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Vista

Let K ⊂ S3 be a knot, G be a (complex reductive) algebraic group.

• We associate to K a module (representation) Mq,t(K) over the double
affine Hecke algebra Hq,t(G) of type G.

• Mq,t(K) is a topological invariant that allows one to define a
multivariable generalization (‘t-deformation’) of the colored Jones
polynomials JK(n; q) (Witten-Reshetikhin-Turaev invaraints).

• When q → ±1, the module Mq,t(K) still makes sense and defines an
interesting algebro-geometric invariant of K. In the case G = SL2(C),
M−1,t(K) determines a family of algebraic curves in classical cubic
surfaces that arise in the theory of integrable systems (Painlevé VI).
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2. Knot groups and their character varieties

A knot K in S3 is (the ambient isotopy class of) a smooth embedding
S1 ↪→ S3. We’ll deal with oriented knots (i.e., fix an orientation on S1).

Write S3\K for the complement of (a small tubular nghd of) K in S3.
This is a compact 3-manifold with a torus boundary ∂(S3\K) ∼= T 2.

The most natural algebraic invariant of K is the knot group

π(K) := π1(S3\K, ∗)

This is a powerful and effective invariant, but not complete: there exist
non-equivalent knots with isomorphic knot groups (Fox, 1952).



One can refine π(K) by considering it together with the peripheral map

α : π1[∂(S3\K)]→ π(K)

induced by the inclusion ∂(S3\K) ↪→ S3\K. This map is injective (unless
K is trivial), so π1[∂(S3\K)] can be identified with Im(α) .

For an oriented K, we can choose simple loops in S3\K: the meridian m
and the longitude l, unique up to (basepoint-free) isotopy, representing two
generators of π1[∂(S3\K)]. The triple (π(K),m, l) is called the peripheral
system of K.

Theorem (Waldhausen). Two knots K,K ′ ⊂ S3 are ambiently isotopic
iff there is an isomorphism φ : π(K)→ π(K ′) such that φ(m) = m′ and
φ(l) = l′.



Examples

1. Unknot: π(K) ∼= 〈a〉 , m = a , l = 1

2. Trefoil knot:

π(K) ∼= 〈a, b | aba = bab〉 , m = a , l = baaba−4

3. Torus knots:

π(K) ∼= 〈a, b | ap = bq〉 , m = anb−k , l = bqm−pq

where n and k are integers satisfying −pk + qn = 1. (Note that m and l
are independent of the choice of (n, k).)

4. ‘Figure 8’ knot:

π(K) = 〈a, b | aba−1ba = bab−1ab〉 , m = a, l = ba−1b−1a2b−1a−1b



Character varieties

The peripheral map α is quite complicated: it is natural to ‘simplify’ it by
replacing fundamental groups with their linear representations.

Fix a complex reductive algebraic group G. For any (discrete) group π, let

Rep(π,G) := space of all representations π → G

This is naturally an algebraic variety (more precisely, an affine scheme)
called the representation variety of π in G.

The character variety of π is the algebro-geometric quotient

Char(π,G) := Rep(π,G)//Ad(G)

with coordinate ring OChar(π,G) = C[Rep(π,G)]G.



For a knot group, the peripheral map α induces a morphism

α∗ : Char(π(K), G)→ Char(π1[∂(S3\K)], G)

Identifying π1[∂(S3\K)] ∼= Z2 via (m, l), we can compute the target of α∗.

Let T ⊂ G be a maximal torus in G, and W the corresponding Weyl group.

Then
T× T = Rep(Z2,T) ↪→ Rep(Z2, G) � Char(Z2, G)

induces
(T× T)/W → Char(Z2, G)

In general, this map is injective, and for ‘many’ G, it is known to be an
isomorphism of schemes (e.g., for G = SL2(C) or any simply connected G
of classical type, see [Sikora, 2014]). In this case,

OChar(Z2, G) ∼= C[T× T]W



Many interesting algebro-geometric invariants of knots arise from α∗: e.g.
the Alexander polynomial ∆K(t), and the so-called A-polynomial AK(m, l).

Let G = SL2(C). Then Char(Z2, G) ∼= (C∗ × C∗)/Z2, and

C∗ × C∗

Char(π(K),SL2)
α∗
>(C∗ × C∗)/Z2

p
∨∨

Let XK ⊆ im(α∗) denote the union of 1-dimensional components in the
(Zariski) closure of the image of α∗. It is known that XK 6= ∅ (Thurston),
and XK (or rather its inverse image under p) is called the A-curve of K.

The A-polynomial AK(m, l) is a polynomial in C[m±1, l±1] defining
p−1(XK) ⊂ C∗ × C∗ (Copper, Culler, Gillet, Long, Shalen, 1994).



3. Topological quantization of character varieties

Does α∗ determine ‘quantum’ invariants of knots, e.g. Jones polynomials?
The answer is ‘yes’, but one needs to deform or ‘quantize’ the map α∗.

The KBSM construction

A framed link in an oriented 3-manifold M is
⊔
i (S

1 × [0, 1])i ↪→ M .

Let L(M) be the C-vector space spanned by the (ambient isotopy classes
of) framed (unoriented) links in M (including ∅). For q ∈ C∗, let L′q(M)
be the smallest subspace of L(M) containing all ‘skein expressions’:

× − q � − q−1 )( , L t©+ (q2 + q−2)L

(The links “× ”, “� ”, and “ )( ” are identical outside of a small 3-ball B
embedded in M and inside B they appear as in the above skein expressions.)



Definition (Przytycki). The Kauffman bracket skein module of M is

Mq(M) := L(M)/L′q(M)

In general, Mq(M) is just a vector space (with a distinguished element
∅ ∈ L(M)). However, if M has extra structure, then Mq(M) has also
extra structure.

Properties:

1. If F is a surface, then Aq(F ) := Mq(F × [0, 1]) is an associative algebra
with multiplication given by ‘stacking links.’ We call Aq(F ) the skein
algebra of F .

2. If M is a manifold with boundary, then Mq(M) is a module over
Aq(∂M). The action is given by ‘pushing links from the boundary into
the manifold.’



3. An oriented embedding M ↪→ N of 3-manifolds induces a linear map
Mq(M) → Mq(N). Hence Mq(−) is a functor on the category of
oriented 3-manifolds, with morphisms being oriented embeddings.

4. If q = ±1, then Mq(M) is a commutative algebra (for any M). The
multiplication is given by ‘disjoint union of links.’ (This makes sense
because when q = ±1, the skein relations allow strands to ‘pass through’
each other.)

Remark. Mq(S
3\K) is different from other knot invariants in a fundamental

way. Many knot invariants are defined combinatorially, in the sense that
they assign certain data to each crossing in a diagram of K and then
combine these data to produce an invariant that does not depend on the
choice of diagram. In contrast, the module Mq(S

3\K) depends on the
global topology of S3\K.



Relation to character varieties

An (unbased) loop γ : S1 → M determines a conjugacy class in π1(M).
Since the trace of a matrix is invariant on conjugacy classes, we can define
a trace function Tr(γ) ∈ OChar(π1(M), G) for any matrix group G.

Theorem (Bullock, Przytycki-Sikora). For G = SL2(C), the assignment
γ 7→ −Tr(γ) extends to an algebra isomorphism

Mq=−1(M)
∼→ OChar(π1(M), G)

Remark. The key observation here is that for q = −1, the skein relation
becomes the Hamilton-Cayley identity for matrices in SL2(C):

Tr(A) Tr(B) = Tr(AB) + Tr(AB−1)



The skein algebra of the torus

For q ∈ C∗, define the quantum Weyl algebra

Aq := C〈X±1, Y ±1〉/(XY − q2Y X)

Note that Z2 acts by automorphisms on Aq by (X,Y ) 7→ (X−1, Y −1).

Theorem (Frohman-Gelca). There is a natural isomorphism of algebras

Aq(T
2)
∼→ AZ2

q

The above isomorphism can be written quite explicitly. Under this
isomorphism, the simple curves on T 2 representing the meridian m and
the longitude l correspond to the elements:

m 7→ X +X−1 , l 7→ Y + Y −1



Topological pairing and Jones polynomials

The above results suggest that Mq(S
3 \K) should be viewed as a

‘quantization’ of the SL2-character variety of the knot group π(K). ni If
q 6= ±1, Mq(S

3\K) is not an algebra but a (left) module over Aq(T
2).

This should be thought of as a ‘quantization’ of the peripheral map α∗.

It turns out that Mq(S
3\K) determines the sl2-colored Jones polynomials

JK(n, q) ∈ C[q, q−1], originally defined by Witten, Reshetikhin-Turaev.

The key fact is that Mq(S
3\K) comes with a natural pairing:

〈−,−〉K : Mq(D
2 × S1)⊗Aq(T 2) Mq(S

3\K)→ C

induced by gluing a solid torus D2 × S1 to the complement S3\K along
the common boundary T 2 = S1 × S1:

(D2 × S1) qT 2 (S3\K)
∼→ S3



Recall the isomorphism Aq(T
2) ∼= AZ2

q , mapping

l 7→ L := Y + Y −1

Theorem (Kirby-Melvin). For any knot K ⊂ S3,

JK(n; q) = (−1)n−1〈∅, Sn−1(L) ·∅〉K ,

where Sn are the Chebyshev polynomials of the second kind.

Remark. Note that L is an (undeformed) Macdonald operator. Moreover,
in the simplest case when K is the unknot, the topological pairing coincides
with (undeformed) symmetric Dunkl-Cherednik pairing: in particular,

〈∅, Sn−1(L) ·∅〉K = 〈∅ · Sn−1(x), ∅〉K

This is not a coincidence!



4. Double Affine Hecke Algebras

The peripheral morphism of G-character varieties can written in dual terms
as a map of commutative algebras

α∗ : OChar(Z2, G)→ OChar(π(K), G)

Recall, for a simply connected (classical) G, we have a natural isomorphism

OChar(Z2, G) ∼= C[(T× T)/W ] = C[T× T]W

Thus, for any knot K ⊂ S3,

α∗ : C[T× T]W → OChar(π(K), G)

Now, the invariant ring C[T× T]W has very interesting (noncommutative)
deformations, which have been studied extensively in recent years.



These deformations are related to the so-called double affine Hecke algebras
usually abbreviated as DAHA (Cherednik, 1995).

Consider the canonical (non-unital) algebra homomorphism

C[T× T]W ↪→ C[T× T] oW , a 7→ e · a · e

where e := 1/|W |
∑
w∈W w is the symmetrizing idempotent of W .

This homomorphism is injective and its image equals e(C[T × T] oW ])e,
which is called the spherical subalgebra A(W ) of C[T× T] oW . Thus

C[T× T]W ∼= e(C[T× T] oW ])e =: A(W )

The DAHA of type W is a two-parameter family Hq,t(W ) of deformations
of C[T × T] oW , depending on q ∈ C∗ and t ∈ (C∗)r, where r is the
number of conjugacy classes of reflections in W .



The symmetrizer e ∈ W ‘deforms’ to a distinguished idempotent eq,t in
Hq,t(W ), called the Bernstein-Zelevinsky idempotent, and the subalgebra
A(W ) of C[T× T] oW ‘deforms’ to the subalgebra of Hq,t:

Aq,t(W ) := eq,tHq,t(W ) eq,t

called the spherical DAHA of type W . In particular, when q = t = 1, there
is a natural algebra isomorphism A1,1(W ) ∼= C[T× T]W .

Remark. The above construction gives a flat family of deformations
of A(W ), that is actually universal (i.e., ‘maximal possible’ from the
deformation theory point of view). It is remarkable that these deformations
can be realized algebraically in terms of generators and relations.



The double affine Hecke algebra of rank one

The rank one DAHA Hq,t(Z2) (of type C∨C1) has the following presentation
(Sahi, 1999; Noumi-Stokman, 2004):

Hq,t(Z2) = C〈T1, T2, T3, T4〉

with T1, T2, T3, T4 satisfying the relations

(T1 − t1) (T1 + t−1
1 ) = 0

(T2 − t2) (T2 + t−1
2 ) = 0

(T3 − t3) (T3 + t−1
3 ) = 0

(T3 − t4) (T4 + t−1
4 ) = 0

T4 T3 T2 T1 = q



Remarks

1. Hq,t(Z2) was originally introduced to study the Askey-Wilson orthogonal
polynomials, and the Hecke parameters (t1, t2, t3, t4) are algebraically related
to the Askey-Wilson coefficients (a, b, c, d).

2. Hq,t(Z2) can be viewed topologically as a (flat) deformation of the
orbifold fundamental group algebra Cπorb

1 (Σ, ∗) of the orbifold Riemann
surface Σ = C/Γ, where Γ := (Z⊕ iZ)oZ2 acts by translations-reflections.

3. For t1 = t2 = t4 = 1 and t3 = t, Hq,t(Z2) specializes to Cherednik’s
DAHA Hq,t of type A1.



Spherical DAHA

Choose a B.-Z. idempotent in Hq,t(Z2), say e := (T3 + t3)/(t3 + t−1
3 ), and

consider the corresponding spherical DAHA

Aq,t(Z2) := eHq,t(Z2) e

Theorem (Oblomkov). Let Aq be the quantum Weyl algebra.

1. Hq,t(Z2) is a universal deformation of Aq o Z2

2. Aq,t(Z2) is a universal deformation of AZ2
q

Lemma. If q is not a root of unity (or q = ±1 and t generic), the projection
functor M 7→ eM is an equavalence of categories

Hq,t(Z2)-Mod
∼→ Aq,t(Z2)-Mod



Theorem (Koornwinder). The algebra Aq,t(Z2) is generated by

x := (T4T3 + (T4T3)−1) e

y := (T3T2 + (T3T2)−1) e

z := (T3T1 + (T3T1)−1) e

subject to the relations

[x, y]q = (q2 − q−2)z − (q − q−1)γ

[y, z]q = (q2 − q−2)x− (q − q−1)α

[z, x]q = (q2 − q−2)y − (q − q−1)β

Ω = (t̄1)2 + (t̄2)2 + (qt3)2 + (t̄4)2 − t̄1t̄2(qt3)t̄4 + (q + q−1)2

where t̄i := ti − t−1
i (i = 1, 2, 3, 4) and

α := t̄1t̄2 + (qt3)t̄4, β := t̄2t̄4 + (qt3)t̄1, γ := t̄1t̄4 + (qt3)t̄2



Remarks.

1. Note that the element

Ω := −qyzx+ q2x2 + q2y2 + q−2z2 − qαx− qβy − q−1γz

is central in Aq,t(Z2) for all q, t.

2. For q = ±1, the algebra A±1,t(Z2) is commutative, and it is isomorphic
to the coordinate ring of an affine cubic in C3:

xyz + x2 + y2 + z2 +Ax+Dy + Cz +D = 0

which, for generic t’s, is actually smooth.



Dunkl embedding

The most useful and important property of Hq,t is the exsitence of an
injective algebra homomorphism

Θq,t : Hq,t ↪→ Dq := C(X)[Y ±1] o Z2

whose image is the subalgebra of Dq generated by X,X−1 and the following
operators (Sahi, 1999; Noumi-Stokman, 2004):

TDC := t1sY +
qt̄1X + t̄2

qX − q−1X−1
(1−sY ) , TDL := t3s+

t̄3X
−1 + t̄4

X−1 −X
(1−s) ,

called the Dunkl-Cherednik and Demazure-Lusztig operators, respectively.
Explicitly (in our notation), Θq,t is given by

T1 7→ q T−1
DCX , T2 7→ TDC , T3 7→ TDL , T4 7→ X−1 T−1

DL



Another presentation

The Dunkle embedding shows that the algebra Hq,t is also generated by
the elements

X±1 , Y := TDL TDC , T := TDL

For this set of generators, the relations are (Naoumi-Stokman):

XT = T−1X−1 − t̄4
T−1Y = Y −1T + t̄1

T 2 = 1 + t̄3T

TXY = q2T−1Y X − q2t̄1X − qt̄2 − t̄4Y

This presentation shows that Hq,1,1,1,1 = Aq o Z2 (as subalgebras of Dq).



5. The Main Conjecture and Results

Let K ⊂ S3 be a knot, and let M := OChar(π(K), G). We regard M as
an A1,1(W )-module via the peripheral map

α∗ : A1,1(W )→ OChar(π(K), G)

Questions.

1. Is there a canonical deformation of M to a module Mq,t over Aq,t?

2. What kind of invariants of K can be extracted from Mq,t(K)?

In the case G = SL2, we have already seen that the KBSM construction
produces a natural deformation of M(K) to a module over Aq,1(Z2) = AZ2

q :
namely, the skein module Mq(S

3\K). But this module depends only on q.

Our main goal is to introduce the Hecke parameters t into this story.



First, using the Frohman-Gelca isomorphism Aq(T
2) ∼= AZ2

q , we define the
nonsymmeteric skein module of K by

M̃q(K) := Aq ⊗AZ2
q

Mq(S
3\K)

This is a module over Hq,1(Z2) = AqoZ2 , which (for q not a root of unity)
contains exactly the same information as the AZ2

q -module Mq(S
3\K).

Next, we localize the module M̃q(K) by inverting the ‘meridians’, i.e.
nonzero polynomials in X:

M̃loc
q (K) := Dq ⊗(AqoZ2) M̃q(K)

This is a Dq-module that comes together with a natural (localization) map

M̃q(K)→ M̃loc
q (K)



Now, recall the Dunkl embedding Θq,t : Hq,t ↪→ Dq that exists for all q, t.

By restriction, Θq,t gives the localized nonsymmetric module M̃loc
q (K) the

natural structure of a module over Hq,t for any value of t.

Conjecture 1. For all knots K, the localization map M̃q(K)→ M̃loc
q (K)

is injective, and its image is preserved under the above action of Hq,t(Z2)

on M̃loc
q (K) for t = (t1, t2, 1, 1).

Conjecture 1 says that the vector space M̃q(K) carries a canonical module
structure over the algebra Hq,t1,t2(Z2) for all (t1, t2) ∈ (C∗)2. We denote

this module by M̃q,t1,t2(K).



It is natural to ask whether Conjecture 1 can be extended to the full DAHA
Hq,t1,t2,t3,t4 depending on all five parameters. The simplest example shows
that this is not possible: if t3 6= 1 or t4 6= 1, the operator TDL does not
preserve the skein module of the unknot K0.

We believe, however, that the skein module of K0 is the only obstruction to
a canonical extension of the action of Hq,t1,t2 on M̃q(K) to all four Hecke
parameters.

Conjecture 2. For any knot K, the skein module Mq(K) contains a copy

of Mq(K0) as a submodule. Let M̄q(K) := M̃q(K)/M̃q(K0). Then the
action of Hq,t on M̄loc

q (K) preserves the subspace M̄q(K) ⊂ M̄loc
q (K) for

all values t = (t1, t2, t3, t4).

We now discuss the evidence for these conjectures and implications.



Results.

Conjectures 1 and 2 have been verified directly in the following cases:

(i) K is the unknot,

(ii) K is any (2p+ 1)-torus knot

(iii) K is the “Figure 8” knot.

Conjecture 1 implies some new algebraic properties of the classical Jones
polynomials JK(n, q) ∈ C[q, q−1].

For example, from Conjecture 1 one can easily deduce that the following
rational function must be a Laurent polynomial in q for all n, j ∈ Z:

FK(j;n; q) :=
(q2 − 1) [JK(n+ j, q) + JK(n− 1− j, q)]

q4n−2 − 1



Theorem. The rational function FK(j;n; q) ∈ C(q) is a Laurent polynomial
for all knots K ⊂ S3 (independently of Conjecture 1).

We proved the above theorem and a few other similar results, using Habiro’s
cyclotomic expansion of the Jones polynomial JK(n, q).

Next, Conjecture 1 makes sense for q = −1, and in fact, it is very interesting.
We have a lot of evidence that it holds in this case.

Theorem. When q = −1, Conjecture 1 follows from (and essentially
equivalent to) a known conjecture about the algebraic structure of the
peripheral system (π(K),m, l), due to G. Brumfiel and H. Hilden (1990).

We have verified the BH conjecture for many classes of knots, including all
2-bridge knots, all torus knots, infinite families of pretzel knots, . . .



More interestingly, we have

Theorem. If Conjecture 1 holds for two knots K and K ′, then it holds for
their connect sum K#K ′.

Thus, it suffices to prove Conjecture 1 for prime knots.

The multi-variable Jones polynomials

Recall the topological pairing for the skein module

〈−,−〉K : Mq(D
2 × S1)⊗Mq(S

3\K)→ C

and the Kirby-Melvin formula for the Jones polynomial

JK(n; q) = 〈∅, Sn−1(L) ·∅〉K



Now, if we deform the module structure on Mq(S
3\K) we can replace the

undeformed Macdonald operator L = Y + Y −1 by the t-deformed one

Lt1,t1 := Yt1,t2 + Y −1
t1,t2

which is usually called the Askey-Wilson operator. Here, Yt1,t2 := s TDC

is the Dunkl-Cherednik operator which acts on the skein module Mq(S
3\K)

as prescribed in Conjecture 1.

Defintion. If Conjecture 1 holds for K, we define its three-variable colored
Jones polynomial by

JK(n; q, t1, t2) := 〈∅, Sn−1(Lt1,t1) ·∅〉K

By the Kirby-Melvin formula, we then have

JK(n; q) = JK(n; q, t1 = 1, t2 = 1)



For the unknot, we can actually compute a closed formula for JK(n; q, t1, t2).

Theorem. If K is the unknot, then

JK(n; q, t1, t2) =
(t−1

1 q2)n − (t−1
1 q2)−n

t−1
1 q2 − (t−1

1 q2)−1

For nontrivial knots, finding such explicit formulas seems to be a hopeless
task. Still, one can deduce for JK(n; q, t1, t2) some nice properties. For
example, we can prove

Theorem. Let K̄ be the mirror image of K, and suppose Conjecture 1
holds for K. Then

JK(n; q, t1, t2) = JK̄(n; q−1, t−1
1 , t−1

2 )



Examples

1. For the unknot, the module Mq,t1,t2(K) is isomorphic to the sign-
polynomial representation of the DAHA Hq,t1,t2, i.e.

Mq,t1,t2(K) ∼= C[X±1]∅

with s · ∅ = −∅ . The topological pairing coincides the Dunkl-Cherednik
pairing on sign-polynomial representation.

2. For the trefoil, the deformed skein module Mq,t1,t2(K) is a free module
of rank two over C[X±1]

Mq,t1,t2(K) ∼= C[X±1]u ⊕ C[X±1] v

where v = ∅ is the empty link and u is a generator of the unknot submodule.



The action of the generators T = s and Y of Hq,t1,t2 is given explicitly by

s · u = −u , s · v = v , Y · u = −t1u
Y · v = [t1(q2X−1 − q6X−5)− (q2t̄1X

−2 + qt̄2X
−1)(q4X−3 + q2X−1)]u

+[t1q
6X−6 − (q2t̄1X

−2 + qt̄2X
−1)(q4X−4 + q2X−2 + 1)]v

Remark. Note that Mq,t1,t2(K) admits a decomposition into a nonsplit
exact sequence

0→ V − →M→ τ−6(V +)→ 0

where τN(V +) is a twist of the trivial representation V + ∼= C[X±1]u and
V − ∼= C[X±1] v is the sign representation. If q is not a root of unity, then
V − is the unique nontrivial submodule of M.


