EPSRC Durham Symposium

Geometric and Algebraic Aspects of Integrability

What is Darboux Integrability?

Ian Anderson
Utah State University
July 28, 2016
Overview

The classical literature on the exact integration of PDE is very extensive. [Goursat, 2 volumes]

Methods: Monge, Laplace, Ampere, Moutard, Darboux ..
Overview

The classical literature on the exact integration of PDE is very extensive. [Goursat, 2 volumes]

Methods: Monge, Laplace, Ampere, Moutard, Darboux ..

Integrals: Complete, General, Intermediate Integral, Darboux ...
Overview

The classical literature on the exact integration of PDE is very extensive. [Goursat, 2 volumes]

Methods: Monge, Laplace, Ampere, Moutard, Darboux ..

Integrals: Complete, General, Intermediate Integral, Darboux ...

Examples: Infinitely many but the most famous is:

\[
\begin{align*}
\frac{\partial^2 u}{\partial x^2} - \frac{1}{2} \frac{\partial u^2}{\partial x} &= 0 \\
\frac{\partial y}{\partial (I)} &= 0 \\
\partial u &= \ln(2) f'(x) g'(y) (f(x) + g(y))
\end{align*}
\]
Overview

The classical literature on the exact integration of PDE is very extensive. [Goursat, 2 volumes]

Methods: Monge, Laplace, Ampere, Moutard, Darboux ..

Integrals: Complete, General, Intermediate Integral, Darboux ...

Examples: Infinitely many but the most famous is:

\[u_{xy} = e^u, \quad l = u_{xx} - \frac{1}{2} u_x^2, \quad D_y(l) = 0 \]

\[u = \ln \frac{2f'(x)g'(y)}{(f(x) + g(y))^2} \]
Overview

The classical literature on the exact integration of PDE is very extensive. [Goursat, 2 volumes]

Methods: Monge, Laplace, Ampere, Moutard, Darboux ..

Integrals: Complete, General, Intermediate Integral, Darboux ...

Examples: Infinitely many but the most famous is:

\[u_{xy} = e^u, \quad l = u_{xx} - \frac{1}{2} u_x^2, \quad D_y(l) = 0 \]

\[u = \ln \frac{2f'(x)g'(y)}{(f(x) + g(y))^2} \]

With this classical literature (including the tricks), one can solve "explicitly" these so-called Darboux integrable equations.
But many structural questions about these equations remain;

In the context of this conference: Equivalence, Symmetries, IVP, Bäcklund, Zero Curvature.

AND one would really like a SIMPLE organizing principle for all these classical integration methods and examples.
Goals:

1. Motivate a new Lie group theoretic definition of DI.
2. Show how this new definition can be used to effective study all these questions and organize the subject.
Symmetry Reduction

Lie groups are typically used to reduce differential equations in two distinct ways:

1. Group Invariant Solutions for PDE:
 \[u_{xx} + u_{yy} = 0, \quad u(x) = f(\sqrt{x^2 + y^2}) \rightarrow f'' + 2rf' = 0 \]

2. Lie Symmetry Reduction for ODE:
 \[u'' - uu' = 0 \] (with symmetry \((x, u) \rightarrow (\lambda x, \lambda u)\))

 \[s = u_x, \quad v' = vv(v - s) \] (symmetry reduction)

In this talk, we shall deal exclusively with the second type of reduction.
Symmetry Reduction

Lie groups are typical used to reduce differential equations in two distinct way.
Symmetry Reduction

Lie groups are typical used to reduce differential equations in two distinct way.

Group Invariant Solutions for PDE.

\[u_{xx} + u_{yy} = 0, \quad u = f(\sqrt{x^2 + y^2}) \longrightarrow f'' + \frac{2}{r} f' = 0 \]
Symmetry Reduction

Lie groups are typical used to reduce differential equations in two distinct way.

Group Invariant Solutions for PDE.

\[u_{xx} + u_{yy} = 0, \quad u = f(\sqrt{x^2 + y^2}) \longrightarrow f'' + \frac{2}{r}f' = 0 \]

Lie Symmetry Reduction For ODE.

\[u'' - \frac{u'}{u} = 0 \quad (\text{with symmetry } (x, u) \rightarrow (\lambda x, \lambda u)) \]

\[s = \frac{u}{x}, \quad v = y' \quad (\text{symmetry invariants}) \]

\[v' = \frac{v}{v(v - s)} \quad (\text{symmetry reduction}) \]

In this talk we shall deal exclusively with the second type of reduction.
The General Mathematical Setting

Let \mathcal{I} be a differential system on M (encoding some differential equations).

Let G be a Lie group acting on M and define $\Phi_g : M \to M$ by $\Phi_g(x) = g \cdot x$.

Then G is a symmetry group of \mathcal{I} if $\Phi_g^*(\mathcal{I}) = \mathcal{I}$.
The General Mathematical Setting

Let \mathcal{I} be a differential system on M (encoding some differential equations).

Let G be a Lie group acting on M and define $\Phi_g : M \to M$ by $\Phi_g(x) = g \cdot x$.

Then G is a symmetry group of \mathcal{I} if $\Phi^*_g(\mathcal{I}) = \mathcal{I}$.

Assume that G acts regularly on M so that $\pi : M \to M/G$ is a smooth submersion.
The General Mathematical Setting

Let \mathcal{I} be a differential system on M (encoding some differential equations).

Let G be a Lie group acting on M and define $\Phi_g : M \to M$ by $\Phi_g(x) = g \cdot x$.

Then G is a symmetry group of \mathcal{I} if $\Phi^*_g(\mathcal{I}) = \mathcal{I}$.

Assume that G acts regularly on M so that $\pi : M \to M/G$ is a smooth submersion.

Definition. The symmetry reduction of (\mathcal{I}, M) by G is the differential system $(\mathcal{I}/G, M/G)$ defined by

$$\mathcal{I}/G = \{\text{forms } \omega \text{ on the reduced space } M/G \mid \pi^*(\omega) \in \mathcal{I}\}.$$
The calculation of \mathcal{I}/G is completely algorithmic and is easily done with the DifferentialGeometry software.
The calculation of \mathcal{I}/G is completely algorithmic and is easily done with the DifferentialGeometry software.

I’ll simply note that the G-invariant functions on M serve as local coordinates for M/G.

General theorems in EDS theory can be used to identify the reduction \mathcal{I}/G as an ODE, system of ODE, PDE in 2 independent variables (parabolic, hyperbolic, elliptic), evolution equation ...
The calculation of \mathcal{I}/G is completely algorithmic and is easily done with the DifferentialGeometry software.

I’ll simply note that the G-invariant functions on M serve as local coordinates for M/G.

General theorems in EDS theory can be used to identify the reduction \mathcal{I}/G as an ODE, system of ODE, PDE in 2 independent variables (parabolic, hyperbolic, elliptic), evolution equation ...

Symmetry Reduction as a Black Box

$$
\begin{align*}
\text{a manifold } M \\
\text{vectors or forms } \mathcal{I} \text{ on } M \\
\text{a group } G \text{ preserving } \mathcal{I}
\end{align*}
\rightarrow
\begin{align*}
\text{a smaller space } M/G \\
\text{vectors or forms } \mathcal{I}/G \text{ on } M/G
\end{align*}
$$

complicated equations \rightarrow simple equations ODE reduction

simple equations \rightarrow complicated equations Darboux
Superposition Formula For Linear ODE

To help set the stage for what is coming, consider the differential system for 2 copies of a linear second order ODE.

\[y'' + a(x)y' + b(x)y = 0 \]

The manifold coordinates are \((x, u, p, v, q)\).

The Pfaffian system is

\[I = \{ du - p\, dx, dp - (ap + bu)\, dx, dv - q\, dx, dq - (aq + bv)\, dx \}. \]

The general linear group is a symmetry group.
Example 1.

Reduce the Pfaffian system \(I \) by the special linear group:

\[
\Gamma = \{ u \partial_u + p \partial_p - v \partial_v - q \partial_q, v \partial_u + q \partial_p, v \partial_v + p \partial_q \}.
\]

Calculate the differential invariants for this group.

\[
\text{Inv} = \{ x, W = uq - vp \}.
\]

The reduced differential equation is the differential syzygy

\[
W' + aW = 0,
\]
Example 1.

Reduce the Pfaffian system \mathcal{I} by the special linear group:

$$\Gamma = \{ u \partial_u + p \partial_p - v \partial_v - q \partial_q, \ v \partial_u + q \partial_p, \ u \partial_v + p \partial_q \}.$$

Calculate the differential invariants for this group.

$$\text{Inv} = \{ x, \ W = uq - vp \}.$$

The reduced differential equation is the differential syzygy

$$W' + aW = 0,$$

which is Abel’s Identity for the Wronksian.
Example 2.

Reduce I by just the scaling symmetry

$$u \partial_u + p \partial_p - v \partial_v - q \partial_q$$
Example 2.

Reduce I by just the scaling symmetry

$$u \partial_u + p \partial_p - v \partial_v - q \partial_q$$

Now there are 4 invariants which we write as:

$$\text{Inv} = \{x, U = uv, U_x = up + uq, U_{xx} = 2pq - 2aU - bUx\}.$$
Example 2.

Reduce I by just the scaling symmetry

$$u \partial_u + p \partial_p - v \partial_v - q \partial_q$$

Now there are 4 invariants which we write as:

$$\text{Inv} = \{x, U = uv, U_x = up + uq, U_{xx} = 2pq - 2aU - bU_x\}.$$

The reduced differential equation is the differential syzygy

$$U_{xxx} + 3aU_{xx} + (a' + 2a^2 + 4b)U_x + (2b' + 4ab)U = 0.$$

This is the symmetric power of the original 2nd order ODE.

Exercise. Reduce using some other groups.
Liouville Equation

The Liouville equation $u_{xy} = \exp(u)$ is the most famous example of a Darboux integrable equation.

The general solution is

$$u = \ln\left(2\frac{f'(x)g'(y)}{(f(x) + g(y))^2}\right)$$

I want to show how this equation and its solution can be obtained by symmetric reduction –

in exactly the same spirit as we derived Abel's identity and the symmetric power equation.
The manifold is the product of jet spaces $J^3(\mathbb{R}, \mathbb{R}) \times J^3(\mathbb{R}, \mathbb{R})$ with coordinates
\[
\{x, u, u_1, u_2, u_3, y, v, v_1, v_2, v_3\}
\]
The differential system is the contact system
\[
C_1 + C_2 = \{du - u_1 dx, du_1 - u_2 dx, du_2 - u_3 dx
\]
\[
dv - v_1 dy, dv_1 - v_2 dy, dv_2 - v_3 dx\}
\]
The symmetry group to be used for the reduction is the simultaneous standard projective action of sl_2 on the dependent variables.
\[
\Gamma = \{\partial_u - \partial_v, \quad u\partial_u + v\partial_v + u_1\partial_{u_1} + v_1\partial_{v_1} + \cdots ,
\]
\[
u^2\partial_u + 2uu_1\partial_{u_1} - v^2/2\partial_v - v * v_1\partial_{v_1} + \cdots \}
The differential invariants are Γ are

$$\text{Inv} = \{x, y, U = \log \frac{2u_1 v_1}{(u + v)^2},$$

$$U_x = \frac{u_2}{u_1} - 2 \frac{u_1}{(u + v)}$$

$$U_y = \frac{v_2}{v_1} - 2 \frac{v_1}{(u + v)}$$

$$U_{xx} = \frac{u_3}{u_1} + \cdots \}$$

The syzygy for the sl_2 differential invariants is:

$$U_{xy} = D_y U_x = D_x U_y = \frac{2u_1 v_1}{(x + y^2)} = e^u$$
The differential invariants are Γ are

$$\text{Inv} = \{x, y, U = \log \frac{2u_1 v_1}{(u + v)^2},$$

$$U_x = \frac{u_2}{u_1} - 2 \frac{u_1}{(u + v)},$$

$$U_y = \frac{v_2}{v_1} - 2 \frac{v_1}{(u + v)},$$

$$U_{xx} = \frac{u_3}{u_1} + \ldots \}$$

The syzygy for the sl_2 differential invariants is:

$$U_{xy} = D_y U_x = D_x U_y = \frac{2u_1 v_1}{(x + y^2)} = e^u$$

The Liouville equation is the symmetry reduction of a pair of contact systems by the diagonal action of sl_2.

The symmetry group used to make the reduction is called the internal symmetry group.
Two fundamental generalizations of this representation of the Liouville equation have appeared in the literature.
Two fundamental generalizations of this representation of the Liouville equation have appeared in the literature.

Vessiot: 1939, 1941. Here Vessiot gave symmetry group representations of all equations

\[u_{xy} = f(x, y, u, u_x, u_y) \]

which are Daboux integrable at the 2-jet level.

\[u_{xy} = 0 \quad u_{xy} = \frac{u_x}{u - x} \]
\[u_{xy} = u_x u \quad u_{xy} = 2 \frac{\sqrt{u_x u_y}}{x + y} \]
\[u_{xy} = e^u \quad u_{xy} = e^u \sqrt{u_x^2 - 1} \]

In so doing he explicitly solved one such equation which Goursat could not solve using intermediate integrals.
Two fundamental generalizations of this representation of the Liouville equation have appeared in the literature.

Vessiot: 1939, 1941. Here Vessiot gave symmetry group representations of all equations

\[u_{xy} = f(x, y, u, u_x, u_y) \]

which are Daboux integrable at the 2-jet level.

\[u_{xy} = 0 \quad u_{xy} = \frac{u_x}{u - x} \]

\[u_{xy} = u_x u \quad u_{xy} = 2 \frac{\sqrt{u_x u_y}}{x + y} \]

\[u_{xy} = e^u \quad u_{xy} = e^u \sqrt{u_x^2 - 1} \]

In so doing he explicitly solved one such equation which Goursat could not solve using intermediate integrals.

The internal symmetry groups all arise as transformation groups in the plane, as classified many years earlier by S. Lie.
Leznov and Saveliev, 1980 ... 1999. The Toda lattice equations

\[u_{xy}^i = \exp(a_{ij}u^j) \quad [a_{ij}] = \text{Cartan matrix} \]

provide another substantial generalization of the Liouville equation.
Leznov and Saveliev, 1980 ... 1999. The Toda lattice equations

\[u_{xy}^i = \exp(a_{ij} u^j) \quad [a_{ij}] = \text{Cartan matrix} \]

provide another substantial generalization of the Liouville equation.

The representation of the Toda lattice equations by symmetry reduction is found in

– Representation Theory and Integration of Nonlinear Spherically Symmetric Equations to Gauge Theories

See also

– Two-Dimensional Exactly and Completely Integrable Dynamical Systems: Monopoles, Instantons, Dual Models, Relativistic Strings, Lund-Regge Model, Generalized Toda Lattice, etc. it

... all enumerated dynamical systems are joined together due to the presence of non-trivial internal symmetry groups. Just this fact allows one to find explicit expressions for the solutions of the corresponding equations in terms of Lie algebra and group representation theory.
What is Darboux Integrability?

With the above remarks as motivation we make the following new definition.

Definition: A differential system is called Darboux integrable if it is the differential syzygies of a diagonal group action for the common symmetry of a pair of auxiliary differential equations.

More precisely: A differential system (\mathcal{I}, M) is called Darboux integrable if

$$\mathcal{I}, = (\mathcal{K}_1 + \mathcal{K}_2)/G, \quad M = (M_1 \times M_2)/G$$

where

- (\mathcal{K}_1, M_1) and (\mathcal{K}_2, M_2) are two Pfaffian systems.
- G is a Lie group which is a common symmetry group of $(\mathcal{K}_1, \mathcal{K}_2)$.
What is Darboux Integrability?

With the above remarks as motivation we make the following new definition.

Definition: A differential system is called Darboux integrable if it is the differential syzygies of a diagonal group action for the common symmetry of a pair of auxiliary differential equations.

More precisely: A differential system \((I, M)\) is called Darboux integrable if

\[
I = (K_1 + K_2)/G, \quad M = (M_1 \times M_2)/G
\]

where

– \((K_1, M_1)\) and \((K_2, M_2)\) are two Pfaffian systems.
– \(G\) is a Lie group which is a common symmetry group of \((K_1, K_2)\) and the following technical requirements holds:
– \(G\) acts regularly on \(M_1\) and \(M_2\)
– \(G\) acts freely on \(M_1\) and \(M_2\)
– \(G\) acts transversely to \(K_1\) and \(K_2\)
We call \mathcal{K}_1 and \mathcal{K}_2 the \textbf{defining differential systems} and G the \textbf{internal symmetry group} (or Vessiot group).
Meta Principle of DI Systems

Every question you have about a DI system should be answered in terms of the defining differential systems and the internal group G.
Meta Principle of DI Systems

Every question you have about a DI system should be answered in terms of the defining differential systems and the internal group G.

<table>
<thead>
<tr>
<th>PDE Property</th>
<th>Symmetry Reduction Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intermediate Integrals</td>
<td>Differential Invariants for G</td>
</tr>
<tr>
<td>2. Closed Form Solutions</td>
<td>Defining systems are contact</td>
</tr>
<tr>
<td>3. IVP by quadrature</td>
<td>Solvable G</td>
</tr>
<tr>
<td>4. Equivalence Problem</td>
<td>E.P. for the defining systems</td>
</tr>
<tr>
<td>5. Symmetries</td>
<td>Normalizers of G</td>
</tr>
<tr>
<td>6. Bäcklund Transformations</td>
<td>Subgroups of G</td>
</tr>
<tr>
<td>7. Zero Curvature</td>
<td>Representation theory of G</td>
</tr>
<tr>
<td>8. Leznov and Saveliev</td>
<td>Parabolic Geometry</td>
</tr>
<tr>
<td>9. Classification of DI</td>
<td>Class. of Group Actions</td>
</tr>
</tbody>
</table>
Application 1: Intermediate Integrals

Let us recall the general definition (in terms of a distribution of vector fields (dual to a Pfaffian system).

A distribution \mathcal{H} is called hyperbolic if

$$\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \quad \text{with} \quad [\mathcal{H}_1, \mathcal{H}_2] \subset \mathcal{H}$$

An intermediate integral is a function f such that

$$X(f) = 0 \quad \text{for all } X \text{ in } \mathcal{H}_1.$$
Application 1: Intermediate Integrals

Let us recall the general definition (in terms of a distribution of vector fields (dual to a Pfaffian system).

A distribution \mathcal{H} is called hyperbolic if

$$\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \quad \text{with} \quad [\mathcal{H}_1, \mathcal{H}_2] \subset \mathcal{H}$$

An intermediate integral is a function f such that

$$X(f) = 0 \quad \text{for all} \ X \ in \ \mathcal{H}_1.$$

Theorem. The differential invariants on the defining manifolds for the action of the internal symmetry group give all intermediate integrals.
Application 1: Intermediate Integrals

Let us recall the general definition (in terms of a distribution of vector fields (dual to a Pfaffian system).

A distribution \mathcal{H} is called hyperbolic if

$$\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \quad \text{with} \quad [\mathcal{H}_1, \mathcal{H}_2] \subset \mathcal{H}$$

An intermediate integral is a function f such that

$$X(f) = 0 \quad \text{for all} \ X \ \text{in} \ \mathcal{H}_1.$$

Theorem. The differential invariants on the defining manifolds for the action of the internal symmetry group give all intermediate integrals.

Theorems on the existence and number of differential invariants immediately translate to theorems on differential invariants.
Example. The differential invariant for the projective action of sl_2 is the Schwarzian derivative which projects to the intermediate integral for Liouville equation.

$$\frac{u'''}{u'} - \frac{3}{2} \left(\frac{u''}{u} \right)^2 \longrightarrow U_{xx} - \frac{1}{2} U_x^2$$
Example. The differential invariant for the projective action of sl_2 is the Schwarzian derivative which projects to the intermediate integral for Liouville equation.

\[
\frac{u'''}{u'} - \frac{3}{2} \left(\frac{u''}{u} \right)^2 \longrightarrow U_{xx} - \frac{1}{2} U_x^2
\]

This 1-1 correspondence between intermediate integrals and differential invariants is very important.
Application 2: Equations with closed form solutions

On November 8, 1908 Forysth gave the Presidential Address to the Cambridge Mathematical Society. This address contains an nice summary of classical geometric integration methods and concludes with a number of open problems.

One of these is to classify all 2nd order scalar PDE in the plane whose general integral is

$$x = V_1(\alpha, \beta, \phi(\alpha), \psi(\beta), \phi', \psi' \ldots)$$

$$y = V_2(\alpha, \beta, \phi(\alpha), \psi(\beta), \phi', \psi' \ldots),$$

$$u = V_3(\alpha, \beta, \phi(\alpha), \psi(\beta), \phi', \psi' \ldots).$$
Application 2: Equations with closed form solutions

On November 8, 1908 Forysth gave the Presidential Address to the Cambridge Mathematical Society. This address contains a nice summary of classical geometric integration methods and concludes with a number of open problems.

One of these is to classify all 2nd order scalar PDE in the plane whose general integral is

\[x = V_1(\alpha, \beta, \phi(\alpha), \psi(\beta), \phi', \psi' \ldots) \]

\[y = V_2(\alpha, \beta, \phi(\alpha), \psi(\beta), \phi', \psi' \ldots), \]

\[u = V_3(\alpha, \beta, \phi(\alpha), \psi(\beta), \phi', \psi' \ldots). \]

The same kind of question was asked by Hilbert and answered by Cartan in the context of an under-determined ODE (Monge equation)
Application 2: Equations with closed form solutions

On November 8, 1908 Forysth gave the Presidential Address to the Cambridge Mathematical Society. This address contains an nice summary of classical geometric integration methods and concludes with a number of open problems.

One of these is to classify all 2nd order scalar PDE in the plane whose general integral is

\[x = V_1(\alpha, \beta, \phi(\alpha), \psi(\beta), \phi', \psi' ...) \]
\[y = V_2(\alpha, \beta, \phi(\alpha), \psi(\beta), \phi', \psi' ...) \]
\[u = V_3(\alpha, \beta, \phi(\alpha), \psi(\beta), \phi', \psi' ...) \]

The same kind of question was asked by Hilbert and answered by Cartan in the context of an under-determined ODE (Monge equation)

Here I would simply state a similar result – if the defining systems are jet spaces, then the general solution to DI system is of the above form.
Application 3: Generalizations of d’Alembert formula

The solution to the Cauchy problem

\[u_{tt} - u_{xx} = 0 \quad u(0, x) = a(x) \quad u_t(0, x) = b(x) \]

is given by the well-known d’Alembert formula

\[u = \frac{1}{2} (a(x - t) + a(x + t)) + \frac{1}{2} \int_{x-t}^{x+t} b(\zeta) \, d\zeta \]
Application 3: Generalizations of d’Alembert formula

The solution to the Cauchy problem

\[u_{tt} - u_{xx} = 0 \quad u(0, x) = a(x) \quad u_t(0, x) = b(x) \]

is given by the well-known d’Alembert formula

\[u = \frac{1}{2} (a(x - t) + a(x + t)) + \frac{1}{2} \int_{x-t}^{x+t} b(\zeta) \, d\zeta \]

Theorem The Cauchy problem for a DI integrable system (in 2 independent variables) can be solved by quadratures if the internal symmetry group is solvable.
Application 3: Generalizations of d’Alebert formula

The solution to the Cauchy problem

\[u_{tt} - u_{xx} = 0 \quad u(0, x) = a(x) \quad u_t(0, x) = b(x) \]

is given by the well-known d’Alembert formula

\[u = \frac{1}{2}(a(x - t) + a(x + t)) + \frac{1}{2} \int_{x-t}^{x+t} b(\zeta) \, d\zeta \]

Theorem The Cauchy problem for a DI integrable system (in 2 independent variables) can be solved by quadratures if the internal symmetry group is solvable.

This goes back to the basic theorem of Lie on solving ODE by quadratures but now in the context of lifting integral curves.
Example 1.
The solution to the non-linear Cauchy problem

\[u_{xy} = \frac{u_x u_y}{u - x}, \quad u(x, x) = f(x), \ u_x(x, x) = g(x) \]

is

\[u = x + (f(y) - x)\exp(A(x, y)) + \exp(-A(0, x)) \int_{t=x}^{t=y} A(0, t) dt, \]

\[A(s, t) = \int_s^t g(\zeta)/(\zeta - f(\zeta)) \, d\zeta \]

Example 2. The Cauchy problem for \(u_{xy} = e^u \) requires the solving a pair of Riccati equations.
Application 3: Equivalence of Darboux Integrable Systems

Theorem. Two DI integrable systems are equivalent if their internal symmetry groups are isomorphism, the actions are equivalent, and their defining differential systems are equivariantly equivalent.
Application 3: Equivalence of Darboux Integrable Systems

Theorem. Two DI integrable systems are equivalent if their internal symmetry groups are isomorphism, the actions are equivalent, and their defining differential systems are equivariantly equivalent.

Project. Within the framework of the DifferentialGeometry software construct a database of known DI systems and their realizations as symmetry reductions.
Example 1. The relativistic string equation (Barbashov, Nesterenko, Chervakov)

\[\theta_{xx} - \theta_{tt} + \frac{\cos(\theta)}{\sin(\theta)^3}(\varphi_x^2 - \varphi_t^2) = 0, \quad (\cot(\theta)^2 \varphi)_x = (\cot(\theta)^2 \varphi)_t \]

is Darboux integrable. It is a reduction of jet spaces by the internal symmetry group \(gl(2) \).
Example 1. The relativistic string equation (Barbashov, Nesterenko, Chervakov)

\[
\theta_{xx} - \theta_{tt} + \frac{\cos(\theta)}{\sin(\theta)^3} (\varphi_x^2 - \varphi_t^2) = 0, \quad (\cot(\theta)^2 \varphi_x)_x = (\cot(\theta)^2 \varphi_t)_t
\]

is Darboux integrable. It is a reduction of jet spaces by the internal symmetry group \(gl(2) \).

Comparing to known examples, we find this system to be equivalent to the wave map equations defined by the metric

\[
ds^2 = \frac{1}{1 - e^u} (du^2 + dv^2).
\]
Example 1. The relativistic string equation (Barbashov, Nesterenko, Chervakov)

\[\theta_{xx} - \theta_{tt} + \frac{\cos(\theta)}{\sin(\theta)^3}(\varphi_x^2 - \varphi_t^2) = 0, \quad (\cot(\theta)^2 \varphi_x)_x = (\cot(\theta)^2 \varphi_t)_t \]

is Darboux integrable. It is a reduction of jet spaces by the internal symmetry group \(gl(2) \).

Comparing to known examples, we find this system to be equivalent to the wave map equations defined by the metric

\[ds^2 = \frac{1}{1 - e^u}(du^2 + dv^2). \]

\[x' = x + t, \quad t' = x - t, \quad u = \sqrt{e^{\arctan(\theta)} - 1}, \quad v = \frac{1}{2} \varphi. \]
Example 2.
In his classic treatise, Goursat gives two very different examples of DI systems.

\[U_{xy} = 2 \frac{\sqrt{U_x U_y}}{x + y}, \quad \text{and} \]

\[u_{xx} + u^2 u_{yy} + 2uu_y^2 = 0 \]

It would seem that he was unaware that these systems are equivalent under the transformation

\[x = X, \quad y = U + (X + Y)U_Y, \quad u = \sqrt{U_X} + \sqrt{U_Y} \]
Example 2.
In his classic treatise, Goursat gives two very different 2 examples of DI systems.

\[U_{xy} = 2 \frac{\sqrt{U_x U_y}}{x + y}, \text{ and} \]

\[u_{xx} + u^2 u_{yy} + 2uu_y^2 = 0 \]

It would seem that he was unaware that these systems are equivalent under the transformation

\[x = X, \quad y = U + (X + Y)U_Y, \quad u = \sqrt{U_x} + \sqrt{U_y} \]

Remark This transformation is algebraically invertible once we enlarge the underlying 7 manifolds to 8 dimensions.
Application 5: Symmetries of Darboux Integrable Systems

Let \((\mathcal{I}, M)\) be a differential system with full symmetry algebra \(\Sigma\). Let \(\Gamma\) be a sub-algebra of \(\Sigma\).

Then the algebra \(\text{nor}_\Sigma(\Gamma)/\Gamma\) always determines a sub-algebra of the full symmetry algebra of the reduced system. \((\mathcal{I}/G, M/G)\).
Application 5: Symmetries of Darboux Integrable Systems

Let \((\mathcal{I}, M)\) be a differential system with full symmetry algebra \(\Sigma\). Let \(\Gamma\) be a sub-algebra of \(\Sigma\).

Then the algebra \(\text{nor}_\Sigma(\Gamma)/\Gamma\) always determines a sub-algebra of the full symmetry algebra of the reduced system. \((\mathcal{I}/G, M/G)\).

Generically one expects the reduced system to have more symmetries.

But for DI we have the remarkable:
Application 5: Symmetries of Darboux Integrable Systems

Let \((\mathcal{I}, M)\) be a differential system with full symmetry algebra \(\Sigma\). Let \(\Gamma\) be a sub-algebra of \(\Sigma\).

Then the algebra \(\text{nor}_\Sigma(\Gamma)/\Gamma\) always determines a sub-algebra of the full symmetry algebra of the reduced system. \((\mathcal{I}/G, M/G)\).

Generically one expects the reduced system to have more symmetries.

But for DI we have the remarkable:

Theorem. Let \((\mathcal{I}, M)\) be a DI system with defining systems \((\mathcal{K}_a, M_a)\) with symmetry algebras \(\Sigma_a\). Let be \(\Gamma \subset \Sigma_a\) be the internal symmetry algebra.

Then the full symmetry algebra of \((\mathcal{I}, M)\) is determined by the normalizer \(\Gamma_{\text{diag}}\) in \(\Sigma_1 \oplus \Sigma_2\).
Application 5: Symmetries of Darboux Integrable Systems

Let \((I, M)\) be a differential system with full symmetry algebra \(\Sigma\). Let \(\Gamma\) be a sub-algebra of \(\Sigma\). Then the algebra \(\text{nor}_\Sigma(\Gamma)/\Gamma\) always determines a sub-algebra of the full symmetry algebra of the reduced system. \((I/G, M/G)\).

Generically one expects the reduced system to have more symmetries.

But for DI we have the remarkable:

Theorem. Let \((I, M)\) be a DI system with defining systems \((K_a, M_a)\) with symmetry algebras \(\Sigma_a\). Let be \(\Gamma \subset \Sigma_a\) be the internal symmetry algebra.

Then the full symmetry algebra of \((I, M)\) is determined by the normalizer \(\Gamma_{\text{diag}}\) in \(\Sigma_1 \oplus \Sigma_2\).

Corollary. If \(\Sigma_1 = \Sigma_2 = \Sigma\) then

\[
\dim \Gamma = \dim \text{nor}_\Sigma(\Gamma) + \dim \text{cent}_\Sigma(\Gamma) - \dim(\Gamma)
\]

If the internal symmetry algebra is a MAS then

\[
\dim \Gamma = \dim \text{nor}_\Sigma(\Gamma).
\]
Example 1. Thanks to D. The, B. Doubrov, F. Stazzullo

For the defining differential systems take

\[\psi' = (\psi'')^2 \]

The symmetry algebra is the exceptional algebra \(g_2 \).

There are 2 MAS.

<table>
<thead>
<tr>
<th>Roots</th>
<th>Normalizer in (g_2)</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_4, \alpha_5, \alpha_6)</td>
<td>9</td>
<td>(rt - s^2 = 3t^4)</td>
</tr>
<tr>
<td>(\alpha_3, \alpha_5, \alpha_6)</td>
<td>7</td>
<td>Messy</td>
</tr>
</tbody>
</table>
Application 6: Bäcklund Transformations for Darboux Integrable Systems

Bäcklund transformations for a Darboux integrable system can be constructed from different subgroups of the symmetry groups of the defining differential systems.
Application 6: Bäcklund Transformations for Darboux Integrable Systems

Bäcklund transformations for a Darboux integrable system can be constructed from different subgroups of the symmetry groups of the defining differential systems.

Step 1. Start with a Darboux integrable system.

\[
(I = (K_1 \times K_2)/G_{\text{diag}})
\]
Step 2. Reduce by another symmetry group L.

\[J = (\mathcal{K}_1 \times \mathcal{K}_2) / L \]

\[I = (\mathcal{K}_1 \times \mathcal{K}_2) / G_{\text{diag}} \]
Step 3. Symmetry reduce by the intersection $H = L \cap G$.

\[B = (\mathcal{K}_1 \times \mathcal{K}_2)/H_{\text{diag}} \]

\[J = (\mathcal{K}_1 \times \mathcal{K}_2)/L \]

\[I = (\mathcal{K}_1 \times \mathcal{K}_2)/G_{\text{diag}} \]
Step 4. Calculate the orbit projection maps p_1 and p_2.

\[(\mathcal{K}_1 \times \mathcal{K}_2) \]

\[B = (\mathcal{K}_1 \times \mathcal{K}_2)/H_{\text{diag}} \]

\[J = (\mathcal{K}_1 \times \mathcal{K}_2)/L \]

\[I = (\mathcal{K}_1 \times \mathcal{K}_2)/G_{\text{diag}} \]
Step 5. Remove the scaffolding to arrive at a Bäcklund transformation.

\[B = \frac{(\mathcal{K}_1 \times \mathcal{K}_2)}{H_{\text{diag}}} \]

\[J = \frac{(\mathcal{K}_1 \times \mathcal{K}_2)}{L} \]

\[I = \frac{(\mathcal{K}_1 \times \mathcal{K}_2)}{G_{\text{diag}}} \]
ALL known examples of Bäcklund transformations for Darboux integrable systems can be constructed by symmetry reduction.

Example 1. A Bäcklund transformation for a fully non-linear equation

\[
\begin{align*}
 u' &= (v'')^2, \\
 y' &= (z'')^2
\end{align*}
\]

\[V_{XY} = 0 \quad 3U_{XX} U_{YY}^3 + 1 = 0 \]
Example 2. A de-coupling Bäcklund transformation for the A_2 Toda lattice.

\begin{align*}
W^1_{xy} &= -W^1_y (W^2_x + e^{W^1}) \\
W^2_{xy} &= -W^2_x (e^{W^2} + W^1_y)
\end{align*}

$p_1 = \{ \Gamma, Z_3, Z_4 \}$

$p_2 = \{ \Gamma, Z_1, Z_2 \}$

\begin{align*}
V^1_{xy} &= e^{V^1} \\
V^2_{xy} &= 0 \\
U^1_{xy} &= e^{2U^1 - U^2} \\
U^2_{xy} &= e^{-U^1 + 2U^2}
\end{align*}
Application 7: Zero Curvature Formulations for Darboux Integrable Systems

Zero curvature formulations for Darboux integrable systems can be constructed from linear representations of the internal symmetry group.

We illustrate with Liouville’s equation

Step 1. The coordinates for $J^3(R, R) \times J^3(R, R)$ are

$$(x, z, z_1, z_2, z_3, y, w, w_1, w_2, w_3)$$

Here is diagonal action used in the symmetry reduction to Liouville’s equation.

$$\Gamma_1 = \partial_z - \partial_w,$$
$$\Gamma_2 = z \partial_z + z_1 \partial_{z_1} + w \partial_w + w_1 \partial_{w_1} + \ldots \text{(prolonged to order 3)}$$
$$\Gamma_3 = \frac{z^2}{2} \partial_z + zz_1 \partial_{z_1} + \frac{w^2}{2} \partial_w + ww_1 \partial_{w_1} + \ldots$$
Step 2. Create an extension by adding (vector space coordinates t_1, t_2 for the adjoint representation)

\[
\tilde{\Gamma}_1 = t_2 \partial_{t_1} + \Gamma_1 \\
\tilde{\Gamma}_2 = t_1 \partial_{t_1} - t_2 \partial_{t_2} + \Gamma_2 \\
\tilde{\Gamma}_3 = t_1 \partial_{t_2} + \Gamma_3
\]

Step 3. Calculate the Pfaffian system which is $\tilde{\Gamma}$ invariant and linear in the new variables

\[
\vartheta^1 = dt_1 - \lambda \left(\frac{z}{z_1} t_1 - \frac{z_2}{z_1} t_2 \right) dx \\
\vartheta^2 = dt_2 - \lambda \left(\frac{1}{z_1} t_1 - \frac{z}{z_2} t_2 \right) dx
\]

(to which the contact forms on $J^3(R, R) \times J^3(R, R)$ are added)
Step 4. Calculate the reduced differential system in terms of the differential invariants

\[
\sigma_1 = \frac{\sqrt{2} \sqrt{w_1}}{z + w} (t_1 - z t_2), \quad \sigma_2 = \frac{1}{\sqrt{w_1}} (t_1 + w t_2), \quad u = \log \left(\frac{2 z_1 w_1}{(z + w)^2} \right)
\]

to be the zero curvature formulation

\[
\frac{d}{dx} \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix} = \begin{bmatrix} 0 & -\frac{\sqrt{2}}{2} e^u \\ \sqrt{2} \lambda e^{-u} & 0 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix}
\]

\[
\frac{d}{dy} \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} u_y & 0 \\ \frac{\sqrt{2}}{2} & -\frac{1}{2} u_y \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix}
\]

of \(u_{xy} = e^u \).
Application 8: Classification of Darboux Integrable f-Gordon Equations

\[u_{xy} = f(x, y, u, u_x, u_y) \quad (*) \]

In 1899 Goursat give a classification of equations (*) which are DI integrable at order 2.

In 1939, 1941 Vessiot re-produced Goursat’s result using the symmetry reduction approach discussed today - in effect one simply calculates the DI systems determined by Lie’s classification of vector field systems in the plane.
In 2001 Ziber and Sokolov classified f-Gordon equations (*) which are DI integrable all order. From our perspective, the equations are

[1] reduction of the contact systems on $J^k(R, R)$ Eq 2; Eq 3; Eq 4; Eq 5; Eq 6; Eq 7.

[2] reduction of $z' = y^{(n)}$ by the 2-step nilpotent algebras (and simple variations)

[3] reduction of the Hilbert-Cartan equation $z' = y''$ by 5 dimensional sub-algebras of the exceptional algebra g_2. Eq 8; Eq 9.
Conclusions

1. The definition of Darboux integrability in terms of symmetry reduction by an internal symmetry group is (locally) equivalent to the classical definition in terms of the existence of intermediate integrals/ Darboux invariants/ ... A-Fels-Vaasiliou
Conclusions

1. The definition of Darboux integrability in terms of symmetry reduction by an internal symmetry group is (locally) equivalent to the classical definition in terms of the existence of intermediate integrals/ Darboux invariants/ ... A-Fels-Vaasiliou

2. The advantage of the symmetry reduction approach to Darboux integrability is that it gives immediate access to the geometric structures that one encounters in integrable systems theory (symmetries, Bäcklund transformations, zero curvature, ... I don’t know what integrability means but I do know:

Darboux integrable systems are integrable systems
Conclusions

1. The definition of Darboux integrability in terms of symmetry reduction by an internal symmetry group is (locally) equivalent to the classical definition in terms of the existence of intermediate integrals/ Darboux invariants/ ... A-Fels-Vaasiliou

2. The advantage of the symmetry reduction approach to Darboux integrability is that it gives immediate access to the geometric structures that one encounters in integrable systems theory (symmetries, Bäcklund transformations, zero curvature, ... I don’t know what integrability means but I do know:

| Darboux integrable systems are integrable systems |

3. The work of Leznov and Saveliev indicate that there is hope of generalizing to the case of infinite dimensional internal groups and equations which are not DI in the strict sense.

WIP
Conclusions

1. The definition of Darboux integrability in terms of symmetry reduction by an internal symmetry group is (locally) equivalent to the classical definition in terms of the existence of intermediate integrals/ Darboux invariants/ ... A-Fels-Vaasiliou

2. The advantage of the symmetry reduction approach to Darboux integrability is that it gives immediate access to the geometric structures that one encounters in integrable systems theory (symmetries, Bäcklund transformations, zero curvature, ... I don’t know what integrability means but I do know: }

 Darboux integrable systems are integrable systems

3. The work of Leznov and Saveliev indicate that there is hope of generalizing to the case of infinite dimensional internal groups and equations which are not DI in the strict sense.

WIP

THANK-YOU
The Method of Laplace

Jacobi – Meyer

Lie Equations

The Method of Darboux - Classical Theory

Overview
Symmetry
Reduction
Linear ODE
Liouville
Milestones
What is DI?
Properties of DI
Application 1
Application 2
Application 3
Application 4
Application 5
Application 6
Application 7
Application 8
Conclusions

Integrable Systems Library

References

1.42

The Method of Darboux - Via Group Theory

[22] ______, *Sur les équations aux dérivées partielles du second ordre, F(x,y,z,p,q,r,s,t)=0, intégrables par la méthode de Darboux*, J. Math. Pure Appl. 21 (1942), 1–66.

The Method of Darboux - Classification

[34] _____, Lá méthode de Darboux et les équations $s = f(x, y, z, p, q)$, Mémorial de Sciences Mathématique 12 (1926).

The Method of Darboux - Transformation Theory

[40] M. Y. Zvyagin, Second order equations reducible to $z_{xy} = 0$ by a Bäcklund transformation 43 (1991), 30–34.

The Method of Darboux - Symmetries and Conservation Laws

