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Maxwell–Bloch equations:�
simplest accurate spatio-temporal lasing model

•  fully time-dependent, multiple unknown fields, nonlinear 
(Haken, Lamb, 1963): Maxwell + Lorentzian polarization 
resonance + 2-level atom population inversion

Inversion drives 
polarization

Polarization 
induces inversion1

population
inversion:



brute-force Maxwell–Bloch �
FDTD (finite-difference time-domain)�

simulations very expensive — �
E and D change on very different timescales 

— but do-able (barely)

[ Bermel et. al. (PRB 2006) ]



If a steady-state lasing solution 
exists, we’d rather solve for it 
directly without time-evolving

• “rotating-wave approximation”
    fast oscillations average out to zero
    … all oscillations are fast compared to γ||

key assumption:
γ⟂, Δω >> γ||

valid for < 100µm microlasers

stationary-inversion approximation (SIE)

… leads to:

 [Tureci, Stone, 2006]



after: 
Steady-State Ab-Initio 

Lasing Theory,
“SALT”

 [Tureci, Stone, 2006]

before

∇×∇×Em =ωm
2εmEm

Still nontrivial to solve: 
equation is nonlinear in both

eigenvalue          ß easier    

eigenvector         ß harder



New numerical solvers:�
High-dimensional Newton from threshold modes

∇×∇×Em =ωm
2εmEm

εm = εc (x)+
γ 0

ωm −ω0 + iγ 0
D0 (x,d)
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ωn −ω0 + iγ 0
En
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∑

SALT: lasing steady state 
         = “ordinary” EM eigenproblem

with nonlinear permittivity ε

(Lorentzian gain spectrum, mode amplitudes an)

full 3d
nonlinear 
PDE solvers

[ Esterhazy et al., PRA (2014) ]



Fully nonlinear inter-modal interactions:�
“gain-switched lasing modes” in 2d

(solid = Newton FDFD,  
 dashed = Bessel basis)

Mode-switching in Microdisc Laser

[ Li Ge et al, Optics Express 24, 41–54 (2016) ]



New analytical formulations (SALT)
+ new numerical solvers (lasing modes)

[ many other variations:
including laser amplification “I-SALT”,
lasing in diffusive gases “C-SALT”, … ]

…

New opportunities for analytical results, too.



Laser noise:

random (quantum/thermal) currents
“kick” the laser mode

⇒ Brownian phase drift = finite linewidth



o  Schawlow-Townes (’58) - inverse power 1/P scaling
o  Incomplete inversion (’67) - due to partial inversion
o  Petermann (‘79) - enhancement for lossy cavities
o  Bad-cavity (’67) - reduction due to dispersion
o  α-factor (‘82) - coupling of intensity/phase fluctuations

              … all make approximations invalid for µ-scale lasers…

ST PI B

Linewidth formulas: a long history

α

chaotic cavity	 photonic crystal	 random laser	
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[Arecchi & Bonifacio, 1965]
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[Arecchi & Bonifacio, 1965]

Langevin 
�

                   Maxwell–Bloch
Starting point:

Noise correlations: fluctuation–dissipation theorem at T < 0 

[Callen & Welton, 1957]



Starting point: 
Langevin MB. 

(with SALT + FDT) 

Dynamical eqs. 
for lasing mode 

amplitudes 
(oscillator eqs.) 

 
 formulas for  

multimode  
linewidths & 

RO side peaks 

The Noisy-SALT linewidth
[ Pick et al., PRA 91, 063806 (2015) ]



Oscillator equations

Most general dynamical equations (class A+B lasers)

time-delayed, spatially inhomogeneous restoring force

Simple limit:  Single-mode “class A” lasers

instantaneous restoring force

Noise-free SALT:	

SALT modes	
Noisy N-SALT:	

often derived
 heuristically
 [ Lax (1967) ]



Solving the oscillator equations

Expand mode amplitudes around steady state: �
aμ = (aμ0 + δμ) exp(iϕμ) [small noise = linearize in δμ]

o  Miracle #1: can solve analytically for <	ϕμ ϕν > 
correlation function, which gives linewidths.�

o  Miracle #2: γ(x) exactly cancels and gives same answer 
as instantaneous model! The simple “class A” model is 
correct for “class B!”



cavity bandwith Petermann factor Bad-cavity factor 

α factor Incomplete inversion 

ST PI B α

Single-mode linewidth formula
[ Pick et al., PRA 91, 063806 (2015) ]



A. Cerjan et al., Opt. Exp. 23, 28316 (2015)�
	

Brute-force validation

N-SALT	
FDTD	

CS	 ST	

Brute-force simulations of Langevin–Maxwell–Bloch show
excellent agreement with N-SALT linewidth formula�
�
�
�
�
�
�

�

Only N-SALT captures all relevant physics in MB



many other new analytical 
& computational opportunities…



Lasing of Degenerate Modes
well-studied example: whispering gallery modes

Silica microdisk
[Armani et. al. 2003]

High-symmetry resonant cavities 
can have degenerate resonances, 
but almost the cases that have 
been studied above threshold are 
ring/disk resonators.

How do you find such modes?

Do SALT or SALT solvers need to 
be modified for degeneracies?

Lasing stable superposition:

Intensity in He-Ne laser
[Tamm PRA 1998]



What about other symmetric geometries?

✔

… and so on???

[ Minkov (2014) ]

[ Srinivasan (2004) ]
[ A. Gamucci ]

quasi-crystal
[ Romero-Vivas (2005) ]

photonic-crystal (and quasicrystal) cavities have
discrete rotational symmetries

[ Braun et. al. 2003 ]

Group theory: Cnv symmetry (= n-fold rotation + n mirror planes)
can have 2-fold degenerate modes, but how do they lase?



Why not just plug degenerate geometry into SALT? �
�

One of the challenges:
• A nonlinear solver (e.g. Newton) needs an initial guess
  via the threshold (linear) modes — but now there are two

— but what is the “right” (stable) superposition?
 — are we sure a stable lasing mode exists?



Threshold perturbation theory
At a pump strength DT, suppose we have two degenerate
threshold modes ψ1,2 (solving linear Maxwell eigenproblem)

… consider pump D0 = (1 + d) DT for 0 ≤ d << 1,
    & solve the nonlinear d>0 equations to lowest order in d
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Im ω

threshold lasing moderesonances:
poles in linear

Green’s function

doubly degenerate
passive pole

adding gain (increasing pump)
pushes up pole(s) to real axis



Perturbative lasing modes

First, find the steady-state d>0 modes (possibly unstable)

… plug into SALT, drop higher-order terms in d …

Straightforward to solve for all allowed a1,2 superpositions.



High-symmetry perturbative SALT
• Consider degenerate lasing modes coming from Cnv symmetry.

ring: C∞v photonic crystal: C6v

“cos-like” “sin-like”

degenerate modes ψ1,2 comein cos/sin-like even/odd pairs 

Result: d>0 SALT solutions are always either
            standing (ψ1 or ψ2)  or circulating (ψ1 ± i ψ2)!



Analytical Near-Threshold Stability
[ following Burkhardt, Liertzer, Krimer, & Rotter (2015),
    who solve linear-stability numerically for any d ]

MB solution = steady state + perturbation

linearized MB equations, dropping O(u2)

veσt eigensolutions:

stability:
   all eigenvalues
   σ have Re σ < 0



Perturbative Stability Analysis
veσt eigensolutions:

expand perturbatively in d:

solve order-by-order … quite tedious, but analytical!

… many terms simplify depending on symmetry group.



Perturbative Stability Results �
(in 1d ring example)

σ

d

circulating modes are stable standing modes are unstable

d

Validated perturbation theory (lines)
against brute-force eigenvalues σ (dots) for 1d ring.



Result: symmetry + integrals of threshold modes
        = stability criteria for circulating/standing modes

stable degenerate solutions are almost always circulating
              (from “chiral” group representations)

Correct “initial guess” for above-threshold SALT solver.

projection onto
circulating mode:

[ Interesting point: C4v group (square) is very special,
      and can sometimes have stable standing-wave modes ]



Putting it all together: C6v photonic-crystal resonator

Stable lasing
      intensity:

threshold degenerate modes

[ Omitted details:
techniques to

correct for numerical
symmetry breaking. ]



Symmetry-breaking above threshold

“chiral” lasing mode
in dielectric square

degenerate passive resonance
≠ mirror flip of lasing mode

“spiral” intensity pattern of circulating mode generally breaks
mirror symmetry above threshold — only Cn symmetry remains!
       … what happens to degeneracy above threshold?

Cn does not have degeneracy
… except if we also have reciprocity
   [ Hopkins et al. arXiv:1412.1120v2 (2015) ]



New solvers, new formulations =�
many analytical (& computational) �

opportunities remaining
•  Lyapunov stability of multi-mode SALT: 

well-established numerically & qualitatively 
plausible, but no rigorous analysis.

•  Exceptional-point lasing
•  Band-edge surface-emitting lasers 

(continuum of guided/leaky resonances)
•  …
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