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Electrical impedance tomography (EIT)

Calderón’s inverse conductivity problem:
Imaging an electrical conductivity σ(x) via
noninvasive voltage/current measurements at
the surface of an object.

+ Major theoretical and numerical advances
over last 35 years.

– Plain EIT has seen limited application in
clinical/industrial settings.

↪→ Hybrid imaging developed to overcome
disadvantages of EIT and other modalities.
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• Interior of a region Ω ⊂ Rn, n = 2, 3,
filled with matter having conductivity σ(x).
(Ω = human body, industrial part,...)

• Place electrodes on the boundary, ∂Ω.

Connect to DC sources to create a
prescribed voltage distribution, f , on ∂Ω.

f induces a electric potential u(x) in Ω.

•Measure resulting current flow I across ∂Ω.
Ohm’s Law =⇒

I = σ · ∂u
∂ν



Quasi-static regime: Electric potential u(x)
satisfies conductivity equation,

∇ · (σ∇u)(x) = 0 on Ω,

with Dirichlet boundary condition
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Quasi-static regime: Electric potential u(x)
satisfies conductivity equation,

∇ · (σ∇u)(x) = 0 on Ω,

with Dirichlet boundary condition

u|∂Ω = f = prescribed voltage on ∂Ω.

Dirichlet-to-Neumann operator

f −→ σ · ∂u
∂ν

=: Λσ(f ) on ∂Ω.

Λσ : H
1
2(∂Ω)→ H−

1
2(∂Ω) bounded lin. oper.
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Calderón’s Inverse Problem (Isotropic)

(i) Uniqueness: Does Λσ1 = Λσ2 =⇒ σ1 = σ2?

(ii) Reconstruction: Can we find σ(x) from Λσ?

(iii, . . . ) Stability of Λσ → σ, numerics, . . .

A: Yes to (i), (ii), but poor stability.
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Progress on isotropic Calderón problem

1980, Calderón: linearization around σ ≡ 1

1984, Kohn and Vogelius: uniqueness for
piecewise -Cω conductivities

1986, Sylvester and Uhlmann: uniqueness
for σ ∈ C2, n ≥ 3. Introduced CGO solutions.

1988, Nachman: reconstruction, n ≥ 3

1996, Nachman: uniqueness+reconstr., n = 2
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2006, Astala and Pävärinta: uniqueness and
reconstruction for σ ∈ L∞, n = 2

For n = 3:

2013, Haberman and Tataru: uniqueness for
σ ∈ C1 or Lipschitz close to constant.

2015, Caro and Rogers: ! for Lipschitz σ.

2015, Haberman: ! for σ ∈ W 1,3+ε.

Q.: Does uniqueness hold for σ ∈ L∞ ?



Problem: EIT has high contrast sensitivity,
but low spatial resolution.

Figure 1: EIT tank and measurements. Source: Kaipio lab, Univ. of Kuopio, Finland
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Hybrid inverse problems

Q: Can one improve imaging by using data
from more than one type of wave?

(i) Image registration, e.g., CT+MRI

(ii) Stabilization: collect data for two types
of waves, X and Y , simultaneously. Either
use

• Y data to provide a priori information
that stabilizes reconstruction from X data;

or

• an algorithm using both X and Y data.



Ex.: Current Density Impedance Imaging
(CDI) - Magnetic Resonance EIT (MREIT):

Measure both voltage/current at ∂Ω and
current density σ|∇u| in the interior (via MRI).

↪→ J-substitution algo. of Kwon, Woo, et al.



Ex.: Current Density Impedance Imaging
(CDI) - Magnetic Resonance EIT (MREIT):

Measure both voltage/current at ∂Ω and
current density σ|∇u| in the interior (via MRI).

↪→ J-substitution algo. of Kwon, Woo, et al.

However, want to discuss

(iii) ‘Multi-physics’ hybrid methods in which
two different kinds of waves are physically
coupled.
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Multi-physics methods often combine two
illumination and detection modalities,
one with

• high contrast sensitivity but low resolution,

and the other one

• low contrast but high resolution,

linked by a physical interaction.

Mathematically: couple an elliptic PDE
with a hyperbolic PDE.
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Thermo-acoustic tomography (TAT)

Illuminate object with short microwave pulse.
EM energy is absorbed preferentially by
subregions of interest, e.g., tumors.

Photo-acoustic effect: Thermal expansion
produces acoustic waves (often ultrasound)
with sources at loci of high EM absorption.

Acoustic waves then propagate out to ∂Ω,
where measured.

EM governed by diffusion eqn. (elliptic),
US by acoustic wave eqn. (hyperbolic).



• Solve hyperbolic inverse problem for US.

Reconstructs with good spatial resolution
an internal measurement: a functional F (x, u,∇u)
of the solution u(x) of the elliptic problem for
the EM field.

• Then solve the elliptic inverse problem of
finding absorption coefficient in Ω from

• u on ∂Ω

• F on Ω

• Other a priori information/assumptions
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Ultrasound Modulated Optical Tomography
(UMOT):

Illumination by ultrasound,
detection by infrared.

Acousto-Electric Tomography (AET/UMEIT):

Illumination by ultrasound,
detection by EIT.



Model of PAT

• Illuminate with short pulse.
Scalar EM field in Ω satisfies

−∇ · (σ(x)∇u(x)) + a(x)u(x) = 0,

u|∂Ω (known)

a(x) = absorption coeff. (desired)

σ(x) = diffusion coeff.



• Resulting pressure p(x, t) satisfies

(
∂2
t − c(x)2∆

)
p(x, t) = 0 on Ω× [0,∞)

p(x, 0) = F (x, u(x)), ∂tp(x, 0) = 0

F = Γ(x)a(x)u(x), where Γ(x) = Grüneisen coeff.

Then: (1) solve hyperbolic IP and find F (x, u(x))
from p|∂Ω×[0,T0]

(2) solve problem finding a(x) from F, u|∂Ω, Γ
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(i) principal symbol pm(x, ξ) is R-valued
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Real principal type (RPT) operators

P (x,D) ∈ Ψm(Rn), n ≥ 2, is of RPT if

(i) principal symbol pm(x, ξ) is R-valued

(ii) dpm(x, ξ) 6= (0, 0) at

ΣP = {(x, ξ) ∈ T ∗Rn, ξ 6= 0 : pm(x, ξ) = 0}
Thus, ΣP is foliated by bicharacteristics :=
integral curves of

Hpm :=
∑ ∂pm

∂ξj

∂

∂xj
− ∂pm
∂xj

∂

∂ξj

(iii) No bichar is trapped over a compact
set K ⊂ Rn.
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Duistermaat and Hörmander (FIO II):
constructed parametrices for RPT ops,
showed they are locally solvable,
and singularities of Pu = f propagate along
the bicharacteristics.

Thm. For all f ∈ E ′(X), Pu = f is solvable,
and if (x, ξ) ∈ WF (u) \ WF (f ), then WF (u)
contains the bicharacteristic through (x, ξ).

Did this by conjugating P (x,D) to model,

Q1(x,D) =
∂

∂x1
+ Q−∞(x,D)

whose Green’s function ∂
∂x1

is H(x1)·δ(x′)+ . . .
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not via coupling with another physics,
but by mathematical analysis.



Current work: virtual ‘hybrid’ imaging in 2D

Only one kind of wave: electrostatic.

Good propagation of singularities is obtained
not via coupling with another physics,
but by mathematical analysis.

After a transformation, singularities of D2N
data propagate interior details efficiently
from any x0 ∈ Ω to any y0 ∈ ∂Ω.

Q.: What kind of PDE have this kind of
propagation of singularities?



Complex principal type (CPT) operators

pm(x, ξ) = pRm(x, ξ) + i pIm(x, ξ) with

(i) ∇x,ξ pR, ∇x,ξ pI linearly indep. at

Σ = {(x, ξ) : pm(x, ξ) = 0} (codim 2)

(ii) Poisson bracket {pRm, pIm} :=

(∇ξ pRm) · (∇x pIm)− (∇x pRm) · (∇ξ pIm) ≡ 0 on Σ

(i), (ii) ⇐⇒ Σ is a codimension 2 coisotropic
submanifold of T ∗X. =⇒



Σ is foliated by 2-dim bicharacteristic leaves,
which project to characteristic surfaces in X.

(iii) a nontrapping assumption.

Thm. (D.-H.) P (x,D) is locally solvable and
if Pu = f , then

WF (u) \WF (f )

is a union of bicharacteristic leaves.



Virtual hybrid edge detection: Exploit CPT
operator structure underlying EIT to extract
information about interior singularities of the
conductivity.

Singularities propagate efficiently
along 2D characteristics to ∂Ω.

Recently available CGO solutions have made
numerics doable.



Virtual hybrid edge detection: Exploit CPT
operator structure underlying EIT to extract
information about interior singularities of the
conductivity.

Singularities propagate efficiently
along 2D characteristics to ∂Ω.

Recently available CGO solutions have made
numerics doable.

Thank you!


