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Trevisan et al., 2010, Four-dimensional variational assimilation in the unstable subspace
and the optimal subspace dimension, Q. J. R. Meteorol. Soc., 136, 487-496.

Related  to

M. Ghil’s presentation on Tuesday 2 August (extension from 3D to 4D)

D. McLaughlin’s presentation on Thursday 4 (essentially the same results, but for
4DVar instead of EnKF).
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Lorenz (1963)

dx/dt = σ(y-x)
dy/dt = ρx - y - xz
dz/dt = -βz + xy

with parameter values σ = 10, ρ = 28, β = 8/3  ⇒  chaos





Pires et al., Tellus, 1996 ; Lorenz system (1963)
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Pires et al., Tellus, 1996 ; Lorenz system (1963)
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Minima in the variations of objective function correspond to solutions that
have bifurcated from the observed solution, and to different folds in state
space.
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Quasi-Static Variational Assimilation (QSVA). Increase progressively length of the assimilation
window, starting each new assimilation from the result of the previous one. This should ensure,
at least if observations are in a sense sufficiently dense in time, that current estimation of the
system always lies in the basin of attraction of the absolute minimum of objective function.

One complete (Lorenz 63) state vector observed every δt = 0.1, with unbiased Gaussian white
noise with unit covariance matrix in coordinates (x, y, z).



Pires et al., Tellus, 1996 ; Lorenz system (1963)
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Swanson, Vautard and Pires, 1998, Tellus, 50A, 369-390
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Since, after an assimilation has been performed over a period of time, uncertainty is
likely to be concentrated in modes that have been unstable, it might be useful for
the next assimilation, and at least in terms of cost efficiency, to concentrate
corrections on the background in those modes.

Actually, presence of residual noise in stable modes can be damageable for analysis
and subsequent forecast.

Assimilation in the Unstable Subspace (AUS) (Carrassi et al., 2007, 2008, for the case
of 3D-Var, M. Ghil)

And also, as concerns Extended Kalman Filter

Trevisan, A., and L. Palatella, On the Kalman Filter error covariance collapse into the
unstable subspace, Nonlin. Processes Geophys., 18, 243-250, 2011.

D. McLaughlin for Ensemble Kalman Filter
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Four-dimensional variational assimilation in the unstable subspace
(4DVar-AUS)

Trevisan et al., 2010, Four-dimensional variational assimilation in the unstable
subspace and the optimal subspace dimension, Q. J. R. Meteorol. Soc., 136,
487-496.
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4D-Var-AUS

Algorithmic implementation

Define N perturbations to the current state, and evolve them according to the tangent
linear model, with periodic reorthonormalization in order to avoid collapse onto the
dominant Lyapunov vector (same algorithm as for computation of Lyapunov
exponents).

Cycle successive 4D-Var‘s, restricting at each cycle the modification to be made on the
current state to the space spanned by the N perturbations emanating from the
previous cycle (if N is the dimension of state space, that is identical with standard
4D-Var).
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Experiments performed on the Lorenz (1996) model

with value F = 8, which gives rise to chaos.

Three values of I have been used, namely I = 40, 60, 80, which correspond to
respectively N+ = 13, 19 and 26 positive Lyapunov exponents.

In all three cases, the largest Lyapunov exponent corresponds to a doubling time
of about 2 days (with 1 ‘day’ = 1/5 model time unit).

Identical twin experiments (perfect model)
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‘Observing system’ defined as in Fertig et al. (Tellus, 2007):

At each observation time, one observation every four grid points
(observation points shifted by one grid point at each observation time).

Observation frequency : 1.5 hour

Random gaussian observation errors with expectation 0 and standard
deviation σ0 = 0.2 (‘climatological’ standard deviation 5.1).

Sequences of variational assimilations have been cycled over windows
with length τ  = 1, … , 5 days. Results are averaged over 5000 successive
windows.
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No explicit background term (i. e., with error covariance matrix) in objective function :
information from past lies in the background to be updated, and in the N perturbations
which define the subspace in which updating is to be made.

Best performance for N slightly above number  N+ of positive Lyapunov exponents.



Different curves are almost identical on all three panels. Relative improvement obtained by decreasing
subspace dimension N to its optimal value is largest for smaller window length τ.



21



22

Experiments have been performed in which an explicit background term was present,
the associated error covariance matrix having been obtained as the average of a
sequence of full 4D-Var’s.

The estimates are systematically improved, and more for full 4D-Var than for 4D-Var-
AUS. But they remain qualitatively similar, with best performance for 4D-Var-AUS
with N slightly above N+. 
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Minimum of objective function cannot be made smaller by reducing control space.
Numerical tests show that minimum of objective function is smaller (by a few
percent) for full 4D-Var than for 4D-Var-AUS. Full 4D-Var is closer to the noisy
observations, but farther away from the truth. And tests also show that full 4D-Var
performs best when observations are perfect (no noise).

Results show that, if all degrees of freedom that are available to the model are used,
and if observations are noisy, the minimization process introduces components
along the stable modes of the system, in which no error is present, in order to
ensure a closer fit to the observations. This degrades the closeness of the fit to
reality. The optimal choice is to restrict the assimilation to the unstable modes.
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- Impact of model errors ?
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Time averaged rms analysis error at the end τ of the assimilation window as a function of increment 
subspace dimension (I = 60, N+=19). Lower curves : no model noise (τ = 1 and 2 days). Upper curves :
constant model noise (τ = 1 and 2 days) (W. Ohayon and O. Pannekoucke, 2011). 
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Time averaged rms analysis error at the end τ of the assimilation window as a function of increment 
subspace dimension (I = 60, N+=19), for different amplitudes of white model noise.

(W. Ohayon and O. Pannekoucke, 2011).

τ = 1 day τ = 2 days
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Conclusions

Error concentrates in unstable modes at the end of assimilation
window. It must therefore be sufficient, at the beginning of new
assimilation cycle, to introduce increments only in the subspace
spanned by those unstable modes.

In the perfect model case, assimilation is most efficient when
increments are introduced in a space with dimension slightly above the
number of non-negative Lyapunov exponents.

In the case of imperfect model (and of strong constraint assimilation),
preliminary results lead to similar conclusions, with larger optimal
subspace dimension, and less well marked optimality. Further work
necessary.

In agreement with theoretical and experimental results obtained for
Kalman Filter assimilation (Trevisan and Palatella, McLaughlin).
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Thanks !


