Simulation based Optimization

Eldad Haber

August 18, 2008

Goals

- PDE optimization problems can be very involved.
- Try to explain the essence and possible pitfalls
- Encourage you to get into this cool! field
- Give some simple software to demonstrate these concepts

Introduction

- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Introduction

• Difficulties and PDE aspects

- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Introduction
- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Introduction
- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Introduction
- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Introduction
- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Introduction
- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Introduction
- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

▲□▶▲@▶▲≧▶▲≧▶ ≧ のへぐ

Simulation and Optimization

The (continuous) problem:

 $\begin{array}{ll} \min & \mathcal{J}(y,u) \\ \text{subject to} & c(y,u) = 0 \end{array}$

 $u \in \mathcal{U} \quad \text{model - control} \\ y \in \mathcal{Y} \quad \text{field - state} \\ \mathcal{J} : [\mathcal{U} \times \mathcal{Y}] \to \mathcal{R}^1 \\ c : [\mathcal{U} \times \mathcal{Y}] \to \widehat{\mathcal{Y}}$

Simulation and Optimization

The (discrete) problem:

 $\begin{array}{ll} \min & \mathcal{J}(y,u) \\ \text{subject to} & c(y,u) = 0 \end{array}$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

 $u \in \mathcal{R}^{n} \mod - \text{ control}$ $y \in \mathcal{R}^{m} \quad \text{field - state}$ $\mathcal{J} : \mathcal{R}^{m+n} \to \mathcal{R}^{1}$ $c : \mathcal{R}^{m+n} \to \mathcal{R}^{m}$

Example I

Seismic inversion Clerbout 2000

min
$$\mathcal{J} = \frac{1}{2} \sum_{i} \|Q_{j}y_{j} - d\|^{2} + \frac{\alpha}{2} \|Lu\|^{2}$$

s.t. $c(y_{j}, u) = \Delta_{h}y_{j} + k^{2}u \odot y_{j} = 0$ $j = 1, \dots, n_{s}$

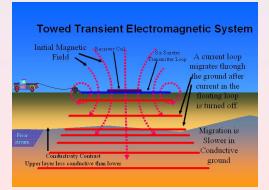


Example II

Electromagnetic inversion Newman 1996

min
$$\mathcal{J} = \frac{1}{2} \sum_{j} \|Q_{j}y_{j} - d\|^{2} + \frac{\alpha}{2} \|Lu\|^{2}$$

s.t. $c(y_j, u) = (\nabla \times \mu^{-1} \nabla \times)_h y_j + i\omega S(u) y_j = 0$ $j = 1, \dots, n_s$



◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Example III

Image Processing - transprot Modersitzki 2003

$$\begin{aligned} \min \quad & \mathcal{J} = \frac{1}{2} \|y(T, x) - d(x)\|^2 + \alpha S(u) \\ \text{subject to} \quad & y_t + u^\top \nabla y = 0 \qquad y(0, x) = y_0(x) \end{aligned}$$

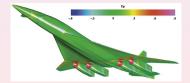
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Example IV

Shape Optimization Haslinger & Makinen 2003

min
$$\mathcal{J} = g(y)$$

subject to $c(y, u) = \Delta_h y - f(u) = 0$



Optimization with O/PDE constraint is common practice in many applications for many years

- Geophysical inversion for conductivity (Schlumberger 1912)
- **Other fields:** Flow design, VLSI, trajectory planning, chemical reaction control, ... (starting in the 30's and on)

However,

- better computer architecture \rightarrow larger simulations
- development in numerical PDE's \rightarrow complex models

Optimization with O/PDE constraint is common practice in many applications for many years

- Geophysical inversion for conductivity (Schlumberger 1912)
- Other fields: Flow design, VLSI, trajectory planning, chemical reaction control, ... (starting in the 30's and on)

However,

- better computer architecture \rightarrow larger simulations
- development in numerical PDE's \rightarrow complex models

Optimization with O/PDE constraint is common practice in many applications for many years

- Geophysical inversion for conductivity (Schlumberger 1912)
- Other fields: Flow design, VLSI, trajectory planning, chemical reaction control, ... (starting in the 30's and on)

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

However,

- better computer architecture \rightarrow larger simulations
- development in numerical PDE's \rightarrow complex models

Optimization with O/PDE constraint is common practice in many applications for many years

- Geophysical inversion for conductivity (Schlumberger 1912)
- Other fields: Flow design, VLSI, trajectory planning, chemical reaction control, ... (starting in the 30's and on)

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

However,

- better computer architecture \rightarrow larger simulations
- development in numerical PDE's \rightarrow complex models

Before we do anything

All you got to do is think Pooh Bear

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Our framework: Discretize-Optimize

min $\mathcal{J}(y, u)$ s.t c(y, u) = 0

Optimize-Discretize: Can yield inconsistent gradients of the objective functionals. The approximate gradient obtained in this way is not a true gradient of anything–not of the continuous functional nor of the discrete functional.

Discretize-Optimize *Requires to differentiate computational facilitators such as turbulence models, shock capturing devices or outflow boundary treatment.*

M. Gunzburger

Want to use the wealth of optimization algorithms

Simulation and Optimization

• Need to discretize the PDE (constraint)

• Parameters change - modeling need to be flexible

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• Need to optimize - derivatives

Stability with respect to parameters

$$c(y,u)=y_t-uy_{xx}$$

Explicit vs Implicit

Explicit:

$$c_h(y_h, u_h) = y_h^{n+1} - y_h^n - u_h \odot \frac{\delta t}{\delta x^2} L y_h^n = 0$$

Stability with respect to parameters

- Stability requires $u_h \delta t \approx \delta x^2$
- do not know $u \rightarrow$ hard to guarantee stability.
- Code has to make sure discretization is compatible
- Possible solution: implicit methods are unconditionally stable

・ロト・(日)・(日)・(日)・(日)

Stability with respect to parameters

$$c(y, u) = y_t - uy_{xx}$$

Explicit vs Implicit

Implicit:

$$c_h(y_h, u_h) = y_h^{n+1} - y_h^n - u_h \odot \frac{\delta t}{\delta x^2} L y_h^{n+1} = 0$$

No free lunch, need to invert a matrix

Differentiability of the discretization

$$c(y,u) = \epsilon y_{xx} + u y_x = 0$$

Common discretization, upwind

$$\frac{\epsilon}{h^2}(y_{j+1} - 2y_j + y_{j-1}) + \frac{1}{h}(\max(u_j, 0)(y_j - y_{j-1}) + \min(u_j, 0)(y_{j+1} - y_j)) = 0$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The continuous problem is continuously differentiable w.r.t u

 $\epsilon y_{xx} + u y_x = 0$

The discrete problem is not differentiable w.r.t u_h

$$\frac{\epsilon}{h^2}(y_{j+1} - 2y_j + y_{j-1}) + \frac{1}{h}(\max(u_j, 0)(y_j - y_{j-1}) + \min(u_j, 0)(y_{j+1} - y_j)) = 0$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Even more difficult for flux limiters

The continuous problem is continuously differentiable w.r.t u but discrete problem is not

 $\epsilon y_{xx} + u y_x = 0$

No magic solution for this one - can pose real difficulty for the DO approach

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Nonlinearity of the discretization "the mother of all elliptic problems" Dendy 1991

 $-\nabla \cdot (u\nabla y) = q$

Finite volume discretization

$$A(u_h)y_h = \overbrace{D^{\top}}^{-\nabla} \underbrace{\operatorname{diag}\left(N(u_h)\right)}_{u} \overbrace{D}^{\nabla} y_h = q_h$$

where $N(u_h) = (A_v u_h^{-1})^{-1}$ harmonic averaging

The continuous problem is bilinear but discrete problem is more nonlinear.

Nonlinearity of the discretization "the mother of all elliptic problems" Dendy 1991

 $-\nabla \cdot (u\nabla y) = q$

Finite volume discretization

$$A(u_h)y_h = \overbrace{D^{\top}}^{-\nabla} \underbrace{\operatorname{diag}\left(N(u_h)\right)}_{u} \overbrace{D}^{\nabla} y_h = q_h$$

where $N(u_h) = (A_v u_h^{-1})^{-1}$ harmonic averaging The continuous problem is bilinear but discrete problem is more nonlinear.

Nonlinearity of the discretization

 $-\nabla \cdot (u\nabla y) = q$

Finite volume discretization

$$A(u_h)y_h = \overbrace{D^{\top}}^{-\nabla} \underbrace{\operatorname{diag}\left(N(u_h)\right)}_{u} \underbrace{\overbrace{D}}^{\nabla} y_h = q_h$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Differentiate the discrete approximation rather than the continuous one

Before we solve

- PDE optimization problems are different because PDE's are different
- To make progress need to classify them. Use similar tools for similar problems

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• Need good model problems to experiment with

Discretization - summary

Classify PDE's using 2 categories

- PDE's that are smooth enough such that the DO approach works well
- PDE's that require special attention in their discretization, need OD

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Although we look at the PDE through the discretization these properties are intrinsic to the PDE itself

Discretization - summary

Classify PDE's using 2 categories

- Smooth PDE's such that the DO approach works well
 - Elliptic problems
 - Parabolic problems
 - Smooth hyperbolic problems
 - Some nonlinear problems
- PDE's require special attention in their discretization, need OD

- Hyperbolic problems with nonsmooth initial data
- Nonlinear problems with shocks
- Other Nonlinear problems e.g, Eikonal and alike

Accuracy issues

- For many problems, constraint must be taken seriously (physics) but the optimization less so (noise, regularization)
- In many cases the control-model change little after the first reduction of the objective function

Example:

min
$$||u - b||^2 + \alpha T V_{\epsilon}(u)$$

s.t $\nabla \cdot u \nabla y = q$

where

$$TV_{\epsilon}(t) = \begin{cases} \frac{1}{2\epsilon}t^2 + \frac{\epsilon}{2} & |t| \le \epsilon\\ |t| & |t| > \epsilon \end{cases}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

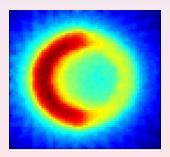
Accuracy issues

Example:

min
$$||u - b||^2 + \alpha T V_{\epsilon}(u)$$

s.t $\nabla \cdot u \nabla y = q$

 $\epsilon = 10^0$



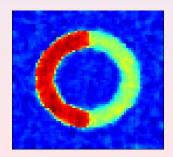
・ロト・日本・モート・モート・モークへで

Accuracy issues

Example:

 $\min_{\substack{\|u-b\|^2 + \alpha TV_{\epsilon}(u) \\ \text{s.t.}}} \|u-b\|^2 + \alpha TV_{\epsilon}(u)$

 $\epsilon = 10^{-1}$



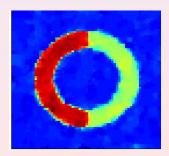
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の९@

Accuracy issues

Example:

min $||u - b||^2 + \alpha T V_{\epsilon}(u)$ s.t $\nabla \cdot u \nabla y = q$

 $\epsilon = 10^{-2}$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Optimization Can we build it? Yes we can! Bob the builder

Solving the optimization problem

Constrained approach, solve

$$\begin{array}{ll} \min & \mathcal{J}(y,u) \\ \text{subject to} & c(y,u) = 0 \end{array}$$

Unconstrained approach, eliminate y to obtain

min $\mathcal{J}(y(u), u)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Constrained vs. unconstrained

Example: c(y, u) = A(u)y - q = 0Constrained approach,

min	$\mathcal{J}(y,u)$
subject to	A(u)y = q

Unconstrained approach,

min $\mathcal{J}(A(u)^{-1}q, u)$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Invertibility of A(u)
- Cost of evaluating the ObjFun.

Constrained vs. unconstrained

Example: c(y, u) = A(u)y - q = 0Constrained approach,

min	$\mathcal{J}(y,u)$
subject to	A(u)y = q

Unconstrained approach,

min $\mathcal{J}(A(u)^{-1}q, u)$

- Invertibility of A(u)
- Cost of evaluating the ObjFun.

Constrained vs Unconstrained

Constrained approach,

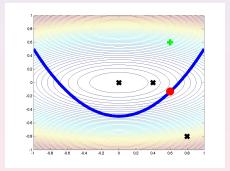
- Saddle point problem
- Algorithmically hard
- No need to solve the constraints until the end

Unconstrained approach

- Simple from an optimization standpoint
- Need to solve the constraint equation PDE
- Becomes even messier for nonlinear PDE's

• But: always feasible!!!

Constrained vs Unconstrained



Sequential Quadratic Programming

The Lagrangian

$$\mathcal{L} = \mathcal{J}(y, u) + \lambda^{\top} M c(y, u)$$

where

$$\lambda^{\top} M c(y, u) \approx \int_{\Omega} \lambda(x) c(y(x), u(x)) \, dx$$

Differentiate to obtain the Euler Lagrange equations (Assume M = I)

adjoint
$$\mathcal{J}_{y} + c_{y}^{\top}\lambda = 0$$

state $\mathcal{J}_{u} + c_{u}^{\top}\lambda = 0$
constraint $c(y, u) = 0$

Computing Jacobians

- Need to compute c_y, c_u
- In many cases c_y available (used for the forward)
- Need to compute c_u , calculus with matrices helps

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• In some cases c_y not used for the forward

Jacobians, example I:Hydrology, electromagnetics

$$c(y, u) = A(u)y - q = D^{\top} \operatorname{diag}((A_v u^{-1})^{-1})Dy - q$$

$$c_{y} = A(u)$$

$$c_{u} = \frac{\partial}{\partial u} \left[D^{\top} \operatorname{diag}((A_{v}u^{-1})^{-1}) Dy \right]$$

Note that

Then

$$D^{\top} \operatorname{diag}((A_{\nu}u^{-1})^{-1})Dy = D^{\top} \operatorname{diag}(Dy) \ (A_{\nu}u^{-1})^{-1}$$

therefore

$$c_u = D^{\top} \operatorname{diag}(Dy) \operatorname{diag}((A_v u^{-1})^{-2}) A_v \operatorname{diag}(u^{-2})$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Jacobians, example II : CFD

NS equations

$$\Delta_h y + M(y)y + \nabla_h p = u$$
$$\nabla_h \cdot y_k = 0$$

Where $M(y) \approx \nabla y$ Typical solution through fixed point iteration [Elman, Silvester, Wathen]

$$\Delta_h y_k + M(y_{k-1})y_k + \nabla_h p = u$$
$$\nabla_h \cdot y_k = 0$$

Thus to compute c(y) need extra calculation

Jacobians, example II : CFD

In general

c(y,u)=0

Use some iteration to solve (not Newton's method) From an optimization theory we need the Jacobians c_y, c_p of the constraint otherwise cannot guarantee convergence

Open Question: Can we get away with less?

Two alternative viewpoints

adjoint state constraint

 $\mathcal{J}_y + c_y^\top \lambda = 0$ $\mathcal{J}_u + c_u^\top \lambda = 0$ c(y, u) = 0

A system of nonlinear PDE's use PDE techniques (MG, FAS, ...) Necessary conditions use optimization framework (reduce Hessian ...)

MG(linear) MGOPT [Luis & Nash]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Two alternative viewpoints

A system of nonlinear PDE's use PDE techniques (MG, FAS, ...) Necessary conditions use optimization framework (reduce Hessian ...)

Our approach: Use PDE techniques as solvers Use optimization methods for a guide

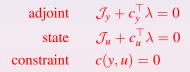
Two alternative viewpoints

A system of nonlinear PDE's use PDE techniques (MG, FAS, ...) Necessary conditions use optimization framework (reduce Hessian ...)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Our approach: Use PDE techniques as solvers Use optimization methods for a guide

Solving the Euler Lagrange equations



Approximate the Hessian and solve at each iteration the KKT system

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^{\top} \\ \mathcal{L}_{yu}^{\top} & \mathcal{L}_{uu} & c_u^{\top} \\ c_y & c_u & \mathbf{O} \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \mathrm{rhs}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Solving the Euler Lagrange equations

In many applications approximate the Hessian by

$$\begin{pmatrix} \mathcal{J}_{yy} & \mathbf{O} & c_y^\top \\ \mathbf{O} & \mathcal{J}_{uu} & c_u^\top \\ c_y & c_u & \mathbf{O} \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \mathrm{rhs}$$

Gauss-Newton SQP [Bock 89]

If \mathcal{J}_{yy} and \mathcal{J}_{uu} are positive semidefinite then the reduced Hessian is likely to be SPD.

Solving the KKT system

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^\top \\ \mathcal{L}_{yu}^\top & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & O \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \text{rhs}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Direct methods are (almost) out of the question!
- Multigrid methods for the KKT system
- The reduced Hessian
- Preconditioners

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^\top \\ \mathcal{L}_{yu}^\top & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & O \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \text{rhs}$$

- Multigrid is a good tool to study the problem
- May use other techniques at the end
- Learn about the discretization/solver

Ascher & H. 2000, Kunish & Borzi 2003

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^\top \\ \mathcal{L}_{yu}^\top & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & O \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \text{rhs}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 めんで

- Check ellipticity of the continuous problem
- Check h-ellipticity of the discrete problem

Multigrid h-ellipticity

Look at the symbol Ta'asan

$$\widehat{H}(heta) = egin{pmatrix} \widehat{\mathcal{L}}_{yy} & \widehat{c}_y^* \ \widehat{\mathcal{L}}_{uu} & \widehat{c}_u^* \ \widehat{c}_y & \widehat{c}_u & 0 \end{pmatrix}$$

Compute the determinant

$$|\det(H)(\theta)| = \widehat{\mathcal{L}}_{yy}\widehat{c}_u^*\widehat{c}_u + \widehat{\mathcal{L}}_{uu}\widehat{c}_y^*\widehat{c}_y$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへぐ

Look at high frequencies

Example

Load problem

min
$$\frac{1}{2} ||y - d||^2 + \frac{\alpha}{2} ||Lu||^2$$
 s.t $\Delta y - u = 0$

$$\widehat{H}(heta) = egin{pmatrix} 1 & \widehat{\Delta}_h \ lpha \widehat{L} & 1 \ \widehat{\Delta} & 1 & 0 \end{pmatrix}$$

Compute the determinant of the symbol $(\widehat{\Delta}_h = h^{-2}2(\cos(\theta_1) + \cos(\theta_2) - 2))$

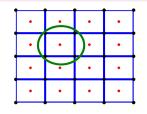
$$|\det(H)(\theta)| = 1 + \alpha \widehat{L}\widehat{\Delta}_h^2$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Look at high frequencies

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^\top \\ \mathcal{L}_{yu}^\top & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & O \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \text{rhs}$$

Box smoothing - solve the equation locally



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^\top \\ \mathcal{L}_{yu}^\top & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & O \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \text{rhs}$$

Need:

- smoother box smoothing, others?(in progress)
- coarse grid approximation
- solution on the coarsest grid (may not be so coarse)

- Case by case development
- Hard to generalize, even when BC change
- May worth the effort if the same type of problem is repeatedly solved

Solving the KKT system - The reduced Hessian

Nocedal & Wright 1999

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathbf{O} & c_y^\top \\ \mathbf{O} & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & \mathbf{O} \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \mathrm{rhs}$$

• Eliminate *s*_y

 $c_y s_y + c_u s_u = \dots$

- Eliminate s_{λ} $\mathcal{L}_{yy}s_u + c_u^{\top}s_{\lambda} = \dots$
- Obtain an equation for s_u

$$H_r s_u = \underbrace{\left(c_u^\top c_y^{-\top} \mathcal{L}_{yy} c_y^{-1} c_u + \mathcal{L}_{uu}\right)}_{i = 1} s_u = \text{rhs}$$

the reduced Hessian

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

The reduced Hessian in Fourier space

Use LFA to study the properties of the reduced Hessian. Load problem

min
$$\frac{1}{2} ||y - d||^2 + \frac{\alpha}{2} ||Lu||^2$$
 s.t $\Delta y - u = 0$

$$\widehat{H}(heta) = egin{pmatrix} 1 & \widehat{\Delta}_h \ lpha \widehat{L} & 1 \ \widehat{\Delta} & 1 & 0 \end{pmatrix}$$

The symbol of the reduced Hessian $(\widehat{\Delta}_h = h^{-2}2(\cos(\theta_1) + \cos(\theta_2) - 2))$

$$\widehat{\Delta}_h^{-2} + \alpha \widehat{L}$$

Very unstable for small α

More on the reduced Hessian method

 $H_{r}s_{u} = \left(c_{u}^{\top}c_{y}^{-\top}\mathcal{L}_{yy}c_{y}^{-1}c_{u} + \mathcal{L}_{uu}\right)s_{u} = \text{rhs}$

- For QP with linear constraints the reduced Hessian is equivalent to the Hessian of the unconstrained approach
- The reduced Hessian represents an integro-differential equation

• Efficient solvers for the reduced Hessian is an open question, recent work [Biros & Dugan]

Even more on the reduced Hessian method

The reduced Hessian can be viewed as a block factorization of the (permuted) KKT system H. & Ascher 2001, Biros & Gahttas 2005, Dollar & Wathen 2006

$$\begin{pmatrix} c_{y} & \mathbf{O} & c_{u} \\ \mathcal{L}_{yy} & c_{y}^{\top} & \mathbf{O} \\ \mathbf{O} & c_{u} & \mathcal{L}_{uu} \end{pmatrix}^{-1} = \\ \begin{pmatrix} c_{y}^{-1} & \mathbf{O} & -JH_{r}^{-1} \\ \mathbf{O} & c_{y}^{-\top} & -c_{y}^{-\top}JH_{r}^{-1} \\ \mathbf{O} & \mathbf{O} & H_{r}^{-1} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{I} & \mathbf{O} & \mathbf{O} \\ c_{y}^{-1} & \mathbf{I} & \mathbf{O} \\ -J^{\top}c_{y}^{-1} & -J^{\top} & \mathbf{I} \end{pmatrix}$$

 $J = c_y^{-1} c_u$ $H_r = J^\top J + \mathcal{L}_{uu}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Solve

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^\top \\ \mathcal{L}_{yu}^\top & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & \mathbf{O} \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \mathrm{rhs}$$

Using some Krylov method (MINRES, SYMQMR, GMRES, ...)

- Indefinite
- Highly ill-conditioned
- A must: Preconditioner

Many of the preconditioners developed for general optimization problems are not useful

Solve

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^\top \\ \mathcal{L}_{yu}^\top & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & \mathbf{O} \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \text{rhs}$$

Using some Krylov method (MINRES, SYMQMR, GMRES, ...)

- Indefinite
- Highly ill-conditioned
- A must: Preconditioner

Many of the preconditioners developed for general optimization problems are not useful

Solve

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^\top \\ \mathcal{L}_{yu}^\top & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & \mathbf{O} \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \text{rhs}$$

Using some Krylov method (MINRES, SYMQMR, GMRES, ...)

- Indefinite
- Highly ill-conditioned
- A must: Preconditioner

Many of the preconditioners developed for general optimization problems are not useful

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^\top \\ \mathcal{L}_{yu}^\top & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & \mathbf{O} \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \mathrm{rhs}$$

Preconditioners based on the approximate reduced Hessian method H.

& Ascher 2001, Biros & Ghattas 2005

Preconditioners based on the reduced Hessian method

$$\begin{pmatrix} c_y & \mathbf{0} & c_u \\ \mathcal{L}_{yy} & c_y^\top & \mathbf{0} \\ \mathbf{0} & c_u & \mathcal{L}_{uu} \end{pmatrix}^{-1} \approx \\ \begin{pmatrix} \widehat{c}_y^{-1} & \mathbf{0} & -\widehat{J}H_r^{-1} \\ \mathbf{0} & \widehat{c}_y^{-\top} & -\widehat{c}_y^{-\top}\widehat{J}\widehat{H}_r^{-1} \\ \mathbf{0} & \mathbf{0} & \widehat{H}_r^{-1} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \widehat{c}_y^{-1} & \mathbf{I} & \mathbf{0} \\ -\widehat{J}^\top \widehat{c}_y^{-1} & -\widehat{J}^\top & \mathbf{I} \end{pmatrix}$$

 $\widehat{J} = \widehat{c}_y^{-1} c_u$ $\widehat{H}_r = ??$

Preconditioners based on the reduced Hessian method

$$\begin{pmatrix} c_{\mathbf{y}} & \mathbf{0} & c_{u} \\ \mathcal{L}_{\mathbf{yy}} & c_{\mathbf{y}}^{\top} & \mathbf{0} \\ \mathbf{0} & c_{u} & \mathcal{L}_{uu} \end{pmatrix}^{-1} \approx \begin{pmatrix} \widehat{c}_{\mathbf{y}}^{-1} & \mathbf{0} & -\widehat{c}H_{\mathbf{r}}^{-1} \\ \mathbf{0} & \widehat{c}_{\mathbf{y}}^{-\top} & -\widehat{c}_{\mathbf{y}}^{-\top}\widehat{T}\widehat{H}_{\mathbf{r}}^{-1} \\ \mathbf{0} & \mathbf{0} & \widehat{H}_{\mathbf{r}}^{-1} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \widehat{c}_{\mathbf{y}}^{-1} & \mathbf{I} & \mathbf{0} \\ -\widehat{c}^{\top}\widehat{c}_{\mathbf{y}}^{-1} & -\widehat{c}^{\top} & \mathbf{I} \end{pmatrix}$$

Approximating c_y and H_r

- \hat{c}_y standard PDE approximation
- \hat{H}_r BFGS, other QN, approximate inverse, ...
- Can prove mesh independence under some assumptions

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Other Preconditioners

Other approaches

- Domain Decomposition, [Heinkenschloss 02]
- Augmented Lagrangian, [Greif & Golub 03]
- Schur complement based
- See excellent review paper by Benzi Everything you wanted to know about KKT systems but was afraid to ask

No magic bullet, application dependent (as they should be!)

Taking a step

$\min \mathcal{J}(y, u) \quad \text{s.t } c(y, u) = 0$

Guess u_0, y_0

while not converge

• Evaluate $\mathcal{J}_k, c_k, \nabla \mathcal{L}_k, c_y, c_u$ and an approximation to the Hessian (the KKT system)

- Approximately solve the KKT system for a step
- Take a (guarded) step
- Check if need to project to the constraint

while not converge

• Evaluate $\mathcal{J}_k, c_k, \nabla \mathcal{L}_k, c_y, c_u$ and an approximation to the Hessian (the KKT system)

- Approximately solve the KKT system for a step *To what tolerance?*
- Take a (guarded) step How should we judicially pick a step?
- Check if need to project to the constraint why and when should we project?

while not converge

• Evaluate $\mathcal{J}_k, c_k, \nabla \mathcal{L}_k, c_y, c_u$ and an approximation to the Hessian (the KKT system)

- Approximately solve the KKT system for a step *To what tolerance*?
- Take a (guarded) step How should we judicially pick a step?
- Check if need to project to the constraint why and when should we project?

while not converge

• Evaluate $\mathcal{J}_k, c_k, \nabla \mathcal{L}_k, c_y, c_u$ and an approximation to the Hessian (the KKT system)

- Approximately solve the KKT system for a step *To what tolerance?*
- Take a (guarded) step *How should we judicially pick a step?*
- Check if need to project to the constraint *why and when should we project?*

while not converge

• Evaluate $\mathcal{J}_k, c_k, \nabla \mathcal{L}_k, c_y, c_u$ and an approximation to the Hessian (the KKT system)

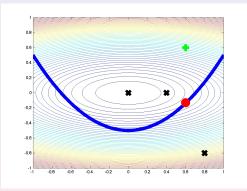
- Approximately solve the KKT system for a step *To what tolerance?*
- Take a (guarded) step *How should we judicially pick a step?*
- Check if need to project to the constraint *why and when should we project?*

How well should we solve the KKT system?

- treat the problem as a system of nonlinear equations we can use inexact Newton's theory ignore optimization aspects
- for traditional SQP algorithms require accurate solutions
- Can we use SQP with inaccurate solution of the sub-problem? Leibfritz & Sachs 1999, Heinkenschloss & Vicente 2001

 Recent work by Curtis Nocedal and Bird on inexact SQP methods, based on a penalty function

Choosing a step

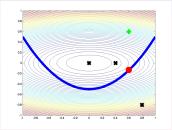


▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The dilemma

- Should I decrease the Objective?
- Should I become more feasible?

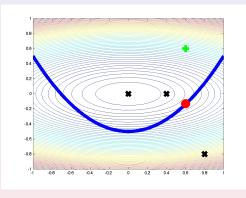
Choosing a step



merit function approach: $\mathcal{L}_{\mu} = f(y, u) + \mu h(c(y, u))$

- Use the L_1 or L_2 merit functions
- Disadvantage need an estimate of the Lagrange multipliers

Choosing a step



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ.

Filter Fletcher & Leyffer 2002

- either reduce the objective or
- improve feasibility
- No need for Lagrange multipliers

Projecting back to the constraint

• In most cases feasibility is much more important than optimality

- Project the solution when getting close or before termination
- Can help with convergence (secondary correction)

Projecting back to the constraint

• In most cases feasibility is much more important than optimality

- Project the solution when getting close or before termination
- Can help with convergence (secondary correction)

Projecting back to the constraint

• In most cases feasibility is much more important than optimality

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Project the solution when getting close or before termination
- Can help with convergence (secondary correction)

Projecting back to the constraint - beyond optimization

- Accuracy of the optimization can be low
- Accuracy of the PDE should be high
- When should we project?

Multilevel

- Multilevel approach is computational effective
- In many cases, avoid local minima
- Help choosing parameters (e.g regularization, interior point)

▲□▶▲@▶▲≧▶▲≧▶ 差 のへぐ

Hard to prove

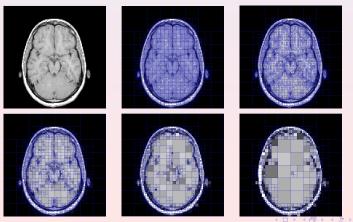
The problems we solve have an underline continuous structure. Use this structure for continuation

Main idea: Solution of the problem on a coarse grid can approximate the problem on a fine grid.

Use coarse grids to evaluate parameters within the optimization. More, Burger, Ascher & H., H. & Modersitzki, H., H. & Benzi

Adaptive Multilevel Grid Sequencing

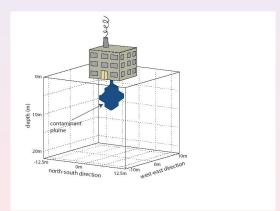
- Rather than refine everywhere, refine only where needed H., Heldman & Ascher [07], Bungrath [08]
- Requires data structures, discretization techniques, refinement techniques
- Can save an order of magnitude in calculation



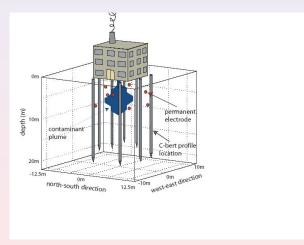
Examples And this is how its really done Dora the explorer

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

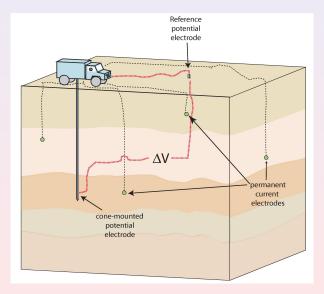
Joint project with R. Knight and A. Pidlovski, Stanford Environmental Geophysics Group



◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●



◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

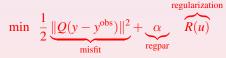
The mathematical problem

The constraint (PDE)

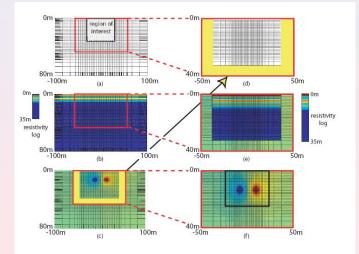
 $c(y,u) = \nabla \times \mu^{-1} \nabla \times y - i\omega \sigma y = i\omega s_i \quad j = 1...k$

(with some BC)

The Objective function

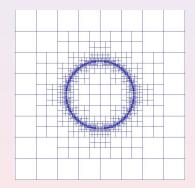


Discretization - I



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○

Discretization - II



Discretization

use $128 \times 128 \times 64$ cells # of states = $k \times \#$ of controls

In practical experiments $k \approx 10 - 1000$

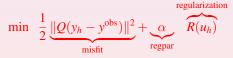
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

The discrete mathematical problem

The constraint (PDE)

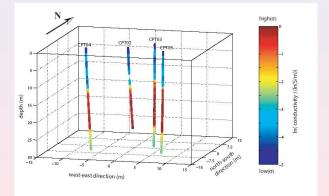
$$c_h(y_h, u_h) = A(u_h)y_h - q_h = D^T S(u_h)Dy_h - q_h = 0$$

The Objective function



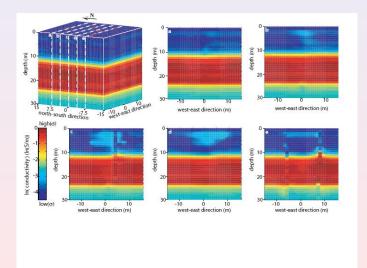
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The Data - 63 sources



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

The Inversion



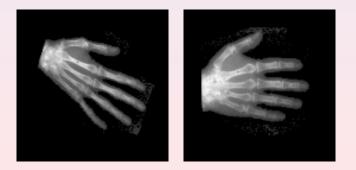
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Application - Image Registration

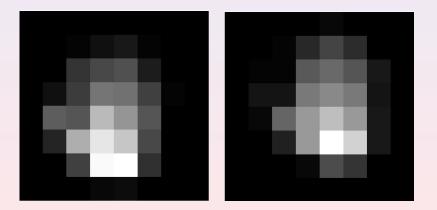
Joint work with S. Heldmann and J. Modesitzki, Lübeck, Germany

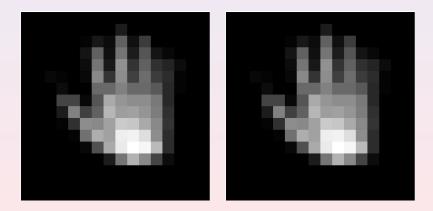
min
$$\frac{1}{2} \|y(T) - R\|^2 + \frac{1}{2} \alpha S(u)$$

s.t $y_t + u^\top \nabla y = 0$ $y(0) = y_0$

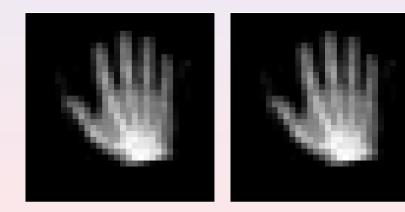


◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

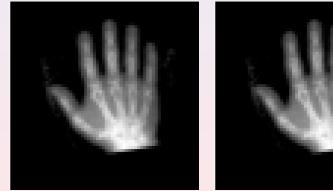


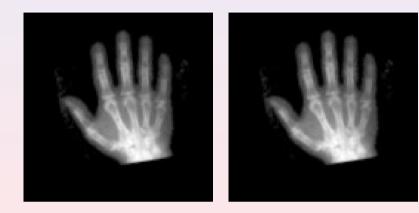


(日)



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@





Model Problems

Sometimes, you can learn a lot from small things Thomas the engine

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Goal

- PDE optimization problems are difficult to implement
- Suggest some *simple* model problems we can experiment with
- Develop optimization algorithms, preconditioners, grounded to reality
- Will not cover all PDE-optimization problems but not all PDE's are Poisson equation either
- Much of the development in PDE's was motivated by the 5 point stencil!

The problems/implementation

Parameter identification problems

- Assume smooth enough problems (discretize optimize not a problem)
- Consider elliptic, parabolic and hyperbolic problems
- Use regular grids and finite difference/volume for simplicity

- Code in matlab
- Modular, BYOPC (bring your own preconditioner)

The problems

The PDE's

• Elliptic

$$\nabla \cdot \exp^u \nabla y - q = 0; \quad \mathbf{n} \cdot y = 0$$

• Parabolic

$$y_t - \nabla \cdot \exp^u \nabla y = 0; \quad \mathbf{n} \cdot y = 0; \quad y(x,0) = y_0$$

• Hyperbolic

 $y_t - \vec{u}^\top \nabla y = 0; \quad \mathbf{n} \cdot y = 0; \quad y(x,0) = y_0$

▲□▶▲@▶▲≧▶▲≧▶ 差 のへぐ

The code

Download:

http://www.mathcs.emory.edu/ haber/code.html

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Very simple to get started (matlab demo ...)

Takes some time to run, elliptic problem on n^3 grid has $6n^3 + n^3 + 6n^3$ variables

Introduction

- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Introduction

• Difficulties and PDE aspects

- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

- Introduction
- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

- Introduction
- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

- Introduction
- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Introduction
- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

▲□▶▲□▶▲□▶▲□▶ □ のへで

- Introduction
- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>