High Frequency: Open Problem Session

Simon Chandler-Wilde, Andrea Moiola, Euan Spence, Valery Smyshlyaev

Mathematical and Computational Aspects of Maxwell's Equations Durham, July 12th 2016

Open Problem 1: Understanding HF Solution Behaviour

For acoustic, EM scattering problems for general bounded obstacles in 2D and 3D can we obtain, **at least for boundary traces** for BIE formulations, representations of the form

$$v(x,k) = v_0(x,k) + \sum_{j=1}^{J} v_j(x,k) e^{ik\phi_j(x)},$$
 (1)

with v_0 and ϕ_j known and with the envelopes $v_j(x, k)$ smooth for large k? And can we get rigorous k-explicit bounds on the derivatives of $v_j(x, k)$?

Open Problem 1: Understanding HF Solution Behaviour

For acoustic, EM scattering problems for general bounded obstacles in 2D and 3D can we obtain, **at least for boundary traces** for BIE formulations, representations of the form

$$v(x,k) = v_0(x,k) + \sum_{j=1}^{J} v_j(x,k) e^{ik\phi_j(x)},$$
 (1)

with v_0 and ϕ_j known and with the envelopes $v_j(x, k)$ smooth for large k? And can we get rigorous k-explicit bounds on the derivatives of $v_j(x, k)$? Plausible that thus is possible because **high frequency asymptotic approximations** - **e.g. GTD** - **have exactly thus form, moreover with** v_j known!

Open Problem 1: Understanding HF Solution Behaviour

For acoustic, EM scattering problems for general bounded obstacles in 2D and 3D can we obtain, **at least for boundary traces** for BIE formulations, representations of the form

$$v(x,k) = v_0(x,k) + \sum_{j=1}^{J} v_j(x,k) e^{ik\phi_j(x)},$$
 (1)

with v_0 and ϕ_i known and with the envelopes $v_i(x, k)$ smooth for large k?

And can we get rigorous k-explicit bounds on the derivatives of $v_i(x, k)$?

Plausible that thus is possible because high frequency asymptotic approximations - e.g. GTD - have exactly thus form, moreover with v_i known!

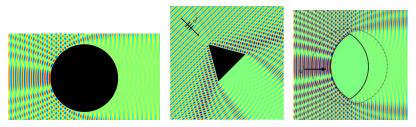
But hard in generality, hard to write down GTD approximations uniform with respect to x, k and geometry and understand "smoothness" of v_i . Some plausible next steps are ...

Open Problem 2: Rigorous HF bounds

For the Dirichlet scattering problem we can show that

$$\frac{\partial u}{\partial n}(x,k) = v_0(x,k) + \sum_{j=1}^J v_j(x,k) e^{ik\phi_j(x)},$$

with rigorous k-explicit bounds on the unknowns $v_j(x, k)$ and their derivatives for the first two of the following problems, but not the 3rd (heuristic methods in Langdon et al. 2010).



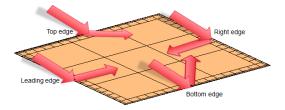
Well-known Melrose & Taylor results for C^{∞} strictly convex (see Dominguez, Graham, Smyshlyaev 2007) for 1st, arguments based on Green's function for half-plane for convex polygon for 2nd, but 3rd ???

Open Problem 3: Understanding 3D HF Soln. Behaviour

For the Dirichlet scattering problem for a screen can one show that

$$\frac{\partial u}{\partial n}(x,k) \approx v_0(x,k) + \sum_{j=1}^J v_j(x,k) e^{ik\phi_j(x)}$$

with completely rigorous (or just heuristic) k-explicit bounds on the derivatives of the unknowns $v_j(x, k)$ and on the error in this approximation?

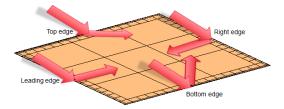


Open Problem 3: Understanding 3D HF Soln. Behaviour

For the Dirichlet scattering problem for a screen can one show that

$$\frac{\partial u}{\partial n}(x,k) \approx v_0(x,k) + \sum_{j=1}^J v_j(x,k) e^{ik\phi_j(x)}$$

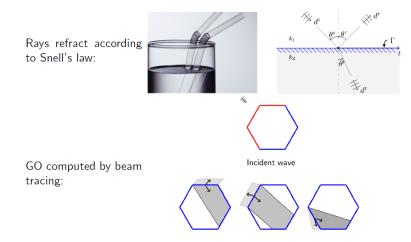
with completely rigorous (or just heuristic) *k*-explicit bounds on the derivatives of the unknowns $v_j(x, k)$ and on the error in this approximation?



Other b.c.'s, EM scattering for PEC, convex polyhedron, ... ??

Simon Chandler-Wilde et el High frequency scattering

Open Problem 4: refraction at a plane interface!



Primary beams from first reflection/refraction event

Plane wave reflection and refraction at a plane interface – the case $\text{Im } k_1 > 0$ is needed to deal with beam tracing. The issue is that phase velocity and energy flow considerations can conflict.

Open Problem 5: Coercivity for the standard CFIE

$$\Delta u + k^2 u = 0$$

$$D$$

$$u^i, \text{ incident wave}$$

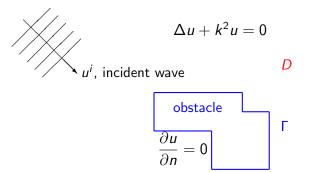
$$U = 0$$

$$u = 0$$

$$\Gamma$$
The standard CF BIE for $\frac{\partial u}{\partial n}$ is - Smyshlyaev talk -
$$\frac{1}{2} \frac{\partial u}{\partial n}(\mathbf{x}) + \int_{\Gamma} \left(\frac{\partial \Phi(\mathbf{x}, \mathbf{y})}{\partial \mathbf{n}(\mathbf{x})} - ik\Phi(\mathbf{x}, \mathbf{y}) \right) \frac{\partial u}{\partial \mathbf{n}}(\mathbf{y}) \, \mathrm{d}s(\mathbf{y}) = f(\mathbf{x}), \quad \mathbf{x} \in \Gamma.$$

Spence, Kamotskii, Smyhlyaev (2015) have shown coercivity for smooth, strictly convex, but how to prove this more generally and/or without Morawetz multipliers? Numerical results (Betcke & Spence 2011) suggest that coercivity holds for all non-trapping.

Open Problem 6: Coercivity for the Neumann CFIE



Can one prove coercivity for the standard Burton & Miller CFIE, for the Neumann problem – regularised with S_0 or S_{ik} so as to map $L^2(\Gamma)$ to $L^2(\Gamma)$?

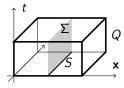
Bounbedir & Turc (2013) have proved this for a circle/sphere by eigenfunction expansions, but general strictly convex? Non-trapping? CFIE for EM scattering?

Open problem 7: trace regularity on space-time interfaces

Let $\Omega \in \mathbb{R}^n$ be Lipschitz/polytopic and bounded, $Q = \Omega \times (0, T)$, c (piecewise) constant. Consider inhomogeneous IBVP for 1^{st} -order wave equation:

$$\begin{cases} \nabla z + \frac{\partial \zeta}{\partial t} = \mathbf{\Phi} & \text{in } Q, \\ \nabla \cdot \zeta + \frac{1}{c^2} \frac{\partial z}{\partial t} = \psi & \text{in } Q, \\ z(\cdot, 0) = 0, \quad \zeta(\cdot, 0) = \mathbf{0} & \text{on } \Omega, \\ z = 0, \quad \zeta \cdot \mathbf{n}_{\Omega}^{\mathsf{x}} = 0, \quad cz - \zeta \cdot \mathbf{n}_{\Omega}^{\mathsf{x}} = 0 & \text{one of these on } \partial\Omega \times (0, T). \end{cases}$$

Let S be a Lipschitz interface separating Ω in two components and $\Sigma = S \times (0, T)$ with unit normal \mathbf{n}_{Σ} . What are minimal assumptions on sources $\mathbf{\Phi}, \psi$ to ensure traces of v and $\boldsymbol{\zeta} \cdot \mathbf{n}_{\Sigma}$ are in $L^2(\Sigma)$?



$$\begin{array}{ll} \mathsf{Ideal:} & (\psi, \mathbf{\Phi}) \in L^2(Q) \times \mathbf{L}^2(Q). \\ \mathsf{Holds for:} & H^1(L^2(\Omega), 0, T) \times \\ L^2(\mathcal{H}(\operatorname{div}; \Omega), 0, T) \cap H^{-1}_*(\mathcal{H}_0(\operatorname{curl}; \Omega), 0, T) \\ (\mathsf{Dirichlet case}). \\ \mathsf{Similarly for Maxwell, hyperbolic systems...} \end{array}$$