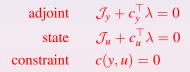
Solving the Euler Lagrange equations



Approximate the Hessian and solve at each iteration the KKT system

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^{\top} \\ \mathcal{L}_{yu}^{\top} & \mathcal{L}_{uu} & c_u^{\top} \\ c_y & c_u & \mathbf{O} \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \mathrm{rhs}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Solving the Euler Lagrange equations

In many applications approximate the Hessian by

$$\begin{pmatrix} \mathcal{J}_{yy} & \mathbf{O} & c_y^\top \\ \mathbf{O} & \mathcal{J}_{uu} & c_u^\top \\ c_y & c_u & \mathbf{O} \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \mathrm{rhs}$$

Gauss-Newton SQP [Bock 89]

If \mathcal{J}_{yy} and \mathcal{J}_{uu} are positive semidefinite then the reduced Hessian is likely to be SPD.

Solving the KKT system

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^\top \\ \mathcal{L}_{yu}^\top & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & O \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \text{rhs}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Direct methods are (almost) out of the question!
- Multigrid methods for the KKT system
- The reduced Hessian
- Preconditioners

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^\top \\ \mathcal{L}_{yu}^\top & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & O \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \text{rhs}$$

- Multigrid is a good tool to study the problem
- May use other techniques at the end
- Learn about the discretization/solver

Ascher & H. 2000, Kunish & Borzi 2003

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^\top \\ \mathcal{L}_{yu}^\top & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & O \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \text{rhs}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 めんで

- Check ellipticity of the continuous problem
- Check h-ellipticity of the discrete problem

Multigrid h-ellipticity

Look at the symbol Ta'asan

$$\widehat{H}(heta) = egin{pmatrix} \widehat{\mathcal{L}}_{yy} & \widehat{c}_y^* \ \widehat{\mathcal{L}}_{uu} & \widehat{c}_u^* \ \widehat{c}_y & \widehat{c}_u & 0 \end{pmatrix}$$

Compute the determinant

$$|\det(H)(\theta)| = \widehat{\mathcal{L}}_{yy}\widehat{c}_u^*\widehat{c}_u + \widehat{\mathcal{L}}_{uu}\widehat{c}_y^*\widehat{c}_y$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへぐ

Look at high frequencies

Example

Load problem

min
$$\frac{1}{2} ||y - d||^2 + \frac{\alpha}{2} ||Lu||^2$$
 s.t $\Delta y - u = 0$

$$\widehat{H}(heta) = egin{pmatrix} 1 & \widehat{\Delta}_h \ lpha \widehat{L} & 1 \ \widehat{\Delta} & 1 & 0 \end{pmatrix}$$

Compute the determinant of the symbol $(\widehat{\Delta}_h = h^{-2}2(\cos(\theta_1) + \cos(\theta_2) - 2))$

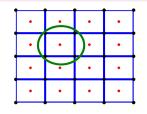
$$|\det(H)(\theta)| = 1 + \alpha \widehat{L}\widehat{\Delta}_h^2$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Look at high frequencies

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^\top \\ \mathcal{L}_{yu}^\top & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & O \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \text{rhs}$$

Box smoothing - solve the equation locally



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^\top \\ \mathcal{L}_{yu}^\top & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & O \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \text{rhs}$$

Need:

- smoother box smoothing, others?(in progress)
- coarse grid approximation
- solution on the coarsest grid (may not be so coarse)

- Case by case development
- Hard to generalize, even when BC change
- May worth the effort if the same type of problem is repeatedly solved

Solving the KKT system - The reduced Hessian

Nocedal & Wright 1999

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathbf{O} & c_y^\top \\ \mathbf{O} & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & \mathbf{O} \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \text{rhs}$$

• Eliminate *s*_y

 $c_y s_y + c_u s_u = \dots$

- Eliminate s_{λ} $\mathcal{L}_{yy}s_u + c_u^{\top}s_{\lambda} = \dots$
- Obtain an equation for s_u

$$H_r s_u = \underbrace{\left(c_u^\top c_y^{-\top} \mathcal{L}_{yy} c_y^{-1} c_u + \mathcal{L}_{uu}\right)}_{i = 1} s_u = \text{rhs}$$

the reduced Hessian

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

The reduced Hessian in Fourier space

Use LFA to study the properties of the reduced Hessian. Load problem

min
$$\frac{1}{2} ||y - d||^2 + \frac{\alpha}{2} ||Lu||^2$$
 s.t $\Delta y - u = 0$

$$\widehat{H}(heta) = egin{pmatrix} 1 & \widehat{\Delta}_h \ lpha \widehat{L} & 1 \ \widehat{\Delta} & 1 & 0 \end{pmatrix}$$

The symbol of the reduced Hessian $(\hat{\Delta}_h = h^{-2}2(\cos(\theta_1) + \cos(\theta_2) - 2))$

$$\widehat{\Delta}_h^{-2} + \alpha \widehat{L}$$

Very unstable for small α

More on the reduced Hessian method

 $H_{r}s_{u} = \left(c_{u}^{\top}c_{y}^{-\top}\mathcal{L}_{yy}c_{y}^{-1}c_{u} + \mathcal{L}_{uu}\right)s_{u} = \text{rhs}$

- For QP with linear constraints the reduced Hessian is equivalent to the Hessian of the unconstrained approach
- The reduced Hessian represents an integro-differential equation

• Efficient solvers for the reduced Hessian is an open question, recent work [Biros & Dugan]

Even more on the reduced Hessian method

The reduced Hessian can be viewed as a block factorization of the (permuted) KKT system H. & Ascher 2001, Biros & Gahttas 2005, Dollar & Wathen 2006

$$\begin{pmatrix} c_{y} & \mathbf{O} & c_{u} \\ \mathcal{L}_{yy} & c_{y}^{\top} & \mathbf{O} \\ \mathbf{O} & c_{u} & \mathcal{L}_{uu} \end{pmatrix}^{-1} = \\ \begin{pmatrix} c_{y}^{-1} & \mathbf{O} & -JH_{r}^{-1} \\ \mathbf{O} & c_{y}^{-\top} & -c_{y}^{-\top}JH_{r}^{-1} \\ \mathbf{O} & \mathbf{O} & H_{r}^{-1} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{I} & \mathbf{O} & \mathbf{O} \\ c_{y}^{-1} & \mathbf{I} & \mathbf{O} \\ -J^{\top}c_{y}^{-1} & -J^{\top} & \mathbf{I} \end{pmatrix}$$

 $J = c_y^{-1} c_u$ $H_r = J^\top J + \mathcal{L}_{uu}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Solve

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^\top \\ \mathcal{L}_{yu}^\top & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & \mathbf{O} \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \mathrm{rhs}$$

Using some Krylov method (MINRES, SYMQMR, GMRES, ...)

- Indefinite
- Highly ill-conditioned
- A must: Preconditioner

Many of the preconditioners developed for general optimization problems are not useful

Solve

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^\top \\ \mathcal{L}_{yu}^\top & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & \mathbf{O} \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \text{rhs}$$

Using some Krylov method (MINRES, SYMQMR, GMRES, ...)

- Indefinite
- Highly ill-conditioned
- A must: Preconditioner

Many of the preconditioners developed for general optimization problems are not useful

Solve

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^\top \\ \mathcal{L}_{yu}^\top & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & \mathbf{O} \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \text{rhs}$$

Using some Krylov method (MINRES, SYMQMR, GMRES, ...)

- Indefinite
- Highly ill-conditioned
- A must: Preconditioner

Many of the preconditioners developed for general optimization problems are not useful

$$\begin{pmatrix} \mathcal{L}_{yy} & \mathcal{L}_{yu} & c_y^\top \\ \mathcal{L}_{yu}^\top & \mathcal{L}_{uu} & c_u^\top \\ c_y & c_u & \mathbf{O} \end{pmatrix} \begin{pmatrix} s_y \\ s_u \\ s_\lambda \end{pmatrix} = \mathrm{rhs}$$

Preconditioners based on the approximate reduced Hessian method H.

& Ascher 2001, Biros & Ghattas 2005

Preconditioners based on the reduced Hessian method

$$\begin{pmatrix} c_y & \mathbf{0} & c_u \\ \mathcal{L}_{yy} & c_y^\top & \mathbf{0} \\ \mathbf{0} & c_u & \mathcal{L}_{uu} \end{pmatrix}^{-1} \approx \\ \begin{pmatrix} \widehat{c}_y^{-1} & \mathbf{0} & -\widehat{J}H_r^{-1} \\ \mathbf{0} & \widehat{c}_y^{-\top} & -\widehat{c}_y^{-\top}\widehat{J}\widehat{H}_r^{-1} \\ \mathbf{0} & \mathbf{0} & \widehat{H}_r^{-1} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \widehat{c}_y^{-1} & \mathbf{I} & \mathbf{0} \\ -\widehat{J}^\top \widehat{c}_y^{-1} & -\widehat{J}^\top & \mathbf{I} \end{pmatrix}$$

 $\widehat{J} = \widehat{c}_y^{-1} c_u$ $\widehat{H}_r = ??$

Preconditioners based on the reduced Hessian method

$$\begin{pmatrix} c_{\mathbf{y}} & \mathbf{0} & c_{u} \\ \mathcal{L}_{\mathbf{yy}} & c_{\mathbf{y}}^{\top} & \mathbf{0} \\ \mathbf{0} & c_{u} & \mathcal{L}_{uu} \end{pmatrix}^{-1} \approx \begin{pmatrix} \widehat{c}_{\mathbf{y}}^{-1} & \mathbf{0} & -\widehat{c}H_{\mathbf{r}}^{-1} \\ \mathbf{0} & \widehat{c}_{\mathbf{y}}^{-\top} & -\widehat{c}_{\mathbf{y}}^{-\top}\widehat{T}\widehat{H}_{\mathbf{r}}^{-1} \\ \mathbf{0} & \mathbf{0} & \widehat{H}_{\mathbf{r}}^{-1} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \widehat{c}_{\mathbf{y}}^{-1} & \mathbf{I} & \mathbf{0} \\ -\widehat{c}^{\top}\widehat{c}_{\mathbf{y}}^{-1} & -\widehat{c}^{\top} & \mathbf{I} \end{pmatrix}$$

Approximating c_y and H_r

- \hat{c}_y standard PDE approximation
- \hat{H}_r BFGS, other QN, approximate inverse, ...
- Can prove mesh independence under some assumptions

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Other Preconditioners

Other approaches

- Domain Decomposition, [Heinkenschloss 02]
- Augmented Lagrangian, [Greif & Golub 03]
- Schur complement based
- See excellent review paper by Benzi Everything you wanted to know about KKT systems but was afraid to ask

No magic bullet, application dependent (as they should be!)

Taking a step

$\min \mathcal{J}(y, u) \quad \text{s.t } c(y, u) = 0$

Guess u_0, y_0

while not converge

• Evaluate $\mathcal{J}_k, c_k, \nabla \mathcal{L}_k, c_y, c_u$ and an approximation to the Hessian (the KKT system)

- Approximately solve the KKT system for a step
- Take a (guarded) step
- Check if need to project to the constraint

while not converge

• Evaluate $\mathcal{J}_k, c_k, \nabla \mathcal{L}_k, c_y, c_u$ and an approximation to the Hessian (the KKT system)

- Approximately solve the KKT system for a step *To what tolerance?*
- Take a (guarded) step How should we judicially pick a step?
- Check if need to project to the constraint why and when should we project?

while not converge

• Evaluate $\mathcal{J}_k, c_k, \nabla \mathcal{L}_k, c_y, c_u$ and an approximation to the Hessian (the KKT system)

- Approximately solve the KKT system for a step *To what tolerance*?
- Take a (guarded) step How should we judicially pick a step?
- Check if need to project to the constraint why and when should we project?

while not converge

• Evaluate $\mathcal{J}_k, c_k, \nabla \mathcal{L}_k, c_y, c_u$ and an approximation to the Hessian (the KKT system)

- Approximately solve the KKT system for a step *To what tolerance?*
- Take a (guarded) step *How should we judicially pick a step?*
- Check if need to project to the constraint *why and when should we project?*

while not converge

• Evaluate $\mathcal{J}_k, c_k, \nabla \mathcal{L}_k, c_y, c_u$ and an approximation to the Hessian (the KKT system)

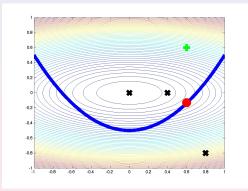
- Approximately solve the KKT system for a step *To what tolerance?*
- Take a (guarded) step *How should we judicially pick a step?*
- Check if need to project to the constraint *why and when should we project?*

How well should we solve the KKT system?

- treat the problem as a system of nonlinear equations we can use inexact Newton's theory ignore optimization aspects
- for traditional SQP algorithms require accurate solutions
- Can we use SQP with inaccurate solution of the sub-problem? Leibfritz & Sachs 1999, Heinkenschloss & Vicente 2001

 Recent work by Curtis Nocedal and Bird on inexact SQP methods, based on a penalty function

Choosing a step

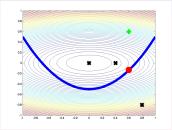


▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The dilemma

- Should I decrease the Objective?
- Should I become more feasible?

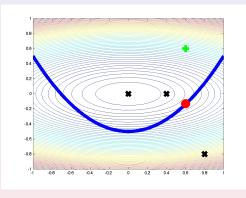
Choosing a step



merit function approach: $\mathcal{L}_{\mu} = f(y, u) + \mu h(c(y, u))$

- Use the L_1 or L_2 merit functions
- Disadvantage need an estimate of the Lagrange multipliers

Choosing a step



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ.

Filter Fletcher & Leyffer 2002

- either reduce the objective or
- improve feasibility
- No need for Lagrange multipliers

Projecting back to the constraint

- In most cases feasibility is much more important than optimality
- Project the solution when getting close or before termination
- Can help with convergence (secondary correction)

Projecting back to the constraint

• In most cases feasibility is much more important than optimality

- Project the solution when getting close or before termination
- Can help with convergence (secondary correction)

Projecting back to the constraint

• In most cases feasibility is much more important than optimality

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Project the solution when getting close or before termination
- Can help with convergence (secondary correction)

Projecting back to the constraint - beyond optimization

- Accuracy of the optimization can be low
- Accuracy of the PDE should be high
- When should we project?

Multilevel

- Multilevel approach is computational effective
- In many cases, avoid local minima
- Help choosing parameters (e.g regularization, interior point)

▲□▶▲@▶▲≧▶▲≧▶ 差 のへぐ

Hard to prove

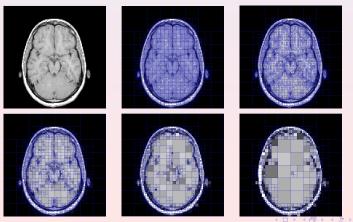
The problems we solve have an underline continuous structure. Use this structure for continuation

Main idea: Solution of the problem on a coarse grid can approximate the problem on a fine grid.

Use coarse grids to evaluate parameters within the optimization. More, Burger, Ascher & H., H. & Modersitzki, H., H. & Benzi

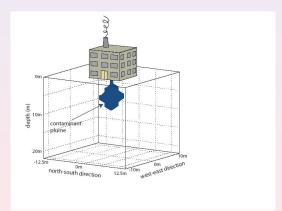
Adaptive Multilevel Grid Sequencing

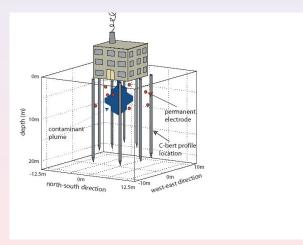
- Rather than refine everywhere, refine only where needed H., Heldman & Ascher [07], Bungrath [08]
- Requires data structures, discretization techniques, refinement techniques
- Can save an order of magnitude in calculation



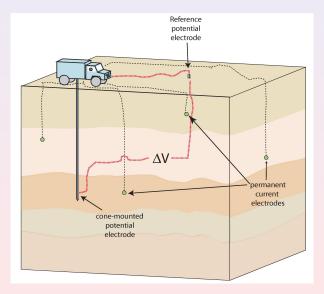
Examples And this is how its really done Dora the explorer

Joint project with R. Knight and A. Pidlovski, Stanford Environmental Geophysics Group





◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

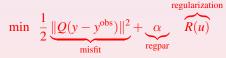
The mathematical problem

The constraint (PDE)

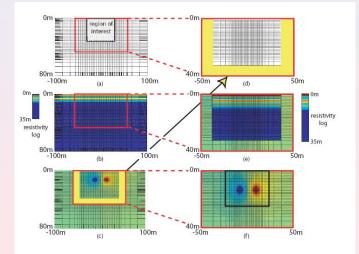
 $c(y,u) = \nabla \times \mu^{-1} \nabla \times y - i\omega \sigma y = i\omega s_i \quad j = 1...k$

(with some BC)

The Objective function

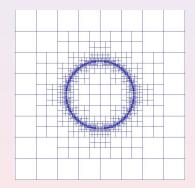


Discretization - I



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Discretization - II



Discretization

use $128 \times 128 \times 64$ cells # of states = $k \times \#$ of controls

In practical experiments $k \approx 10 - 1000$

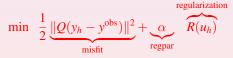
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

The discrete mathematical problem

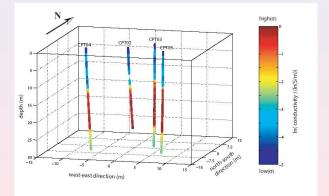
The constraint (PDE)

$$c_h(y_h, u_h) = A(u_h)y_h - q_h = D^T S(u_h)Dy_h - q_h = 0$$

The Objective function

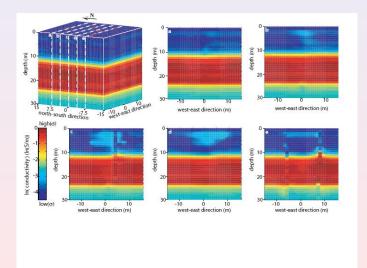


The Data - 63 sources



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The Inversion

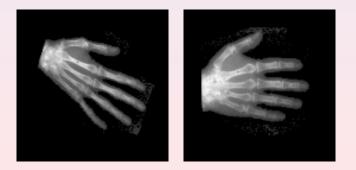


Application - Image Registration

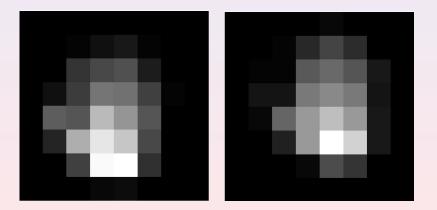
Joint work with S. Heldmann and J. Modesitzki, Lübeck, Germany

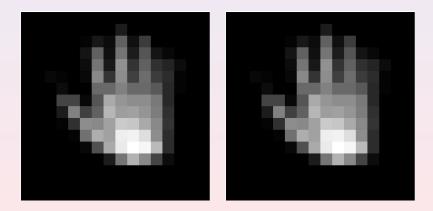
min
$$\frac{1}{2} \|y(T) - R\|^2 + \frac{1}{2} \alpha S(u)$$

s.t $y_t + u^\top \nabla y = 0$ $y(0) = y_0$

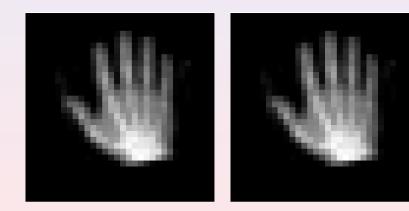


◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

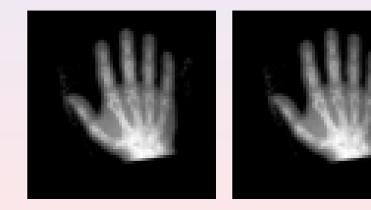




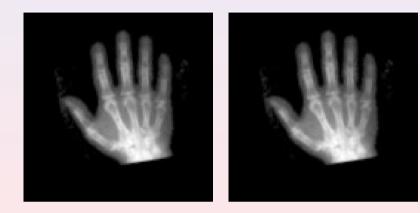
▲□▶▲□▶▲□▶▲□▶ □ のへで



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 めへぐ



Model Problems

Sometimes, you can learn a lot from small things Thomas the engine

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Goal

- PDE optimization problems are difficult to implement
- Suggest some *simple* model problems we can experiment with
- Develop optimization algorithms, preconditioners, grounded to reality
- Will not cover all PDE-optimization problems but not all PDE's are Poisson equation either
- Much of the development in PDE's was motivated by the 5 point stencil!

The problems/implementation

Parameter identification problems

- Assume smooth enough problems (discretize optimize not a problem)
- Consider elliptic, parabolic and hyperbolic problems
- Use regular grids and finite difference/volume for simplicity

- Code in matlab
- Modular, BYOPC (bring your own preconditioner)

The problems

The PDE's

• Elliptic

$$\nabla \cdot \exp^u \nabla y - q = 0; \quad \mathbf{n} \cdot y = 0$$

• Parabolic

$$y_t - \nabla \cdot \exp^u \nabla y = 0; \quad \mathbf{n} \cdot y = 0; \quad y(x,0) = y_0$$

• Hyperbolic

 $y_t - \vec{u}^\top \nabla y = 0; \quad \mathbf{n} \cdot y = 0; \quad y(x,0) = y_0$

◆□ > < 圖 > < 画 > < 画 > < 画 > < 回 > < ■ > < ■ < < □ > < ■ < < □ > < < □ > < < □ < < □ > < < □ < < □ > < < □ > < < □ < < □ > < < □ < < □ < < □ > < < □ < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The code

Download:

http://www.mathcs.emory.edu/ haber/code.html

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Very simple to get started (matlab demo ...)

Takes some time to run, elliptic problem on n^3 grid has $6n^3 + n^3 + 6n^3$ variables

Introduction

- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

Introduction

• Difficulties and PDE aspects

- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

- Introduction
- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

- Introduction
- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

- Introduction
- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

- Introduction
- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

▲□▶▲□▶▲□▶▲□▶ □ のへで

- Introduction
- Difficulties and PDE aspects
- The optimization framework
- Solving the KKT system
- Optimization algorithms
- Examples
- Summary and future work

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>