# The Tutte polynomial: sign and approximability

#### Mark Jerrum School of Mathematical Sciences Queen Mary, University of London

Joint work with Leslie Goldberg, Department of Computer Science, University of Oxford

> Durham 23rd July 2013

## The Tutte polynomial (traditional bivariate style)

The *Tutte polynomial* of a graph G = (V, E) is a two-variable polynomial T defined by

$$T(G; x, y) = \sum_{A\subseteq E} (x-1)^{\kappa(A)-\kappa(E)} (y-1)^{|A|+\kappa(A)-n},$$

where  $\kappa(A)$  denotes the number of connected components of (V, A), and n = |V(G)|.

Evaluations of the Tutte polynomial at various points and along various curves in  $\mathbb{R}^2$  yield much interesting information about *G*.

### Evaluations of the Tutte polynomial

- T(G; 1, 1) counts spanning trees in G.
- T(G; 2, 1) counts forests in G.
- T(G; 1-q, 0) counts q-colourings of G.
- More generally, along the hyperbola

$$H_q = \{(x, y) : (x - 1)(y - 1) = q\},\$$

T(G; x, y) specialises to the partition function of the *q*-state Potts model.

- T(G; 2, 0) counts acyclic orientations of G.
- Along the y > 1 branch of H<sub>0</sub>, T(G; 1, y) specialises to the reliability polynomial of G.

# The computational complexity the Tutte polynomial: what was known (exact evaluation)

For each pair (x, y) we can ask: what is the computational complexity of the map  $G \mapsto T(G; x, y)$ ?

# The computational complexity the Tutte polynomial: what was known (exact evaluation)

For each pair (x, y) we can ask: what is the computational complexity of the map  $G \mapsto T(G; x, y)$ ?

Theorem (Kirchhoff, 1847)

There is a polynomial-time algorithm for evaluating T(G; 1, 1).

# The computational complexity the Tutte polynomial: what was known (exact evaluation)

For each pair (x, y) we can ask: what is the computational complexity of the map  $G \mapsto T(G; x, y)$ ?

Theorem (Kirchhoff, 1847)

There is a polynomial-time algorithm for evaluating T(G; 1, 1).

Theorem (Jaeger, Vertigan and Welsh, 1990, rough statement.)

Evaluating T(G; x, y) is #P-complete, except on the hyperbola  $H_1$  (where it is trivial), and at a finite set of "special points".

#### Definition (First attempt)

An *FPRAS* for the Tutte polynomial at (x, y) is a randomised algorithm that estimates T(G; x, y) within relative error  $1 \pm \varepsilon$  with high probability. It must run in time poly $(|G|, \varepsilon^{-1})$ .

#### Definition (Extended to functions taking negative values)

An *FPRAS* for the Tutte polynomial at (x, y) is a randomised algorithm that decides the sign of T(G; x, y) (one of +, -, 0), and estimates |T(G; x, y)| within relative error  $1 \pm \varepsilon$  with high probability. It must run in time poly $(|G|, \varepsilon^{-1})$ .

#### Definition (Extended to functions taking negative values)

An *FPRAS* for the Tutte polynomial at (x, y) is a randomised algorithm that decides the sign of T(G; x, y) (one of +, -, 0), and estimates |T(G; x, y)| within relative error  $1 \pm \varepsilon$  with high probability. It must run in time poly $(|G|, \varepsilon^{-1})$ .

#### Theorem (Jerrum and Sinclair, 1990)

There is an FPRAS for T(G; x, y) on the positive branch of the hyperbola  $H_2$ .

#### Definition (Extended to functions taking negative values)

An *FPRAS* for the Tutte polynomial at (x, y) is a randomised algorithm that decides the sign of T(G; x, y) (one of +, -, 0), and estimates |T(G; x, y)| within relative error  $1 \pm \varepsilon$  with high probability. It must run in time poly $(|G|, \varepsilon^{-1})$ .

#### Theorem (Jerrum and Sinclair, 1990)

There is an FPRAS for T(G; x, y) on the positive branch of the hyperbola  $H_2$ .

#### Theorem (Goldberg and Jerrum, 2008, 2012) Assuming $RP \neq NP$ , there is no FPRAS for large regions of

the Tutte plane. (Classification is far from complete though.)

## The Tutte plane (2010)



## The programme for this talk

- Jackson and Sokal have shown that in certain regions of the plane, the sign of the Tutte polynomial is "essentially determined" (i.e., is a simple function of the number of vertices, number of edges, number of connected components, etc).
- What happens when the sign is not essentially determined? We show that computing the sign is often #P-hard. (#P is to counting problems what NP is to decision problems.)
- Where the sign is hard to compute, the Tutte polynomial is a fortiori hard to approximate.

The line y = 0 corresponds (up to scaling) to the chromatic polynomial, under the transformation q = 1 - x.

• The sign of the chromatic polynomial was studied by Jackson [1993], who showed that the sign is essentially determined for  $q \leq 32/27$  (i.e.,  $x \geq -5/27$ ).

The line y = 0 corresponds (up to scaling) to the chromatic polynomial, under the transformation q = 1 - x.

- The sign of the chromatic polynomial was studied by Jackson [1993], who showed that the sign is essentially determined for q ≤ 32/27 (i.e., x ≥ -5/27).
- At q = 2 (i.e., x = -1), the Tutte/chromatic polynomial counts 2-colourings of a graph. Although not essentially determined, the sign (and indeed the polynomial itself) is easy to compute.

The line y = 0 corresponds (up to scaling) to the chromatic polynomial, under the transformation q = 1 - x.

- The sign of the chromatic polynomial was studied by Jackson [1993], who showed that the sign is essentially determined for  $q \leq 32/27$  (i.e.,  $x \geq -5/27$ ).
- At q = 2 (i.e., x = -1), the Tutte/chromatic polynomial counts 2-colourings of a graph. Although not essentially determined, the sign (and indeed the polynomial itself) is easy to compute.
- At integer points q > 2 (x < −1) the polynomial counts q-colourings and its sign is 0 or +. Determining which is NP-hard.</li>

The line y = 0 corresponds (up to scaling) to the chromatic polynomial, under the transformation q = 1 - x.

- The sign of the chromatic polynomial was studied by Jackson [1993], who showed that the sign is essentially determined for q < 32/27 (i.e., x > -5/27).
- At q = 2 (i.e., x = -1), the Tutte/chromatic polynomial counts 2-colourings of a graph. Although not essentially determined, the sign (and indeed the polynomial itself) is easy to compute.
- At integer points q > 2 (x < -1) the polynomial counts q-colourings and its sign is 0 or +. Determining which is NP-hard.
- At non-integer points q > 32/27 (x < -5/27) the polynomial can take any sign, and determining which is #P-hard.

## How can determining the sign be #P-hard?

Consider a #P-complete counting problem such #SAT. Let  $\varphi$  be an instance of #SAT; we want to know how many satisfying assignments  $\varphi$  has. Let this number be  $N(\varphi)$ .

Suppose we could design a reduction that takes a Boolean formula  $\varphi$  and a number *c* and produces a graph  $G_c$  with the following property:

The sign of  $N(\varphi) - c$  is the same as the sign of  $T(G_c; -\frac{3}{2}, 0)$ 

Then an oracle for the sign of  $T(G; -\frac{3}{2}, 0)$  could be used to compute  $N(\varphi)$  exactly (by binary search on c).

#### The multivariate Tutte polynomial

As usual [Sokal, 2005], proofs are made easier by the moving to the multivariate Tutte polynomial.

Let G be a graph and  $\gamma$  be a function that assigns a (rational) weight  $\gamma_e$  to every edge  $e \in E(G)$ .

Definition (The multivariate Tutte polynomial)

$$Z(G; q, \gamma) = \sum_{A \subseteq E(G)} q^{\kappa(V, A)} \prod_{e \in A} \gamma_e$$

When  $\gamma_e = \gamma$  for all e (i.e., the edge weights are constant), we recover the traditional Tutte polynomial via the substitutions q = (x - 1)(y - 1) and  $\gamma = y - 1$ .

### A key lemma (one of two)

Name SIGNTUTTE( $q; \gamma_1, \ldots, \gamma_k$ ). Instance A graph G = (V, E) and a weight function  $\gamma : E \to \{\gamma_1, \ldots, \gamma_k\}.$ 

*Output* Determine the sign of  $Z(G; q, \gamma)$ .

#### Lemma

Suppose q > 1 and that  $\gamma_1 \in (-2, -1)$  and  $\gamma_2 \notin [-2, 0]$ . Then SIGNTUTTE $(q; \gamma_1, \gamma_2)$  is #P-hard.

## Simulating weights

The problem we actually want to study is:

Name SIGNTUTTE $(q, \gamma)$ .

Instance A graph G = (V, E).

*Output* Determine the sign of  $Z(G; q, \gamma)$ .

So the question becomes: can we "simulate" the weights  $\gamma_1$  and  $\gamma_2$  required in the key lemma using the single weight  $\gamma$ ?

A partial answer is that we can often do this by "stretching" and/or "thickening" [Jaeger et al, 1990].

### Stretching and thickening



Two  $\gamma$ -edges in *series* "simulate" an edge of weight  $\gamma' = \gamma^2/(q+2\gamma)$ . The 2-stretch of a graph implements  $x' = x^2$  and y' = q/(x'-1) + 1.

### Stretching and thickening



Two  $\gamma$ -edges in *parallel* simulate an edge of weight  $\gamma' = (1 + \gamma)^2 - 1$ . A 2-thickening of a graph implements  $y' = y^2$  and x' = q/(y' - 1) + 1.

## The significance of 32/27

Consider the point (x, y) = (-0.1, -0.1). Note that q = (x - 1)(y - 1) = 1.21 > 32/27.

We already have a point with  $y \in (-1, 0)$ . To satisfy the lemma we need to simulate a point with  $y \notin [-1, 1]$ .

Perform alternate 2-stretches and 2-thickenings:

## The significance of 32/27 (continued)

Consider the point (x, y) = (0, -0.1). Note that q = (x - 1)(y - 1) = 1.1 < 32/27.

Perform alternate 2-thickenings and 2-stretches:

#### A further illustration: the y-axis.

The line x = 0 corresponds (up to scaling) to the flow polynomial, under the transformation q = 1 - x.

• The sign of the flows polynomial was studied by Jackson [2003] and Jackson and Sokal [2009], who showed that the sign is essentially determined for  $q \leq 32/27$  (i.e.,  $y \geq -5/25$ ).

#### A further illustration: the y-axis.

The line x = 0 corresponds (up to scaling) to the flow polynomial, under the transformation q = 1 - x.

- The sign of the flows polynomial was studied by Jackson [2003] and Jackson and Sokal [2009], who showed that the sign is essentially determined for  $q \leq 32/27$  (i.e.,  $y \geq -5/25$ ).
- At q = 2 (i.e., y = -1), the Tutte/flow polynomial counts nowhere-zero 2-flows in a graph. Although not essentially determined, the sign (and indeed the polynomial itself) is easy to compute.

#### A further illustration: the y-axis.

The line x = 0 corresponds (up to scaling) to the flow polynomial, under the transformation q = 1 - x.

- The sign of the flows polynomial was studied by Jackson [2003] and Jackson and Sokal [2009], who showed that the sign is essentially determined for  $q \leq 32/27$  (i.e.,  $y \geq -5/25$ ).
- At q = 2 (i.e., y = -1), the Tutte/flow polynomial counts nowhere-zero 2-flows in a graph. Although not essentially determined, the sign (and indeed the polynomial itself) is easy to compute.
- At integer points q = 3 (y = -2) and q = 4 (y = -3) the polynomial counts, respectively, 3-colourings of a planar graph and 3-edge-colourings of a cubic graph. The sign is NP-hard to determine.

### The y-axis (continued)

At integer points q ≥ 6 (y ≤ -5), the sign is essentially determined (Seymour's 6-flow Theorem).

## The y-axis (continued)

- At integer points q ≥ 6 (y ≤ -5), the sign is essentially determined (Seymour's 6-flow Theorem).
- At non-integer points 32/27 < q < 4 (-3 < y < -5/32) the polynomial can take any sign, and determining which is #P-hard.

## The y-axis (continued)

- At integer points q ≥ 6 (y ≤ −5), the sign is essentially determined (Seymour's 6-flow Theorem).
- At non-integer points 32/27 < q < 4 (-3 < y < -5/32) the polynomial can take any sign, and determining which is #P-hard.

• Other points are unresolved.

#### More exotic "shifts"

To approach y = -3 close to the y axis, the usual stretchings and thickenings are not enough. Instead we use a graph transformation based on taking a "2-sum" with a Petersen graph along each edge.



2-sum with Petersen graph

#### The Tutte plane more generally



#### Relation to approximate counting.

Fix an evaluation point (x, y). There are three possibilities.

• The sign is #P-hard to determine. A fortiori the Tutte polynomial is #P-hard to approximate. Approximation of the Tutte polynomial is "essentially #P-complete".

#### Relation to approximate counting.

Fix an evaluation point (x, y). There are three possibilities.

- The sign is #P-hard to determine. A fortiori the Tutte polynomial is #P-hard to approximate. Approximation of the Tutte polynomial is "essentially #P-complete".
- The sign is NP-hard to determine. This tends to occur when the Tutte polynomial has a combinatorial interpretation, e.g., the number of 3-colourings of a graph. The number of structures may be estimated by iterated random bisection [Valiant and Vazirani], using an NP-oracle. Approximation of the Tutte polynomial is "essentially NP-complete".

#### Relation to approximate counting.

Fix an evaluation point (x, y). There are three possibilities.

- The sign is #P-hard to determine. A fortiori the Tutte polynomial is #P-hard to approximate. Approximation of the Tutte polynomial is "essentially #P-complete".
- The sign is NP-hard to determine. This tends to occur when the Tutte polynomial has a combinatorial interpretation, e.g., the number of 3-colourings of a graph. The number of structures may be estimated by iterated random bisection [Valiant and Vazirani], using an NP-oracle. Approximation of the Tutte polynomial is "essentially NP-complete".
- The sign is easily determined. In this case we have only incomplete information about the complexity of approximating the Tutte polynomial.

## The Tutte plane (2010, reprise)

