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The modular group Γ

SL(2,Z) =
{(a b

c d

)
, a, b, c , d ∈ Z, ad − bc = 1

}

Γ = PSL(2,Z) = SL(2,Z)/{±I}

The elements of Γ can be seen as Möbius tansformations acting on
the hyperbolic upper half plane U .

z → az + b

cz + d



The Farey tessellation

Set of vertices the extended rationals Q ∪ {∞}.

Two vertices a/c and b/d are joined by an edge, a geodesic of U ,
if and only if ad − bc = ±1.



The Farey tessellation

Γ is the group of Möbius tansformations leaving the Farey
tessellation F invariant.

Every regular triangular map can be obtained as the quotient of F
by a normal subgroup of Γ [Singerman 1988].



Principal congruence subgroups of Γ

The principal congruence subgroups are the normal subgroups:

Γ(N) =
{(a b

c d

)
∈ Γ|a ≡ d ≡ ±1modN, b ≡ c ≡ 0modN

}

The special congruence subgroups are:

Γ1(N) =
{(a b

c d

)
∈ Γ|a ≡ d ≡ 1modN, c ≡ 0modN

}

Γ0(N) =
{(a b

c d

)
∈ Γ|c ≡ 0modN

}



Platonic graphs

We want to study the triangular tessellation F/Γ(N) on the
surface SN = U/Γ(N).

The underlying graphs GN of these tessellations are often called
Platonic graphs.



Arithmetic structure on Platonic graphs

[I., Singerman 2005] The vertices of GN correspond to pairs
(a, b)T ∈ ZN × ZN , with (a, b) = 1, meaning that (a, b) is a
unitary pair of the ring ZN , after the identification
(a, b)T = (−a,−b)T .

There is a 1-1 correspondence between the vertices of GN and the
cosets of Γ1(N) in Γ.

The number of vertices of GN is:

|Γ : Γ1(N)| =
N2

2

∏
p|N

(1− 1

p2
)



Arithmetic structure on Platonic graphs

Two vertices (a, b)T and (c, d)T are connected with an edge if
and only if ad − bc = ±1.

There is a 1-1 correspondence between the set of directed edges of
GN , and Γ(N)/Γ ' PSL(2,ZN).

The number of directed edges of GN is:

|Γ : Γ(N)| =
N3

2

∏
p|N

(1− 1

p2
)



Arithmetic structure on Platonic graphs

If an automorphism of GN leaves a vertex (a, b) invariant, then any
vertex (c, d) with ad − cb = 0 is also invariant under the same
element.

The set of all vertices (c , d) with that property, which will be
called an axis of GN , corresponds to a coset of Γ0(N) in Γ.

The number of axes of GN is:

|Γ : Γ0(N)| = N
∏
p|N

(1 +
1

p
)



Example N=3,4



Example N=5



Example N=6



Example N=7



Hecke groups

The Hecke group Hq, q = 3, 4, 5, ... is generated by the two
Möbius transformations

Hq =
{(1 λq

0 1

)
,

(
0 1
−1 0

)}
, λq = 2 cos

π

q

For q = 3 we get the modular group Γ.



Pentagonal Hecke-Farey tessellation

Set of vertices the set Q[λq] ∪ {∞}.

Two vertices a/c and b/d are joined by an edge, a geodesic of U ,
if and only if ad − bc = ±1.



Example H5(3)



Example H4(5)



Overview

Geometric group theory preliminaries

Properties of Platonic graphs

A new family of trivalent expanders



Properties of Platonic graphs for p prime

[I., Peyerimhoff, Vdovina, 2011] Gp is p-vertex connected

Proof of the spectral theorem in [Lanphier & Rosenhouse, 2004]
without number theory.

Computation of the spectrum of a family of related graphs which
are also Ramanujan.



The wheel structure

[Lanphier & Rosenhouse, 2004]

Gp has p + 1 axes, (p + 1)(p− 1)/2 vertices and p(p + 1)(p− 1)/2
directed edges.

The union of the centers of the wheels form an axis.



Lemma

Every x ∈ ∂Wi has presicely two neighbours in ∂Wj

There is a bijective map from ∂Wi to ∂Wj .



Proof

By Menger’s theorem it suffices to find p vertex disjoint paths
between any two vertices.

Separating three cases we find p vertex disjoint paths from [1,0]
to:

I the vertices in ∂W1

I the vertices in any ∂Wj , j 6= 1

I the other vertices in the axis of [1,0]



Properties of Platonic graphs for p prime

[I., Peyerimhoff, Vdovina, 2011] Gp is p-vertex connected

Proof of the spectral theorem in [Lanphier & Rosenhouse, 2004]
without number theory.

Computation of the spectrum of a family of related graphs which
are also Ramanujan.



Spectra of Platonic graphs

[Lanphier & Rosenhouse, 2004] The eigenvalues of ∆ on Gp are:

(i) p with multiplicity 1

(ii) −1 with multiplicity p

(iii)
√
p and −√p with multiplicity (p2 − 2p − 3)/2 in total



Proof

The projection
π([λ, µ]) = λµ−1

maps Gp onto Kp giving the eigenvalues in cases (i) and (ii).

The eigenvalues of ∆2 are the solutions of the system

∆2f (v) = pf (v)

for all vertices of Gp. But, all vertices corresponding to the same
axis give linearly dependent equations, giving (p + 1) linearly
indpendent equations and a

p2 − 1

2
− (p + 1) =

(p + 1)(p − 3)

2

dimensional solution.



Proof

Finally, prove the equality in the dimension of the eigenspaces
E(∆,

√
(p) and E(∆,−

√
(p)



Properties of Platonic graphs for p prime

[I., Peyerimhoff, Vdovina, 2011] Gp is p-vertex connected

Proof of the spectral theorem in [Lanphier & Rosenhouse, 2004]
without number theory.

Computation of the spectrum of a family of related graphs which
are also Ramanujan.



The modified Platonic graph G ′p

Let G′p be the Platonic graph obtained from Gp after the removal
of an axis.

G′p is a Cayley graph over Γ0(p)/Γ(p).



The modified Platonic graph G ′p

G′p is (p − 1)-vertex connected.

The eigenvalues of ∆ on G′p are:

(i) p − 1 with multiplicity 1

(ii) −1 with multiplicity p

(iii) 0 with multiplicity (p − 3)/2

(iv)
√
p and −√p with multiplicity (p − 1)(p − 3)/4, each.
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The construction of the trivalent expander

[Peyerimhoff & Vdovina, 2011]

Explicit construction of a simplicial complex of 14 triangles.



The fundamental group

[Cartwright et. al, 1993]

G =< x0, x1|r1, r2, r3 >

r1 = x1x0x1x0x1x0x
−3
1 x−3

0

r2 = x1x
−1
0 x−1

1 x−3
0 x2

1x
−1
0 x1x0x1

r3 = x3
1x
−1
0 x1x0x1x

2
0x

2
1x0x1x0

From the structure of the simplicial complex we infer that the
fundamental group G has the Kazhdan T property [Bekka, de la
Harpe & Valette, 2008].



A six-valent expander

A six-valent expander is obtained as a sequence of Cayley graphs
of finite index normal subgroups of G , with generators

S = {x±1
0 , x±1

1 , (x−1
1 x−1

0 )±1}

[Ballmann & Swiatkowski, 1997] and [Bekka, de la Harpe &
Valette, 2008].



The Y-Delta transformation



A trivalent expander

[I., Peyerimhoff, Vdovina, 2011]

(i) The graphs Xk are six-valent expanders with spectrum in
[−3,C ] ∪ {6} with C < 6.

(ii) The graphs Tk are trivalent expanders with spectrum in
[−
√
C + 3,

√
C + 3] ∪ {±3}.



The intersection with Platonic graphs

[I., Peyerimhoff, Vdovina, 2011]

The graph T2 is the dual of G8 in the unique surface of genus 5
with maximal automorphism group of order 192. There is no other
isomorphism between Tk and a dual Platonic graph.



The G8


