function can be chosen to have support
over only a single element

– if ZK is a continuous (with respect to the triangulation of Γ) finite element
space, then each basis function can be chosen to have support over a small
patch of elements



• There is a really big difference between using discontinuous and continuous
finite element-type spaces to discretize in parameter space

• First, consider an example of a continuous finite element-type space

– Γ is a hypercube in N -dimensions (N = number of random parameters)

– Γ is subdivided into Nhypercubes smaller hypercubes

– ZK consists of tensor products of continuous piecewise polynomials of de-
gree less that or equal to M ≥ 1 in each parameter direction

– then, the number of probabilistic degrees of freedom is given by

K =
(
MN

1/N
hypercubes + 1

)N

– as always, the discrete problem involves JK degrees of freedom cj,k



• If we look at the JK × JK coefficient matrix for the discrete system (ema-
nating from a linear Poisson problem)

∫

Γ

∫

D
a(x; ~y)∇φj(x) · ∇φj′(x)ψk(~y)ψk′(~y)ρ(~y) dxd~y

we see that it is sparse with respect to both the spatial and probabilistic indices

– if the support of φj(x) and φj′(x) do not overlap, then the corresponding
matrix entry vanishes for all k and k′

– if the support of ψk(x) and ψk′(x) do not overlap, then the corresponding
matrix entry vanishes for all j and j ′

– this sparsity can be taken advantage of when one solves the system, espe-
cially if one uses an iterative method

– however, we still have a coupled (albeit sparse) JK × JK system to solve



• Now, consider an example of using discontinuous finite element-type spaces
to discretize in parameter space

– Γ is a hypercube in N -dimensions (N = number of random parameters)

– Γ is subdivided into Nhypercubes smaller hypercubes

– in each element, ZK consists of complete polynomials of degree less that
or equal to M ≥ 0

- no continuity is required across element boundaries

– then, the number of probabilistic degrees of freedom is given by

K = Nhypercubes

(
(N +M)!

N !M !

)

which can be larger than that obtained using continuous finite element-type
spaces

– as always, the discrete problem involves JK degrees of freedom cj,k



Piecewise polynomial approximation in parameter space

N = M = N
1/N
hypercubes = K = no. of probabilistic

no. maximal no. of degrees of freedom
random degree of intervals in continuous tensor discontinuous

parameters polynomials each direction product basis basis

3 0 5 – 125
10 – 1,000

1 5 216 500
10 1,331 4,000

2 5 1,331 1,250
10 9,261 10,000

5 0 5 – 3,125
10 – 100,000

1 5 7,776 18,750
10 161,051 600,000

2 5 161,051 65,625
10 4,084,101 2,100,000



• But, let’s examine the JK × JK coefficient matrix for the discrete system in
the discontinuous finite element case

∫

Γ

∫

D
a(x; ~y)∇φj(x) · ∇φj′(x)ψk(~y)ψk′(~y)ρ(~y) dxd~y

– again, we have the usual sparsity with respect to both the spatial indices

– but now, since the support of the probabilistic basis functions {ψk(~y)}Kk=1

is restricted to a single element in parameter space, we have that

- with respect to parameter space, the matrix is block diagonal

- there is a complete uncoupling of the probabilistic degrees of freedom



• Let Γhypercube denote one of the Nhypercubes elements in the subdivision of Γ
into smaller hypercubes

• Let Khypercube denote the probabilistic degrees of freedom in each element
Γhypercube, i.e.,

Khypercube =
(N +M)!

N !M !
=

K

Nhypercubes

• For each of the Nhypercubes elements Γhypercube, let

Ihypercube =
{
k ∈ {1, . . . , K} | supp

(
ψk(~y)

)
⊂ Γhypercube

}

– note that the cardinality of the index set Ihypercube is Khypercube



• Then, the coupled JK×JK system for the degrees of freedom cj,k uncouples
into Nhypercubes systems, each of size JKhypercube × JKhypercube

∫

D

∫

Γ

ρ(~y)S
( J∑

j=1

K∑

k=1

cjkφj(x)ψk(~y), ~y
)
T
(
φj′(x)

)
ψk′(~y) dxd~y

=

∫

D

∫

Γ

ρ(~y)φj′(x)ψk′(~y)f(~y) dxd~y

for j ′ ∈ {1, . . . , J} and k′ ∈ {1, . . . , K}

J∑

j=1

∑

k∈Ihypercube

cj,k

∫

Γhypercube

∫

D
a∇φj(x) · ∇φj′(x)ψk(~y)ψk′(~y)ρ(~y) dxd~y

=

∫

Γhypercube

∫

D
fφj′(x)ψk′(~y)ρ(~y) dxd~y

for all j ′ = 1, . . . , J and k′ ∈ Ihypercube



• The moral of the story is that, in practice, once pretty much has to settle for
piecewise constant approximations in parameter space

• Even for this case, N cannot be too large



PIECEWISE CONSTANT APPROXIMATING SPACES

• Let ∪Kk=1Γk denote a subdivision of Γ into disjoint, non-overlapping subsets

– we have that

∪Kk=1Γk = Γ and Γk ∩ Γk′ = ∅ if k 6= k′

• Let

ψk(~y) =

{
1 if ~y ∈ Γk
0 otherwise

for k ∈ {k, . . . , K}

and let

ZK = span {ψk}Kk=1

– thus, ZK is the space of piecewise constant functions with respect to the
partition ∪Kk=1Γk of Γ



• Clearly, ZK ⊂ Lpρ(Γ) so that it can be used as an approximating space for
discretizing parameter dependences of solution of an SPDE

• Recall that, after the invocation of the piecewise constant basis functions and
of a parameter-space quadrature rule, the stochastic Galerkin method has the
form

R∑

r=1

wrρ(~yr)ψk′(~yr)

∫

D
S
( J∑

j=1

K∑

k=1

cjkφj(x)ψk(~yr), ~yr

)
T
(
φj′(x)

)
dx

=
R∑

r=1

wrρ(~yr)ψk′(~yr)

∫

D
φj′(x)f(~yr) dx

for j ′ ∈ {1, . . . , J} and k′ ∈ {1, . . . ,K}

where {wr, ~yr}Rr=1 denotes the quadrature rule used to approximate integrals
over parameter space Γ



• Suppose we choose the quadrature rule so that

R = K and ~yr ∈ Γr for r ∈ {1, . . . , R = K}

– thus,

- each quadrature point ~yr belongs to one of the subsets Γk

and

- each subset contains one and only one of the quadrature points

– Clearly, we then have that

ψk(~yr) = δkr for all k, r ∈ {1, . . . , K = R}



• Then, the discretized stochastic Galerkin system reduces to

∫

D
S
(
ur(x), ~yr

)
T
(
φj′(x)

)
dx =

∫

D
φj′(x)f(~yr) dx

for j ′ ∈ {1, . . . , J} and r ∈ {1, . . . , R = K}

where ur(x) =
∑J

j=1 cjrφj(x)

– thus, we have total uncoupling of the spatial and parameter problems

– we solve a sequence of R = K problems of size J to determine {ur(x)}Rr=1

– then, the stochastic Galerkin-piecewise constant approximation of the so-
lution of the SPDE is simply given by

u(x; ~y) = ur(x) for ~y ∈ Γr



• Note that to determine the ur(x) one does not have to explicitly know the
weights wr or the subregions Γk

– one need only know the point set {~yk}Kk=1

• Note also that there is no restrictions on the point set {~yk}Kk=1

– one can, in fact, use any of the point sets we have encountered in discussing
stochastic sampling or stochastic collocation or stochastic Galerkin methods

• Clearly,
any stochastic sampling method can be viewed

as a stochastic Galerkin method



Approximations of quantities of interest

• It is natural to use the same quadrature rule

- to approximate a quantity of interest

as was used to

- approximate the integrals in discretized SPDE,

i.e., we choose
K = R = Q

{~yk}Kk=1 = {~yr}Rr=1 = {~yq}Qq=1 and {wr}Rr=1 = {wq}Qq=1

• We then have that

ψr(~yq) = δrq for all r, q ∈ {1, . . . ,K = R = Q}



• Using this in the expression for the approximation of a quantity of interest
results in

∫

Γ

G
(
u(x; ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqρ(~yq)G
(
uSC(x)

)

=

Q∑

q=1

wqρ(~yq)G
( R∑

r=1

ur(x)ψr(~yq)
)

=

Q∑

q=1

wqρ(~yq)G
(
uq(x)

)

i.e.,

∫

Γ

G
(
u(x; ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqρ(~yq)G
(
uq(x)

)

where, for q ∈ {1, . . . , Q = R = KLI}, uq(x) =
∑J

j=1 cjqφj(x)

is determined from∫

D
S
(
uq(x), ~yq

)
T
(
φj′(x)

)
dx =

∫

D
φj′(x)f(~yq) dx for j ′ ∈ {1, . . . , J}



• This all looks very familiar:

– it looks just the same as when we discussed stochastic collocation methods

– in fact, there is very little distinction between stochastic sampling and
stochastic collocation methods

– and, as we have seen, all stochastic sampling and stochastic collocation
methods can be derived from the stochastic Galerkin framework



ECONOMIES IN POLYNOMIAL CHAOS METHODS

FOR LINEAR SPDES



• Suppose that the SPDE is linear in the solution u

• For example, consider the case for which one has, after using a polynomial
chaos expansion method, the SPDE†

∫

D

∫

Γ

ρ(~y)a(x; ~y)S
( J∑

j=1

KPC∑

k=1

cjkφj(x)Ψk(~y)
)
T
(
φj′(x)

)
Ψk′(~y) dxd~y

=

∫

D

∫

Γ

ρ(~y)φj′(x)Ψk′(~y)f(x; ~y) dxd~y,

where now both S(·) and T (·) are linear

†Here, it is useful to follow the explicit dependences of the data functions a and f on the spatial variable

x



• Since, S(·) is linear and does not involve derivatives with respect to the

components of ~y, we have that

J∑

j=1

KPC∑

k=1

cjk

∫

D
S
(
φj(x)

)
T
(
φj′(x)

)∫

Γ

a(x; ~y)ρ(~y)Ψk(~y)Ψk′(~y) d~ydx

=

∫

D
φj′(x)

∫

Γ

f(x; ~y)ρ(~y)Ψk′(~y) d~ydx

• In this linear SPDE case, there are two economies possible in the

implementation of PC methods



PC-expansions of data functions

• We approximate the data functions a and f in the same way one approximates
the solution, i.e., using PC-expansions

– thus, we assume we have in hand the approximations

a(x; ~y) ≈
KPC∑

k′′=1

ak′′(x)Ψk′′(~y)

and

f(x; ~y) ≈
KPC∑

k′′=1

fk′′(x)Ψk′′(~y)



– substituting into the PC-discretization of the SPDE results in

KPC∑

k′′=1

J∑

j=1

KPC∑

k=1

cjk

(∫

D
ak′′(x)S

(
φj(x)

)
T
(
φj′(x)

)
dx

)

(∫

Γ

ρ(~y)Ψk(~y)Ψk′(~y)Ψk′′(~y) d~y

)

=

KPC∑

k′′=1

(∫

D
fk′′(x)φj′(x) dx

)(∫

Γ

ρ(~y)Ψk′(~y)Ψk′′(~y) d~y

)

=

∫

D
fk(x)φj′(x) dx

where the last equality follows from the orthonormality of the PC-basis
functions {Ψk(~y)}KPC

k=1

– orthogonality also results in some sparsity in the left-hand side that may be
taken advantage of when using iterative linear system solution methods

- for example, whenever k+ k′ 6= k′′ (and for similar situations involving

reversal of indices), the summand on the left-hand side vanishes



• Determining the PC-approximations of the data functions a and f may be
costly since one has to determine a different expansion for every spatial

quadrature point used in the finite element spatial discretization

– of course, if the data is independent of x, then only one expansion for each
data function is needed

• We again point out that the economies resulting from the use of PC-expansions
of the data functions are realizable only for linear SPDEs



KL-expansions of random data fields

• Now, suppose that the data functions a and f are Gaussian correlated random
fields

– then, we may determine the approximate KL-expansions

a(x; ~y) ≈
N∑

n=1

√
λnan(x)yn

and

f(x; ~y) ≈
N∑

n=1

√
σnfn(x)yn,

– {λn, an(x)}∞n=1 and {σn, fn(x)}∞n=1 are the eigenpairs of the covariance
functions for a and f , respectively

– recall that we have to assume (spherical) Gaussian variables since otherwise
~y is not a set of independent parameters



– substituting into the PC-discretization of the linear SPDE results in

J∑

j=1

KPC∑

k=1

cjk

N∑

n=1

√
λn

(∫

D
an(x)S

(
φj(x)

)
T
(
φj′(x)

)
dx

)

(∫

Γ

ynρ(~y)Ψk(~y)Ψk′(~y) d~y

)

=
N∑

n=1

√
σn

(∫

D
fn(x)φj′(x) dx

)(∫

Γ

ynρ(~y)Ψk′(~y) d~y

)

• Doubly orthogonal polynomials can be constructed† such that
∫

Γ

Ψk(~y)Ψk′(~y)ρ(~y) d~y = 0 and

∫

Γ

~yΨk(~y)Ψk′(~y)ρ(~y) d~y = 0

whenever k 6= k′

†The construction involves solving an eigenvalue problem for each polynomial



• As a result, the probabilistic and spatial degrees of freedom uncouple

– one can solve for the cij’s by solving KPC deterministic finite element
problems of size J instead of the single problem of size JKPC

• We again point out that the economies resulting from the use of KL-expansions
of the data random fields are realizable only for linear SPDEs

• Moreover, even for linear SPDEs, they are only possible for Gaussian

random fields since it is only in this case that the KL expansions are

linear in independent random parameters

• This should be contrasted with stochastic collocation methods and the

non-intrusive polynomial chaos methods for which the uncoupling of the

parameter and spatial degrees of freedom occurs for general, nonlinear SPDEs

– for stochastic collocation methods, the uncoupling also occurs for

general, non-Gaussian probability distributions



OPTIMAL CONTROL PROBLEMS FOR

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS



Optimization problems

• The state system

−∇ ·
(
κ(ω,x)∇u(ω,x)

)
= f(ω,x) in Ω ×D

u(ω,x) = 0 on Ω × ∂D

– ω is an elementary event in a probability space Ω

– x is a point in the spatial domain D

– κ(ω,x) and f(ω,x) are correlated random fields

– the solution u(ω,x) is also a random field



• Optimal control problem

– κ(ω,x) is given

– f(ω,x) to be determined

– given target function û(ω,x) may be deterministic or may be a random
field

– cost functional (E(·) denotes the expected value)

F(u, f ; û) = E
(
‖u(ω, ·) − û(ω, ·)‖2

L2(D) + α‖f(ω, ·)‖2
L2(D)

)

=⇒
find a state u and a control f such that F(u, f ; û) is

minimized subject to the state system being satisfied



• Parameter identification problem

– f(ω,x) is given

– κ(ω,x) to be determined

– given target function û(ω,x) may be deterministic or may be a random
field

– cost functional

K(u, κ; û) = E
(
‖u(ω, ·) − û(ω, ·)‖2

L2(D) + β‖∇κ(ω, ·)‖2
L2(D)

)

=⇒
find a state u and a coefficient function κ such that K(u, κ; û) is

minimized subject to the state system being satisfied



Results

• Existence of optimal solutions

• Existence of Lagrange multipliers

• Derivation of optimality system

– the adjoint or co-state system

−∇ ·
(
κ(ω,x)∇ξ(ω,x)

)
= −

(
u(ω,x) − û(ω,x)

)
in Ω ×D

ξ(ω,x) = 0 on Ω × ∂D

– optimality condition

E
(
− β∆κ + ∇u · ∇ξ

)
= 0



• Discretization of noise so that κ, f , û, and u depend on a parameter vector
~y(ω) = (y1(ω), . . . , yN(ω))T

– these parameters may be “knobs” in an experiment

– alternately, they could result from an approximation, e.g., a truncated
Karhunen-Loevy expansion, of a correlated random field

• finite element analyses of stochastic collocation method (in progress)

– isotropic and anisotropic Smolyak sparse grids are used as collocation points

• development of gradient method to effect optimization



Computational results

• choose target û = x(1 − x2) +
N∑

i=1

sin
(nπx
L

)
yn(ω)

• choose optimal κ = (1 + x3) +
N∑

i=1

cos
(nπx
L

)
yn(ω)

• set f = −∇ ·
(
κ∇û)

• choose initial κ = 1 + x

• assume yi uniform on [−1, 1] with E(yi) = 0 and E(yiyj) = δij

=⇒
given random f and û, identify the expectation of both the control E(κ)

and the state E(u) and compare with the exact statistical quantities



Left: expected value of initial (blue) and target (red) coefficient κ
Right: expected value of initial and target solution u

Number of random variables = N = 1



Left: expected value of optimal and target coefficient κ
Right: expected value of optimal and target solution u

Number of random variables = N = 1
Number of Monte Carlo samples = M = 1



Left: expected value of optimal and target coefficient κ
Right: expected value of optimal and target solution u

Number of random variables = N = 1
Number of Monte Carlo samples = M = 10



Left: expected value of optimal and target coefficient κ
Right: expected value of optimal and target solution u

Number of random variables = N = 1
Number of Monte Carlo samples = M = 100



Left: expected value of optimal and target coefficient κ
Right: expected value of optimal and target solution u

Number of random variables = N = 1
Number of anisotropic Smolyak collocation points = M = 1



Left: expected value of initial (blue) and target (red) coefficient κ
Right: expected value of initial and target solution u

Number of random variables = N = 5



Left: expected value of optimal and target coefficient κ
Right: expected value of optimal and target solution u

Number of random variables = N = 5
Number of Monte Carlo samples = M = 11



Left: expected value of optimal and target coefficient κ
Right: expected value of optimal and target solution u

Number of random variables = N = 5
Number of anisotropic Smolyak collocation points = M = 11



N MC AS

5 7e+03 801
10 9e+06 1581
20 8e+09 11561

For N random parameters, the number of Monte Carlo samples and the number
of anisotropic Smolyak collocation points required to reduce the original error in
the expected values of both the solution u and coefficient κ by a factor of 106




