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Integrable systems – a playground of algebraic geometry. A
nice example: QRT maps introduced in
I G.R.W. Quispel, J.A.G. Roberts, C.J. Thompson.

Integrable mappings and soliton equations II, Physica D 34
(1989) 183–192,

prompted the treatise
I J.J. Duistermaat. Discrete Integrable Systems. QRT Maps

and Elliptic Surfaces, Springer, 2010, xii+627 pp.

A goal and the hope of the present study – to produce a rich
supply of examples attracting the attention of the algebraic
geometers.
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Kahan’s discretization scheme

Invented in:

I W. Kahan. Unconventional numerical methods for
trajectory calculations (Unpublished lecture notes, 1993).

He wrote:

“I have used these methods for 24 years without quite
understanding why they work so well as they do,

when they work.”
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Bilinear discretization of quadratic vector fields

Take an arbitrary system with a quadratic vector field:

ẋ = f (x) = Q(x) + Bx + c,

where B ∈ Rn×n, c ∈ Rn, each component of Q : Rn → Rn a
quadratic form. Discretization:

x̃ − x
ε

= Q(x , x̃) +
1
2

B(x + x̃) + c,

with Q(x , x̃) corresponding symmetric bilinear function:

Q(x , x̃) =
1
2
(
Q(x + x̃)−Q(x)−Q(x̃)

)
.

Equations for x̃ always linear, map x̃ = Φf (x , ε) rational and
reversible:

Φ−1
f (x , ε) = Φf (x ,−ε),

thus birational.
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Example: Lotka-Volterra system

{
ẋ = x(1− y),
ẏ = y(x − 1)

 

{
x̃ − x = ε(x + x̃ − x̃y − xỹ),
ỹ − y = −ε(y + ỹ − x̃y − xỹ).

Left: one orbit of explicit Euler with ε = 0.01; right: three orbits of Kahan’s
discretization with ε = 0.01.

Non-spiralling behavior explained by invariance of Poisson structure:
I J.M. Sanz-Serna. An unconventional symplectic integrator of W. Kahan,

Appl. Numer. Math. 16 (1994), 245–250.
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Hirota-Kimura’s discretization scheme

I R.Hirota, K.Kimura. Discretization of the Euler top.
J. Phys. Soc. Japan 69 (2000) 627–630,

I K.Kimura, R.Hirota. Discretization of the Lagrange top.
J. Phys. Soc. Japan 69 (2000) 3193–3199.

Apparently unaware of Kahan’s work, applied this method to
two famous integrable systems.

Resulting maps integrable (possess 2, resp. 4, independent
integrals of motion; solutions in terms of elliptic functions).
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Example: Hirota-Kimura’s discrete time Euler top


ẋ1 = α1x2x3,

ẋ2 = α2x3x1,

ẋ3 = α3x1x2,

 


x̃1 − x1 = εα1(x̃2x3 + x2x̃3),

x̃2 − x2 = εα2(x̃3x1 + x3x̃1),

x̃3 − x3 = εα3(x̃1x2 + x1x̃2).

Features:
I Equations are linear w.r.t. x̃ = (x̃1, x̃2, x̃3)T:

A(x , ε)x̃ = x , A(x , ε) =

 1 −εα1x3 −εα1x2
−εα2x3 1 −εα2x1
−εα3x2 −εα3x1 1

 ,

result in explicit rational map:

x̃ = Φf (x , ε) = A−1(x , ε)x .
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I Explicit formulas rather messy:

x̃1 =
x1 + 2εα1x2x3 + ε2x1(−α2α3x2

1 + α3α1x2
2 + α1α2x2

3 )

∆(x , ε)
,

x̃2 =
x2 + 2εα2x3x1 + ε2x2(α2α3x2

1 − α3α1x2
2 + α1α2x2

3 )

∆(x , ε)
,

x̃3 =
x3 + 2εα3x1x2 + ε2x3(α2α3x2

1 + α3α1x2
2 − α1α2x2

3 )

∆(x , ε)
,

where

∆(x , ε) = det A(x , ε)
= 1− ε2(α2α3x2

1 + α3α1x2
2 + α1α2x2

3 )− 2ε3α1α2α3x1x2x3.
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I Reversibility:
Φ−1

f (x , ε) = Φf (x ,−ε).

(Try to see reversibility directly from explicit formulas!)
I Two independent integrals:

I1(x , ε) =
1− ε2α2α3x2

1

1− ε2α3α1x2
2
, I2(x , ε) =

1− ε2α3α1x2
2

1− ε2α1α2x2
3
.

I Invariant volume form:

ω =
dx1 ∧ dx2 ∧ dx3

φ(x)
, φ(x) = (1− ε2αiαjx2

k )2

and bi-Hamiltonian structure found in:
I M. Petrera, Yu. Suris. On the Hamiltonian structure of the

Hirota-Kimura discretization of the Euler top. Math. Nachr.
283 (2010) 1654–1663.
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The unreasonable integrability of KHK

I M. Petrera, A. Pfadler, Yu.B. Suris. On integrability of
Hirota-Kimura type discretizations. Experimental study of
the discrete Clebsch system. Experimental Math. 18
(2009), 223–247,

I M. Petrera, A. Pfadler, Yu.B. Suris On integrability of
Hirota-Kimura type discretizations. Regular Chaotic Dyn.
16 (2011), 245–289.

Integrability of KHK discretization for an amazingly long list of
examples, including:
I Reduced Nahm equations (n = 2)
I Periodic Volterra chain (n = 3,4)
I Dressing chain (n = 3)
I Three wave system (n = 6)
I Kirchhoff and Clebsch cases of rigid body in an ideal fluid

(n = 6)
I SO(4) Euler top (n = 6)
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KHK applied to canonical Hamiltonian systems

I E. Celledoni, R.I. McLachlan, B. Owren, G.R.W. Quispel.
Geometric properties of Kahan’s method, J. Phys. A, 46
(2013), 025201, 12 pp.

Let f (x) = J∇H(x), where J =

(
0 I
−I 0

)
, H : R2n → R a cubic

polynomial. Then:

I map Φf (x , ε) : x 7→ x̃ admits a rational integral of motion

H̃(x , ε) =
1
6ε

xTJ−1x̃ = H(x) + O(ε2).

I map Φf (x , ε) : x 7→ x̃ admits an invariant volume form:

dx1 ∧ . . . ∧ dxn

det(I − εf ′(x))
.

These results are not related to integrability!
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Missing before the present work

I Conceptual (structure-clarifying) proof of integrability in any
of numerous examples;

I Invariant symplectic or Poisson structure in any example in
dim ≥ 4.

Both achieved here:

I M. Petrera, Yu.B. Suris. A construction of a large family of
commuting pairs of integrable symplectic birational
4-dimensional maps. arXiv:1606.08238 [nlin.SI]

I M. Petrera, Yu.B. Suris. A construction of commuting
systems of integrable symplectic birational maps.
arXiv:1607.07085 [nlin.SI]
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Main features of the novel construction

A family of completely integrable systems ẋ = J∇H0(x) in R2m

with m cubic integrals (H0, . . . ,Hm−1) in involution, for which
KHK discretization has following properties:
I The map ΦJ∇H0 is symplectic w.r.t. a perturbation of the

canonical symplectic structure on R2m;
I The map ΦJ∇H0 has m rational integrals H̃0(x , ε), . . . ,

H̃m−1(x , ε) in involution;
I The maps ΦJ∇Hi do not commute; however, there exist

2m−1 linear combinations J∇K =
∑m−1

i=0 αiJ∇Hi such that
ΦJ∇H0 commutes with ΦJ∇K .
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Construction of functions in involution

Observation. Let A be a constant 2m × 2m matrix, and
suppose that functions H0(x), H1(x) satisfy

∇H1 = A∇H0.

If the matrix A is skew-Hamiltonian,

JA = ATJ = −(JA)T,

then H0, H1 are in involution.

Proof.

{H0,H1} = (∇H0)TJ∇H1 = (∇H0)TJA∇H0.
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Applicability of construction

Differential equations ∇H1 = A∇H0 for H1 are solvable if and
only if H0 satisfies

A(∇2H0) = (∇2H0)AT,

(where ∇2H0 is the Hesse matrix of H0). Then H1(x) satisfies
the same conditions:

A(∇2H1) = (∇2H1)AT.

Proposition. The linear space of homogeneous polynomials
H0(x1, . . . , x2m) of deg = 3 satisfying this system of 2nd order
PDEs, has dimension 4m.
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Construction of completely integrable systems

Take a non-degenerate skew-Hamiltonian matrix A and a
generic cubic polynomial H0(x) satisfying

A(∇2H0) = (∇2H0)AT.

Define Hi (i = 1, . . . ,m − 1) by

∇Hi = A∇Hi−1.

Then (H0, . . . ,Hm−1) is a completely integrable Hamiltonian
system.
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Characteristic properties

Vector fields fi(x) = J∇Hi(x) satisfy:

(f ′i (x))TJ + Jf ′i (x) = 0 (Hamiltonian),

f ′i (x)fj(x) = f ′j (x)fi(x) (commute),

f ′i (x)f ′j (x) = f ′j (x)f ′i (x),

and

ATf ′i (x) = f ′i (x)AT.
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Associated vector fields

Definition. Let the skew-Hamiltonian matrix

B =
m−1∑
i=0

αiAi

satisfy
B2 = I.

Then the vector field

g(x) = JB∇H0(x) = BTJ∇H0(x) = BTf0(x)

is called associated to f0(x). Vector field g(x) is Hamiltonian:

g(x) = J∇K (x),

with the Hamilton function

K (x) =
m−1∑
i=0

αiHi(x).
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Associated vector fields

This defines an equivalence relation on the set of vector fields
J∇H(x) with Hamilton functions H(x) satisfying

A(∇2H) = (∇2H)AT.

Lemma. If vector field g(x) is associated to f0(x) via the matrix
B, then the following identities hold true:

g′(x)g(x) = f ′0(x)f0(x),

(g′(x))2 = (f ′0(x))2.

As a corollary,

det(I − εg′(x)) = det(I − εf ′0(x))

(this is the common denominator of Φg(x), resp. of Φf0(x)).
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Construction of associated vector fields

A generic 2m × 2m skew-Hamiltonian matrix A has m distinct
eigenvalues λ1, . . . , λm of algebraic multiplicity 2:

det(A− λI) = (λ− λ1)2 · · · (λ− λm)2,

and of geometric multiplicity 2 (i.e., is diagonalizable). The latter
follows from existence of a symplectic similarity transformation

SAS−1 =

(
W 0
0 W T

)
, STJS = J.
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Construction of associated vector fields

For any P ⊂ {1, . . . ,m}, define polynomial BP(λ) by

BP(λi) =

{
1, i ∈ P,
−1, i 6∈ P.

Then BP = BP(A) is skew-Hamiltonian and satisfies B2
P = I.

This defines 2m (or, better, 2m−1, if considered up to sign)
associated vector fields for any f0(x) from our class.
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Main results. I

Theorem 1. Let f0 and g be two associated vector fields, via
the skew-Hamiltonian matrix B. Then the KHK maps Φf0 and
Φg commute:

Φf0 ◦ Φg = Φg ◦ Φf0 .

Theorem 2. Let f0 and g be two associated vector fields, via
the skew-Hamiltonian matrix B. Then the maps Φf0 : x 7→ x̃ and
Φg : x 7→ x̂ share two functionally independent conserved
quantities

H̃0(x , ε) =
1
6ε

xTJ−1x̃ =
1
6ε

xTJ−1(I − εf ′0(x)
)−1 x

and

K̃ (x , ε) =
1
6ε

xTJ−1x̂ =
1
6ε

xTJ−1(I − εg′(x)
)−1 x .
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Main results. II

Theorem 3.
The rational functions H̃0(x , ε), K̃ (x , ε) are related by the same
differential equation as the cubic polynomials H0(x), K (x):

∇K̃ (x , ε) = B∇H̃0(x , ε).

As a consequence, they satisfy the same 2nd order differential
equations

A(∇2H) = (∇2H)AT

as the polynomials H0(x), K (x).
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Main results. III

Theorem 4. The map Φf0 is Poisson (symplectic) with respect
to the brackets with the Poisson tensor Π(x) given by

Π(x) = J − ε2(f ′0(x))2J

=
(
1− ε2q0(x)

)
J −

m−1∑
i=1

ε2qi(x)(AT)iJ.

If vector field g(x) is associated to f0(x) then Φg is Poisson with
respect to the same bracket.
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Open problems

I Are our systems, both continuous and discrete time,
algebraically completely integrable? In other words, are
their invariant manifolds (affine parts of) Abelian varieties?
Recall: in the continuous time case, they are intersections
of m cubic hypersurfaces in R2m.

I Is anything similar possible for Hamiltonian systems with
non-constant Poisson tensors?
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