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1 Introduction

Background When I was first asked to give a talk about umbral groups,
I declined, on the grounds that I did not know what umbral groups were.
The organisers then sent me two papers about umbral groups, totalling 299
pages, and persuaded me to reconsider. These two papers gave me two
different answers to the question of what umbral groups were, despite the
fact that the two papers were written by the same three people. The first
told me there were six umbral groups, and the second told me there were
23. It was at this point that I realised that nobody knows what an umbral
group is. Neither of these papers contains a definition of umbral group: in
both cases they are defined by the list of examples.

Six umbral groups In the beginning, there was one umbral group, namely
the Mathieu group M24. But wherever M24 goes, M12 or its double cover is
sure to follow. And before long there were 6 umbral groups, one for each
divisor of 12.

Group d l = d+ 1 n = 24/d
1.M24 1 2 24
2.M12 2 3 12
2.23L3(2) 3 4 8
2.S5 4 5 6
2.A4 6 7 4
2.2 12 13 2

Except for M24 itself, all these groups have a central involution, and the
quotient group has a natural permutation representation on 24/d points.
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Notice that 23L3(2) = AGL3(2) and S5 = PGL2(5), acting on 8 and 6 points
respectively. You may well ask, why divisors of 12, not 24? And you’d be
right to ask that question. Indeed, it seems that not only can you extend
to divisors of 24, but that it is possible to define an umbral group for each
Niemeier lattice.

Niemeier lattices The Niemeier lattices are defined as the even (x.x is
even) unimodular (one point per unit volume) integral lattices (x.y is an
integer) in 24 dimensions (of which there are 24, including the Leech lattice).
As the Leech lattice is special in so many ways, it is usually treated separately,
and the other 23 are collectively known as the Niemeier lattices. They all
have roots (that is vectors of norm 2 with the property that reflections in
these roots are automorphisms of the lattice), but, except in one case, are not
spanned by the roots. Irreducible root systems are classified by the A/D/E
Dynkin diagrams, and the property that characterises the root systems of
Niemeier lattices is that the Coxeter numbers of all the components are
equal. If I understand correctly, the Coxeter number is known here as the
lambency, although I did not find a definition of lambency, rather a list of
examples.

23 umbral groups For ease of reference, I will divide the Niemeier lattices
into pure A, pure D/E, and mixed types. The umbral group here is the
automorphism group of the lattice, modulo the normal subgroup generated
by reflections in the roots.

Roots Group ` Roots Group ` Roots Group `
A24

1 1.M24 2 A4
5D4 2.S4 6 D6

4 3.S6 6
A12

2 2.M12 3 A2
7D

2
5 2.22 8 D4

6 1.S4 10
A8

3 2.23L3(2) 4 A2
9D6 2.2 10 D3

8 1.S3 14
A6

4 2.S5 5 A11D7E6 2.1 12 D2
12 1.2 22

A4
6 2.A4 7 A15D9 2.1 16 D24 1.1 46

A3
8 2.S3 9 A17E7 2.1 18 D10E

2
7 1.2 18

A2
12 2.2 13 D16E8 1.1 30

A24 1.2 25 E4
6 2.S4 12

E3
8 1.S3 30
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2 The Leech lattice

Deep holes Now the Niemeier lattices themselves look like a fairly motley
crew, but the best way to make sense of them is via the Leech lattice. What
distinguishes the Leech lattice from the rest of the Niemeier lattices is the
fact that it has no roots: the smallest norm of a lattice vector is therefore
4. (NB I use norm here in the sense of squared length.) It is therefore
possible to make a right-angled triangle with hypotenuse of length 2, and
endpoints two neighbouring lattice vectors, and the other two sides of length√

2. It turns out, in fact, that you can do this in such a way that the right
angle of the triangle is at least

√
2 away from every lattice vector, in exactly

23 different ways, one corresponding to each of the Niemeier lattices. It is
therefore possible to study all the Niemeier lattices at once inside the Leech
lattice. These points are at maximum distance from the lattice vectors, so
are called deep holes. The deep holes were classified by Conway, Parker and
Sloane.

Twenty-three constructions Conway and Sloane went on to give 23 con-
structions of the Leech lattice, one from each Niemeier lattice. The original
construction of Leech is equivalent to the Conway–Sloane construction from
the A24

1 Niemeier lattice. The construction from A12
2 is more or less the same

as the construction of the complex Leech lattice, whose automorphism group
is 6.Suz. The construction from D6

4 corresponds to a quaternionic version of
the Leech lattice which I also studied in my thesis. The construction from
E3

8 was described in a great deal more detail by Lepowsky and Meurman
(1982), but the corresponding octonionic construction had to wait a good
deal longer (W., 2010).

Conway’s group Moreover, the umbral groups appear not only as quo-
tients of the automorphism groups of the Niemeier lattices, but also as quo-
tients of subgroups of the automorphism group of the Leech lattice. It seems
likely, therefore, that a unified theory of umbral groups is more likely to come
from studying the Leech lattice itself, and perhaps from studying subgroups
of its automorphism group, that is Conway’s group 2.Co1. And now it be-
comes clear why I have been asked to give this lecture, since my PhD thesis
was mainly about classifying the maximal subgroups of Conway’s group.
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Some subgroups At least seven of the deep holes in the Leech lattice are
associated to maximal subgroups.

Deep hole Subgroup Code over: Length Dimension
A24

1 212M24 F2 24 12
A12

2 2× 36.2M12 F3 12 6
A6

4 2.53.(4× A5).2 F5 6 3
A4

6 2× 72.(3× 2A4) F7 4 2
D6

4 25+12(S3 × 3S6) 21+4
+ 6 3

E4
6 2.33+4.2(S4 × S4) 31+2

+ 4 2
E3

8 23+12(A8 × S3) 21+6
+ 3 2

The first two are associated to the well-known Golay codes, over the fields of
order 2 and 3 respectively, the next two to some less interesting codes over
the fields of orders 5 and 7. The last three I described in terms of ‘codes’
over certain extraspecial groups.

Umbral series It is now understood that the best way to construct M24

and the binary Golay code is from the hexacode, which corresponds to the
D6

4 lattice and the umbral group 3S6. Moreover, the hexacode itself can be
constructed from the umbral group S3 associated to the E3

8 lattice.
In a similar way, the best way to construct the ternary Golay code and

the umbral group 2M12 is from the tetracode and the umbral group 2S4,
corresponding to the E4

6 lattice. Since this case is less well-known, I will
concentrate on this one.

3 3-local structure

The tetracode The basic version is a length 4, dimension 2, linear code
over the integers modulo 3. We will write 0,+,− for 0, 1, 2 respectively, and
often omit the 0s. The codewords are (0, 0, 0, 0), ±(0,+,+,+), ±(+, 0,+,−)
and those obtained by rotating the last three coordinates. The umbral group
acts as automorphisms of this code: the central involution negates all code-
words, there is a 3-cycle as already described, and a tranposition which swaps
the first two coordinates and negates the fourth coordinate. Thus the group
is a double cover of S4, which acts on the code as GL2(3).
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The ternary Golay code First draw an array with three rows and four
columns: the columns correspond to the coordinate positions of the tetra-
code, and the rows to the coordinate values 0,+,−. Each of the nine tetra-
code words now corresponds to a set of four positions in the array. Now put
entries 0,+,− in the array, subject to the following rules:

• the sum of the four entries in any tetracode word is the same;

• this equals the negative of the sum of the three entries in any column.

The symmetry group and the codewords There is a group 32 acting
on the columns in the same way as the tetracode, together with the au-
tomorphism group of the code. This gives a group 32.GL2(3) = AGL2(3)
permuting the 12 entries.

One can now write down all the 36 codewords. The weight distribution is
01626494401224, and the weight 12 words are: 6 which have + on two columns
and − on the other two; and 9 which have + on a tetracode word and −
elsewhere; together with their negatives. These are enough to span the code,
so if you are bored you can work out the rest.

It can be shown that the full automorphism group of the code (i.e. mono-
mial permutations of the 12 entries) is 2.M12.

Up to the next level We can again construct an extension of the Golay
code, of order 729, by the automorphism group, to obtain a group of shape
36:2M12. Rather than construct this as a permutation group on 729 points,
however, we can construct it as a group of 12 × 12 complex matrices, by
writing the code multiplicatively, using the group {1, ω, ω̄} of complex cube
roots of unity instead of the additive group Z3.

Writing θ = ω − ω̄ =
√
−3, we take coordinates in Z[ω] which satisfy

• zi ≡ m mod θ,

•
∑

i zi ≡ −3m mod 3θ,

• (zi −m)/θ mod θ is a word in the ternary Golay code.

With a suitable interpretation, this is the Leech lattice.
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Leech lattice vectors The minimal vectors have shape:

• (3,−3, 010), of which there are 12.11.32 = 1188;

• (θ6, 06), of which there are 264.35 = 64152;

• (−22, 110), of which 12.11.36 = 96228;

• (−2− 3ω, 111) and complex conjugates, of which 22.12.36 = 35992.

Return to E6 The minimal vectors which lie in one column of the 3 × 4
array are 54 of shape (3,−3, 0), and correspond to the minimal vectors of the
dual lattice of E6. The roots can be obtained from the next norm up, that
is (3θ, 0, 0) and (3, 3, 3), of which there are 18 + 54 = 72. Modulo the scalars
of order 3 on each column, we see both permutations and diagonal elements
(1, ω, ω̄), made up of tetracode words across the four columns. In this sense
we have blown up the tetracode so that the individual coordinates lie in the
group 31+2

+ . There is also a group 2S4 acting as outer automorphisms of 31+2,
in the same way on all four columns.

I do not know if this part of the group might also be of use in the study
of umbral groups. Notice that 31+22S4 is a maximal subgroup of the Weyl
group of E6.

4 2-local structure

The tricode group A similar procedure to the above can be used to con-
struct the binary Golay code from the hexacode, and the hexacode from an
even easier code. The construction of the complex Leech lattice using the
A12

2 hole relies on the fact that the roots of A2 are a scaled copy of the units
of the Eisenstein integers Z[ω]. In a similar way, the roots of D4 are a scaled
copy of the units of the Hurwitz ring Z[i, j, kω = 1

2
(−1+ i+j+k)] of integral

quaternions.
I will spare you the details, but perhaps just describe what happens when

we return to E3
8 at the end of the construction. Fixing the three blocks of

8 coordinates, we restrict to the group 23+12A8, which is made out of an
almost-maximal subgroup 21+6A8 of the Weyl group of type E8 in much the
same way that the E4

6 case was made out of 31+22S4. There are three copies
of 21+6, acting on the three blocks, and the condition on the three elements
is simply that their product is ±1.
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An octonionic version It is also possible to use the Coxeter–Dickson
integral octonions, whose units are a scaled copy of the roots of E8, to give
a construction of the Leech lattice with triples of octonions. This is tricky,
however. I tried it in 1980, and wrote down 196560 triples of octonions which
I thought corresponded to the minimal vectors of the Leech lattice. They
were wrong, however. Geoffrey Dixon in the mid 1990s wrote down the same
wrong list of triples, and claimed they were the Leech lattice. (The easiest
way to see it is not the Leech lattice is to note that Dixon’s set of vectors
is invariant under a group of order 73, but there is no such subgroup of
Conway’s group.) Others also tried and failed.

The difficulty can perhaps be traced to the fact that such a construction
must contain a hidden construction of the binary Golay code. In Dixon’s
version, and my earlier versions, the code that emerged was instead the sum
of three copies of the Hamming code of length 8. The lattice spanned by our
vectors was presumably the Niemeier lattice of type E3

8 . It took me months
of hard work, and many hundreds of pieces of paper, to get a correct version,
which I was then able to simplify as follows.

E8 in octonions We construct multiple copies of E8 in octonions. First
take the octonions spanned by 1 = i∞, i0, . . . , i6, with subscripts modulo
7 and multiplication rules defined by it, it+1, it+3 behaving like quaternions
i, j, k. Now take L to be the lattice spanned by 1 ± it and s = 1

2
(−1 + i0 +

· · · + i6), and R to be L̄. Define B = LR/2. Then B is spanned by units,
but is not closed under multiplication. However, it turns out that BL = L
and RB = R, which is sufficient for our purposes.

An octonionic Leech lattice Define Λ to be the set of triples (x, y, z) ∈
L3 satisfying

• x+ y, y + z ∈ Ls̄;

• x+ y + z ∈ Ls.

Then it can be shown that Λ is the Leech lattice.
What is much more interesting, however, is that many of the maximal

subgroups of Conway’s group can be described in terms of the action of
certain 3× 3 octonionic matrices. But that is a story for another day.
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