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Calderén problem

Conductivity equation

div(c(x)Vu) =0  in Q,
u=r"F on 0f2

where Q C R” bounded Lipschitz domain, o € L*°(Q) positive
scalar function (electrical conductivity).

Boundary measurements given by Dirichlet- Q
to-Neumann (DN) map

/\g :f—oVu- V’aQ.

Inverse problem: given A, determine o.



Maxwell equations

Consider (elliptic) Maxwell equations in Q C R3,

V x E = iwuH,
V x H=—iweE.

Here Q is a bounded C*° domain and
» E,H:Q — C3 are electric and magpnetic fields
» w > 0 is a fixed (non-resonant) frequency

» &, € C(Q,C) and Re (g),Re (1) > 0
Boundary measurements (admittance map)
AE,,u : Etan’@ﬂ — Htan|8Q'

Inverse problem: given A, ,, determine ¢, p.



Relation to Calderdén problem

Maxwell equations with real pg, 9 and conductivity o

V x E = jwpoH,
V x H=—iw(eo+ L0o)E.

Formal limit as w — 0:

V x E =0,
V xH=cE.

From first equation get E = Vu, then second equation implies
the conductivity equation

V-oVu=0.

Also A, ,, ~ N, as w — 0 [Lassas 1997].



Maxwell inverse problem

Results (mostly for scalar ¢, p):

uniqueness E U E c3 Ola-Piivarinta-Somersalo 1993
g, U € ct Caro-Zhou 2014
log stability &, € C>  Caro 2010
partial data under Caro-Ola-S 2009
various Brown-Marletta-Reyes 2016
conditions Chung-Ola-S-Tzou 2016

matrix €, u

Kenig-S-Uhlmann 2011
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Elliptization

Maxwell equations in Q C R3,

V x E = iwuH,
V X H=—iweE.

This is a 6 x 6 system, not elliptic as it is written! Since
div o curl = 0, obtain constituent equations

{V'(MH):Q
V- (¢E) =0.

Elliptization (Herz/Sommerfeld potentials, [Picard 1984], [Ola-Somersalo 1996]):
adding two equations requires adding two extra unknowns, the
scalar fields ¢ and V.



Elliptization

Maxwell equations become the 8 x 8 system

*+ V. 0 = O]
x 0 VX x E
c vx 0 x| TVO| | =0
* 0 V- x \

where V' is an 8 x 8 matrix function. Here (E H)* will solve
Maxwell iff (0 E H 0)* solves the above system (that is,
need ® =V = 0 in order to solve Maxwell).

We are free to choose the * entries so that the new system
becomes elliptic. How to do this?



Geometric setup

Let (M, g) compact 3D Riemannian manifold with boundary.
Maxwell equations

xdE = iwpH,
xdH = —iweE

Here
» E H complex 1-forms on M
» ¢, smooth functions in M with Re (¢),Re (i) > 0

d exterior derivative

v

» x Hodge star in (M, g), maps k-forms to (3 — k)-forms
The adjoint of d is the codifferential 6 = + * d*. Recall that

d and § act as grad / curl / div.



Elliptization

The previous 8 x 8 system may be rewritten as

x 0 0 =« 0]
* 0 d x E
vd oo« | TYO ]y =0
x 0 0 = *W

where ® W are O-forms and E, H are 1-forms. The vector
( E xH xWV)'identifies with the graded differential form

X =&+ E + xH+ V.

There is a natural elliptic operator, the Hodge Dirac operator,
acting on graded forms:

D=d+o.



Elliptization
Reduce Maxwell equations to a Dirac equation (8 x 8 system)
(D+V)X=0
where X = & + E 4+ xH + %V is a graded differential form, and
D=d+o.

Here D? = A, is the Hodge Laplacian acting on graded forms.
For functions, A, is the Laplace-Beltrami operator

: 1 0 4 Ou
Au=S" ——— 2 (/det gg* L
et J,;l V/det g Ox; ( 88 8xk> ’

where g = (gjk);gil = (gjk)-



Calderén problem

Recall the steps to solve the Calderén problem:

1. Substitute v = v~'/2v, conductivity equation
div(yVu) = 0 «~ Schrodinger equation (—A + q)v = 0.
2. Integral identity: for any u; solving (—A + q;)u; = 0,

/(ql — @)Uy dx = 0.
Q
3. Insert complex geometrical optics solutions
up=e"*(1+r), peC” p-p=0
to integral identity, recover Fourier transform of gq.

Want to use a similar strategy for Maxwell equations.



Strategy [Ola-Somersalo (1996) in R3]

1. Reduce Maxwell equations to Dirac equation

(D + V)X = 0.

2. Rescale by £1/2 and ;/2, obtain rescaled Dirac equation
(D+ W)Y =0.

3. Reduce to Schrodinger equation (—A, + Q)Z =0 by
squaring.

4. Construct complex geometrical optics solutions Z.

5. Obtain solutions to Maxwell by showing that ® =WV =0
(need uniqueness notion for complex geometrical optics).

6. Insert solutions to an integral identity.

7. Recover € and p from nonlinear differential expressions by
unique continuation.
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Complex geometrical optics
Recall exponential solutions for p € C" [Calderén 1980]
Au=0, v=¢€e"", p-p=0.
If g € L>°(Q2), CGO solutions [Sylvester-Uhlmann 1987]
(-A+qu=0, uv=e"(1+r),
where ||r]|;2 — 0 as |p| — oc.

If Q C R3 and &, p are scalar, matrix Schrodinger equation

becomes
((wA)lgxs + Q)Z = 0.

Can use Sylvester-Uhlmann approach with uniqueness notion
to produce CGO solutions with & = ¥V = 0.



Complex geometrical optics

For matrix ¢, jv or partial data need a new method, leading to:

Theorem (Kenig—S—UhImann 2011)

Let € and p be matrices conformal to

1 0
Alx, x') = _
( 1 ) ( 0 go(X/) 1 )
where g is a simple metric’. Then A, determines ¢ and p.

Here, matrices ¢ and p are conformal if

e(x) = a(x)u(x), « positive scalar function.

le.g. a small perturbation of the identity matrix



Dynamic Maxwell equations

Theorem (Kurylev—Lassas—Somersan 2006)

Knowledge of A, , for all frequencies w > 0 determines any
conformal real matrices ¢, i uniquely up to diffeomorphism.

(Reduces to an inverse problem for hyperbolic Maxwell
equations.)

If €, u are not conformal, many open questions in both elliptic
and hyperbolic cases:

» [Krupchyk-Kurylev-Lassas 2010] Recover Betti numbers of
the domain €2 from A, , for all frequencies



Complex geometrical optics

If Q C R3, Sylvester-Uhlmann obtain CGO solutions with
uniqueness notion by extending to R® and fixing decay at oco.

If (M, g) is compact and

8bax) = ( ; go?X’) ) ’

get CGO solutions with uniqueness notion by extending to a
cylinder and requiring decay at ends + zero boundary values.




Complex geometrical optics

Let T =R x My, g = e ® go, where (Mo, go) is a compact
manifold with boundary. Write x = (x1, x’), and define

1fll2ery = 1)’ Flliz(m,
H;(T) = {f € L}(T); df € L}(T)},
H;o(T) ={f € HY(T); flor = 0}.

Theorem (Kenig—S—UhImann 2011)

Let § > 1/2. If |7| > 1 and 72 ¢ Spec(—Ay,), then for any
f € L5(T) there is a unique solution u € H';,(T) of

e (=Ag)e ™ u=f inT,
C

||u||L2_5(T) < 7|||f||L§(T)'



Proof of norm estimates

Here Spec(—Ag,) = {\/}72, are Dirichlet eigenvalues of the
Laplacian in (Mo, go), with eigenfunctions {¢,}7°; forming an
orthonormal basis of L?(My):

—Dgy 1 = M@y in Mo, ¢1lom, = 0.

If f € L?(T) write partial Fourier expansion
f(x,x') = Z ?(Xl, Nei(x'), ?(Xla I) = (f(x1, ), 1)z

. . . H— /
Example: if My = T""!, eigenfunctions are {e™ %'} czn1.



Uniqueness

Assume u € Hjo(T) and e™(—Ag)e ™ u = 0. Have
g=edgy = N, =07+,

Taking partial Fourier coefficients in x” and Fourier transform
in x1, obtain

e N e ™M u=0 = (=07 +270, — 7> — Ay )u=0
— (= 4210 — T2+ \)i(-,1) =0
— (& +2it& -T2+ N)o(-, ) =0.

The symbol is nonvanishing since 72 ¢ Spec(—Ag,) (look at
the real and imaginary parts). Thus & = 0.



Existence

Let f € L3(T) with § > 1/2, 7 > 1. Have
e Ao ™ u=f = (=07 +210, — T — Ag)u=f
= (=0} +2700 — T+ N)u(-, 1) =F(-,])

This is an ODE for the partial Fourier coefficients of w.
Factorize:

(O — [+ VAD©@ — [ = VDU~ ) = —F(-.1).

It is enough to solve these ODEs with suitable estimates.



Existence

Lemma
Let a € R~ {0}. The equation

v —au=Ff inR
has a unique solution u € ./(R) for any f € .#/(R). The
solution operator S, satisfies

G
|l
||Saf||L2_5 < C6||f||L§ ifa#0and > 1/2.

1S, Flliz < 2NIflli2 if a| > 1 and 6 € R,



Proof of Lemma
Since a #£ 0,
1 .
st

Have unique solution v € . for any f € .. If |a| > 1,

UV —au=f < (if—a)f/:IAr — 0=

lulliz = llallms < 11(i€ = a)HlcxllFllms < 2 |Hf||L2
If a >0, have u(x) = — [ f(t)e () dt so ||ul|re < ||f]|11.
Since § > 1/2,

Jalle, < lulle 169Nz < GolFlu = G5 [ ¢6) (eI e
< Gliffls. O
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Local data problem

Prescribe Eian|r, measure Hyap|r:

Q



Local data problem

Theorem (Brown—l\/larletta—Reyes 2016)
Let e, u € C?(Q) be a priori known near 05).

If I C 0N is open, boundary measurements

on [ determine ¢, p.

2

Extends scalar result of [Ammari-Uhlmann 2004]. Ideas:

» boundary map on ' 4+ known coefficients near 02
~ full boundary map on a subdomain Qy, CC Q

» uses the Runge approximation property (solutions in Qg
approximated by solutions in Q vanishing on 9Q\ I'),
follows from unique continuation principle



Partial data problem

Theorem (Chung—OIa—S—Tzou 2016)
Let Q C R3 be strictly convex and e, € C3(Q). If [ C 9Q is
open, measuring Hi.,|r for any Eian|aq determines e and p.

Extends scalar result of [Kenig-Sjéstrand-Uhlmann 2007]. ldeas:

» CGO solutions for matrix Schrodinger equation
(-8, +Q)Z=0

» control Z|rc via Carleman estimates with boundary terms
[Chung-S-Tzou 2016]

» relative/absolute boundary conditions for Hodge Laplace
~~ good boundary conditions for Maxwell



Partial data problem

Matrix Schrodinger equation
(-Ag+ Q)u=0

Relative boundary conditions (tu, tdu), where t = i* is the
tangential part of a differential form, lead to a well-posed BVP.

If u=(® E xH xW¥)" with &, W 0-forms and E, H 1-forms,
relative BC correspond to fixing

Ploq, Ewanlon, V- Elaq, v Hlaq, (V X H)tanloa, 0,V]|sq.

If & =W =0, this leads to CGO solutions for Maxwell with
Eian and Hi,, vanishing on a (large) part of 0%2.



Open questions

1. Solve the Maxwell inverse problem without reducing to a
second order equation or extending to a larger set.

2. Can one determine ¢, n € W2 in Q C R? from A, ,?

3. Is it possible in some cases to recover matrix €, p that are
not conformal?



