A particle physicist's perspective on topological insulators.

Andreas Karch Durham, July 22, 2010

based on: "Fractional topological insulators in three dimensions", with J.Maciejko, X.-L. Qi, S. Zhang

also: "A holographic fractional topological insulator" with C. Hoyos and K. Jensen as well as work in progress with T. Takayanagi and J. Maciejko

Outline.

- Review of topological insulators (focus on effective field theory)
- Fractional topological insulators (work with Maciejko, Qi and Zhang)
- Holographic realization (work with Hoyos and Jensen)
- Quantum Spin Hall Effect (work with Maciejko and Takayanagi)

Review of topological insulators

Effective theory on insulators.

What is the low energy description of a generic, time reversal invariant insulator?

Insulator = gapped spectrum

Low energy DOFs: only Maxwell field.

Task: Write down the most general action for E and B, with up to two derivatives, consistent with symmetries.

Low energy effective action.

Low energy DOFs: only Maxwell field.

$$S_0 = \int d^3x dt L_0 = \frac{1}{8\pi} \int d^3x dt \,\left(\epsilon \vec{E}^2 - \frac{1}{\mu} \vec{B}^2\right)$$

Permittivity and Permeability.

Rotations allow one extra term.

$$S_{\theta} = \frac{\theta}{2\pi} \frac{\alpha}{16\pi} \int d^3x dt \epsilon_{\mu\nu\rho\tau} F^{\mu\nu} F^{\rho\tau} = \frac{\theta}{2\pi} \frac{\alpha}{4\pi} \int d^3x dt \partial^{\mu} (\epsilon_{\mu\nu\rho\sigma} A^{\nu} \partial^{\rho} A^{\tau})$$

$$=\frac{\theta\alpha}{4\pi}\int d^3x dt (E\cdot B)$$

But: Under time reversal E is even, B odd

So naively the most general description of a time reversal invariant insulator does not allow for a theta term.

Flux Quantization.

Dirac Quantization of magnetic charge:

$$g = n \frac{e}{2\alpha}$$

Implies quantization of magnetic flux!

$$\int_{S} F = g$$

On any Euclidean closed 4-manifold M:

$$\frac{\alpha}{32\pi^2} \int_M d^4 x F_{\mu\nu} F_{\sigma\tau} \epsilon^{\mu\nu\sigma\tau} = N \in \mathbf{Z}$$

Flux Quantization.

Partition function

$$Z(\theta) = \exp\left\{i\frac{\alpha\theta}{32\pi^2}\int_M d^4x F_{\mu\nu}F_{\sigma\tau}\epsilon^{\mu\nu\sigma\tau}\right\} = e^{iN\theta}$$

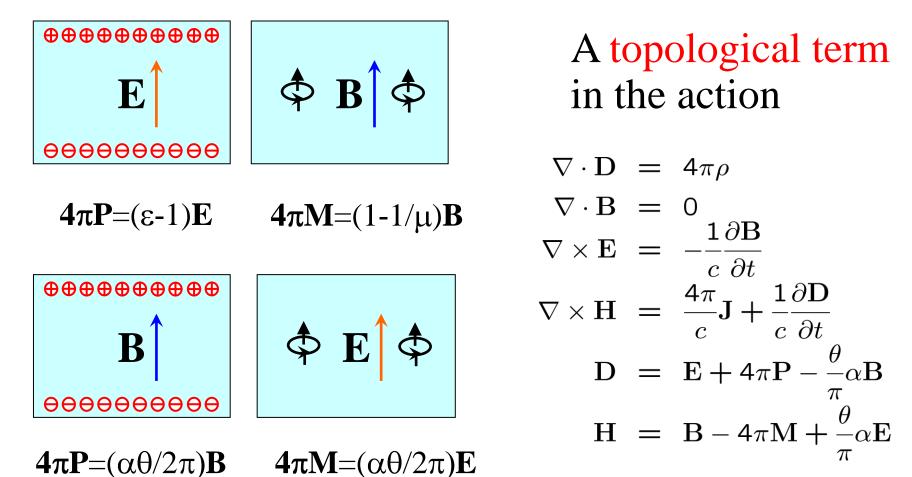
- □ is periodic in $\theta \rightarrow \theta + 2\pi$ (Abelian version of the " Θ vacuum" (Callan, Dashen, Gross 1976, Jackiw&Rebbi, 1976))
- \Box θ is time-reversal odd
- □ → time-reversal invariant insulator can have $\theta = 0$ or π
- \square Z₂ classification

Topological Insulators

Low energy description of a T-invariant insulator described by 3 parameters: ϵ , μ , and:

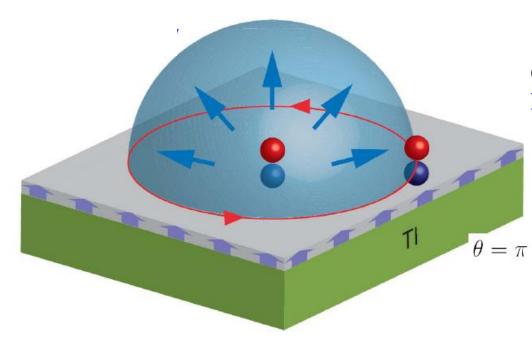
- $\theta = 0$ Topologically trivial insulators
- $\theta = \pi$ Topologically non-trivial insulators

Physical Consequences.



10

Magnetic Monopoles in TI



prediction: mirror charge of an electron is a **magnetic monopole**

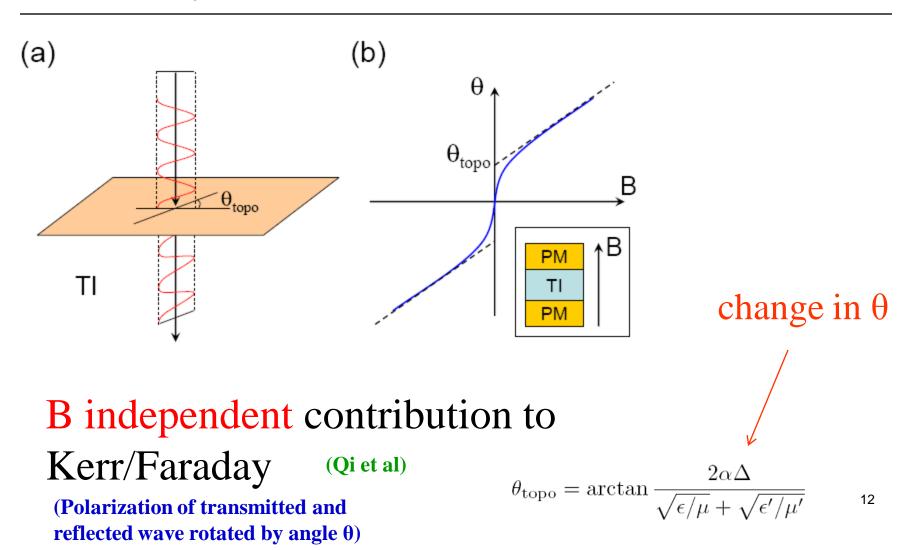
first pointed out by Lee and Sikivie, re-obtained in the TI context by Qi et. al.

Compact expression from requiring **E&M duality covariance** (AK).

$$g = \frac{\alpha \theta / 2\pi}{1 + \alpha^2 \theta^2 / 4\pi^2} q$$

(for $\mu = \mu$ ', $\epsilon = \epsilon$ ')

Faraday and Kerr Effect



A Microscopic Model

A microscopic model: Massive Dirac Fermion.

$$\mathcal{L} = \bar{\psi} (i\partial_{\mu}\gamma^{\mu} - M)\psi$$

Time Reversal: $M \longrightarrow M^*$

Time reversal system has real mass. Two options: positive or negative.

Chiral rotation and ABJ anomaly.

Massless theory invariant under chiral rotations:

$$\psi \to e^{-i\phi\gamma_5/2}\psi$$

Symmetry of massive theory if mass transforms:

$$M \to e^{i\phi}M$$

Phase can be rotated away! Chose M positive.

Chiral rotation and ABJ anomaly.

But in the quantum theory chiral rotation is anomalous. Measure transforms.

$$\Delta \mathcal{L} = C \alpha \frac{\phi}{32\pi^2} \operatorname{tr} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}$$

$$C = \sum_{\text{fields}} q^2 = 1 \cdot 1^2 = 1$$

 $\theta \to \theta - C\phi$

Single field with unit charge.

Chiral rotation and ABJ anomaly.

$$\theta \to \theta - C\phi$$

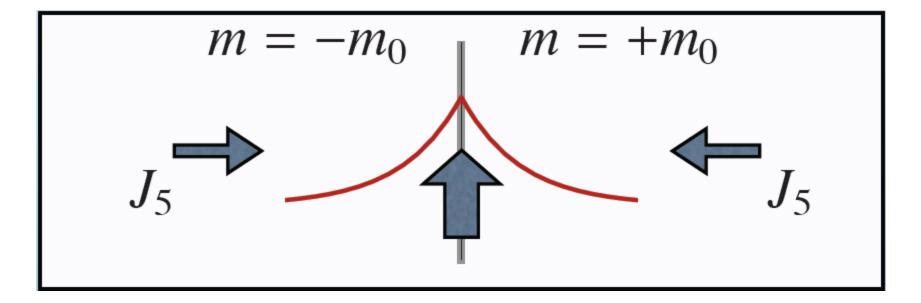
Axial rotation with $\Phi = \pi$:

- Rotates real negative mass into positive mass.
- Generates $\theta = \pi!$

Positive mass = Trivial Insulator. Negative mass = Topological Insulator.

Localized Zero Mode on Interface.

Domain Wall has localized zero mode!



Domain Wall = TI/non-TI Interface

A Lattice Realization.

How to get $\theta = \pi$ from non-interacting electrons in periodic potential (Band-Insulator)?

Topology of Band Structure!

Define Z_2 valued topological invariant of bandstructure to distinguish trivial ("positive mass") from topologically non-trivial ("negative mass").

Band Structure Topology.

Multi-Band-Berry-Connection.

(Qi, Hughes, Zhang)

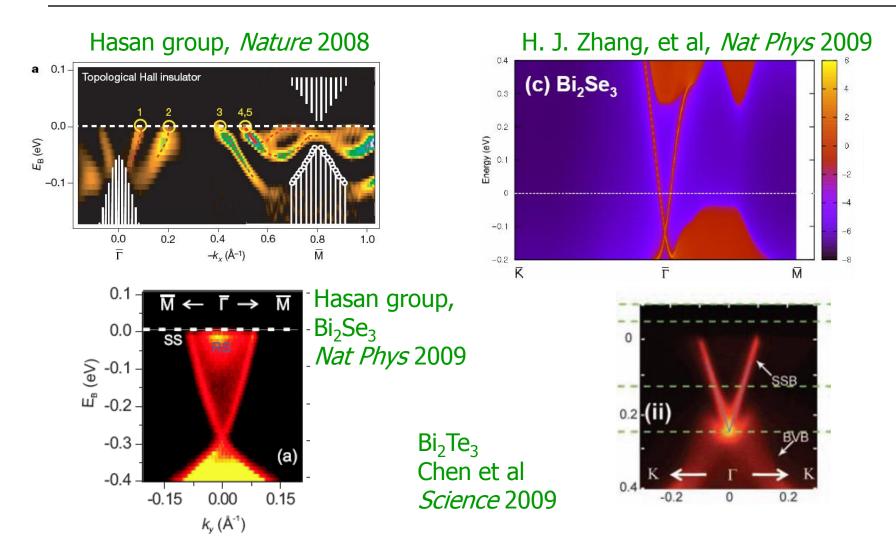
$$\theta \equiv 2\pi P_3(\theta) = \frac{1}{16\pi^2} \int d^3 \mathbf{k} \epsilon^{ijk} \operatorname{Tr} \{ [f_{ij}(\mathbf{k}) - \frac{2}{3}ia_i(\mathbf{k}) \cdot a_j(\mathbf{k})] \cdot a_k(\mathbf{k}) \}$$

$$f_{ij}^{\alpha\beta} = \partial_i a_j^{\alpha\beta} - \partial_j a_i^{\alpha\beta} + i [a_i, a_j]^{\alpha\beta},$$
$$a_i^{\alpha\beta}(\mathbf{k}) = -i \langle \alpha, \mathbf{k} | \frac{\partial}{\partial k_i} | \beta, \mathbf{k} \rangle$$

$$θ=0$$
Vacuum, ...
 $θ=π$
Bi_{1-x}Sb_x, Bi2Se3, Bi2Te3, Sb2Te3

predicted: TlBi(Sb)Te(Se, S)₂, LaPtBi etc (Heusler compounds)

Experimentally found Zero Modes.



Summary of Strategy:

Low Energy Effective Theory:

Dirac Quantization
$$\longrightarrow \theta = \text{Integer} \cdot \pi$$

Microscopic Model:

ABJ anomaly
$$\longrightarrow \theta/\pi = \sum (\text{charge})^2$$

Connection to Experiment:

Band Topology
$$\longrightarrow \theta = QHZ$$
-invariant

21

Fractional topological insulators

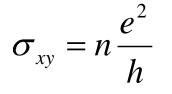
(work with Maciejko, Qi and Zhang)

Fractional Topological Insulators?

Recall from Quantum Hall physics:

electron

fractionalizes into m partons



Quantum Hall

e⁻ interactions

(m odd for fermions)

 $\sigma_{xy} = \frac{n}{m} \frac{e^2}{h}$

Fractional Quantum Hall ²³

Fractional Topological Insulators?

TI = half of an integer quantum hall state on the surface

expect: fractional TI = half a fractional QHS Hall quantum = half of 1/odd integer.

Can we get this from charge fractionalization?

Partons.

Microscopic Model:

ABJ anomaly
$$\longrightarrow \theta/\pi = \sum (\text{charge})^2$$

e =
$$\int (\text{charge})^2 = m \cdot \left(\frac{1}{m}\right)^2 = \frac{1}{m}$$

electron breaks up into m partons.

(m odd so e⁻ is fermion)

(if partons form a TI = have negative mass)

Partons.

To ensure that physical (= gauge invariant) states carry integer electron charge add "statistical" gauge field.

Simplest models: U(1)³/U(1) quiver gauge theory SU(3) with N_f=1 26

Important dynamical question.

Is the gauge theory in a confining or deconfining phase?

We need: deconfined! Favors abelian models. (or N=4 SYM with N=2 massive hyper)

Gapless modes present; charged fields all gapped.

Alternative: Higgsed Phase with unbroken discrete gauge invariance.

Why not confined phase?

Need chiral symmetry to be unbroken. ("Confinement w/o chiral symmetry" breaking ok --- but also has extra light, neutral states.)

MIT theorem (basically Dirac quantization): Need either extra massless degrees of freedom (e.g deconfined phase or SUSY QCD with $N_f=N_c+1$) or degenerate groundstate (e.g. Higgs phase)

How to make a fractional TI?

Need: Strong electron/electron interactions (so electrons can potentially fractionalize)

> Strong spin/orbit coupling (so partons can form topological insulator)

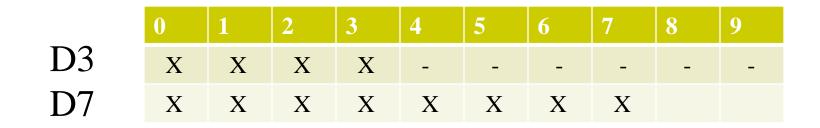
How can one tell if a given material is a fractional TI (in theory/in practice)? Transport! Fractional Hall + Kerr.

29

Holographic Realization

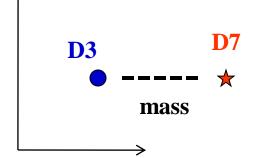
(work with Hoyos and Jensen)

fTI in N=4 SYM and AdS/CFT



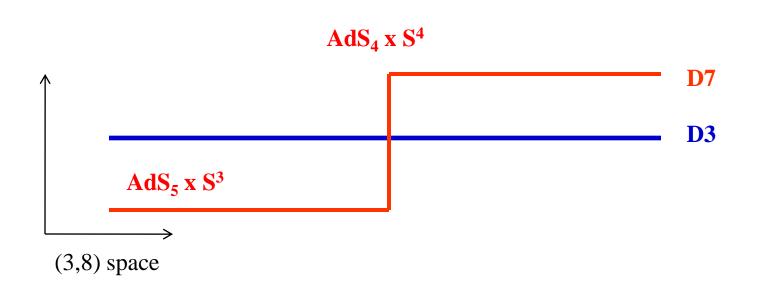
T-invariant =real mass = D7 at $x_9=0$, any x_8

(here this is a choice to preserve T, Takayanagi and Ryu impose orientifold that makes T-violating mass inconsistent) ₃₁



(8,9) space

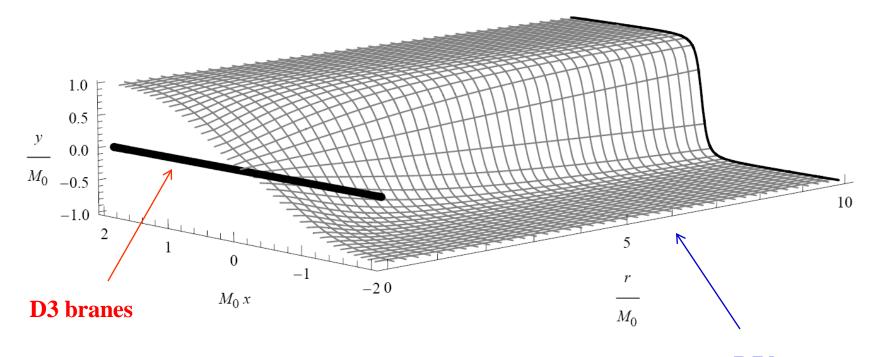
holographic fTI



$$ds_{S^5}^2 = \cos^2 \theta d\Omega_3^2 + d\theta^2 + \sin^2 \theta d\phi^2$$

Find: $\theta(x, r)$
Smooth embedding. Approaches
step at r=∞ (boundary of AdS)

holographic fTI



D7 brane

holographic fTI

- Other mass profiles possible; expect Hall current with filling fraction 1/(2m) for any zero crossing profile.
- This can easily be verified from AdS.
 Independent of details of embedding, the Hall current is uniquely determined by WZ term.

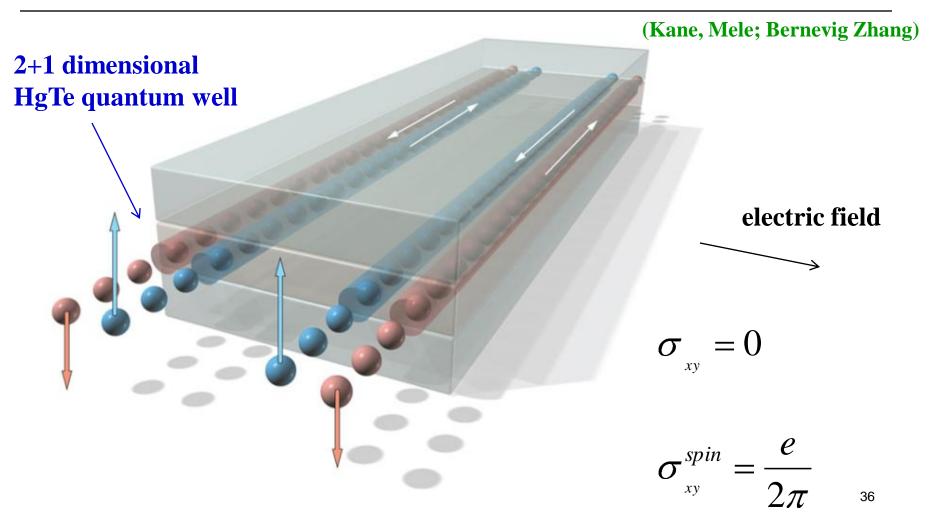
Was expected: WZ term = anomalies Explicit Realization of a non-abelian fTI

The Quantum Spin Hall Effect

(or better: the quantum R-current-Hall effect)

(work with Maciejko and Takayanagi)

Quantum Spin Hall Effect in HgTe



Continuum Description:

$$\mathcal{L} = \bar{\psi}(i\partial_{\mu}\gamma^{\mu} - M)\psi$$

2+1: only one mass M T odd. Single fermion massless!

But: (Jackiw-Templeton)

opposite sign!

 $\mathcal{L}_M = M\bar{\Psi}\Psi = M(\bar{\psi}_2\psi_2 - \bar{\psi}_1\psi_1)$

T invariant mass possible for two fermions!

Coupling to Electromagnetism:

Symmetry: $U(2) \longrightarrow U(1)_{EM} \times U(1)_{R}$

symmetry of free fermions

gauged

remaining global symmetry

$$U(1)_R$$
 plays role of spin!

	U(1) _{EM}	U (1) _{R}	Sign(mass)
Ψ_1	+1	+1	+1
Ψ_2	+1	-1	-1

Integrate out fermions:

Induced CS:
$$k_{ab} = \frac{1}{2} \sum_{i} q_{i,a} q_{i,b} \operatorname{sign}(M)$$

Electromagnetic: Contributions from the two fermions cancel. No CS term. No Hall current.

Mixed EM/R: Contributions from the two fermions add. k=1.

The A_R F_{EM} gives rise to "Quantum-R-Hall-Effect"

Applications.

• As in 3+1, given the continuum description it is trivial to construct low energy description of fractional quantum spin hall effect. e splits into m partons. CS term picks up factor of 1/m.

• Holographic realization in terms of probe brane system also straightforward. This time it's the D3/D5 system. Again, topological properties independent of embedding.

Summary.

- Effective field theory for fractional TI can be constructed
- Basic ingredient: fractionalization
- Effective θ follows from anomaly/Dirac quantization
- Requires strong LS coupling and strong interactions.
- Experimental signatures: transport + Kerr/Faraday
- Holographic realization straight forward