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In this talk, I will present some recent results on the global
existence of solutions to stochastic reaction-diffusion(/stochastic
heat) equations with super-linear drift and multiplicative noise.

This talk is based on the joint work with Robert Dalang and Davar
Khoshnevisan.
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Introduction

Let ξ denote the space-time white noise on R+ × [0 , 1], and
consider the parabolic stochastic partial differential equation

u̇(t , x) = 1
2u

′′(t , x) + b(u(t , x)) + σ(u(t , x))ξ(t , x), (1)

t > 0, x ∈ (0, 1), subject to the homogeneous Dirichlet boundary
condition,

u(t , 0) = u(t , 1) = 0 for all t > 0,

and the initial condition u(0, x) = u0(x), x ∈ [0, 1]. Throughout,
σ : R → R is assumed to be a nonrandom and measurable
function, and b : R → R is assumed to be nonrandom and
measurable. We assume further that the initial function
u0 : [0 , 1] → R is always nonrandom.
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Introduction

It is well known that if, in addition, b, σ have at most linear
growth—that is if |b(z)|, |σ(z)| = O(|z |) as |z | → ∞—then any
local solution of (1) is a global one. A few years ago, Bonder and
Groisman proved the following interesting complement.

Theorem.[Bonder and Groisman] Suppose, in addition, that σ is a
nonzero constant, b is a nonnegative convex function, and satisfies
either

∫∞
1 dz/b(z) < ∞ or

∫ −1
−∞ dz/b(z) < ∞, or both, and the

initial function u0 is nonnegative, continuous on [0 , 1], and
vanishes on {0 , 1}. Then there exists an almost surely finite
random time τ such that∫ 1

0
|u(t , x)|2 dx = ∞ for every t > τ.
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Introduction

Our goal is to prove that the preceding result of Bonder–Groisman
is in a certain sense optimal. In fact, we introduce two rather
different methods which show that, under two different sets of
natural conditions, if |b(z)| = O(|z | log |z |) then the solution to
(1) does not blow up at finite time.
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Part I: L2-setting

Let us first recall the definition of a L2-solution.
Definition 1. Let τ be a stopping time. A L2[0 , 1]-valued
continuous, adapted random field {u(t, ·), t ∈ [0, τ)} is called a
solution to equation (1) if for every test function ϕ ∈ C 2

0 (0, 1),∫ 1

0
u(t, x)ϕ(x)dx =

∫ 1

0
u0(x)ϕ(x)dx +

1

2

∫ t

0

∫ 1

0
u(s, x)ϕ′′(x)dx

+

∫ t

0

∫ 1

0
b(u(s, x))ϕ(x)dx

+

∫ t

0

∫ 1

0
σ(u(s, x))ϕ(x)ξ(dsdx) (2)

a.s. for all t ∈ [0, τ).

Tusheng Zhang Global Solutions to Stochastic Reaction-Diffusion Equations



Part I: L2-setting

Our first result is stated as follows.
Theorem 1. Suppose that u0 ∈ L2[0 , 1], σ : R → R is bounded,
and |b(z)| = O(|z | log |z |) as |z | → ∞. Then, any L2-solution u of
(1) does not blow up in finite time.
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Sketch of the proof

Sketch of the proof. We will appeal to the logarithmic Sobolev
inequality of Gross [2] in the following form: For every ε ∈ (0 , 1)
and infinitely-differentiable functions h : [0 , 1] → R that vanish
continuously on {0 , 1},∫ 1

0
|h(x)|2 log |h(x)|dx 6 ε∥h′∥2L2+1

4 log(1/ε)∥h∥
2
L2+∥h∥2L2 log

(
∥h∥2L2

)
,

where 0 log 0 := 0.
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Sketch of the proof

For every R > 0, consider the stopping times,

τ(R) := inf {t > 0 : ∥u(t)∥L2 > R} and let τ := lim
R→∞

τ(R).

Our goal is to prove that P{τ = ∞} = 1. We will do this by
proving that P{τ < T} = 0 for every positive constant T .
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Sketch of the proof

For every constant R > 0 consider the following stochastic PDE
with random forcing and no reaction term:

v̇R(t , x) =
1
2v

′′
R(t , x)+σ(u(t∧τ(R) , x))ξ(t , x), [0 < t < τ, 0 6 x 6 1].

(3)
The solution process t 7→ vR(t) satisfies the following random
integral equation:

vR(t , x) =

∫
(0,t)×[0,1]

Gt−s(x , y)σ(u(s ∧ τ(R) , y)) ξ(ds dy). (4)

Here, the function G : (0 ,∞)× [0 , 1]2 → R+ denotes the heat
kernel. We will use G := {Gt}t>0 to denote the corresponding heat
semigroup.
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Sketch of the proof

Define, for every fixed R > 0,

dR := u − vR .

We may observe that dR solves the following random heat
equation: For all t ∈ [0 , τ),

ḋR(t) =
1
2d

′′
R(t) + b (vR(t) + dR(t)) , (5)

subject to dR(0) = u0.
Next we consider the Lyapunov function,

Φ(r) := exp

(∫ r

0

dz

1 + z log+ z

)
,

defined for every r > 0.
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Sketch of the proof

Choose and fix some T > 0. Since σ is a bounded measurable
function, we can show that

A := sup
R>0

E

(
sup

t∈[0,T ]
sup

x∈[0,1]
|vR(t , x)|

)
< ∞. (6)

Consider the stopping time

τM(R) := inf

{
t > 0 : sup

x∈[0,1]
|vR(t , x)| > M

}
for every M > 0.

It follows from (6) and the Chebyshev inequality that

sup
R>0

P {τM(R) < T} 6 A

M
. (7)
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Sketch of the proof

Temporarily define two random space-time functions D and V as

D(t) := dR (t ∧ τ(R) ∧ τM(R)) , V (t) := vR (t ∧ τ(R) ∧ τM(R))

for 0 6 t 6 T , all the time suppressing the dependence of D and
V on (R ,M), as well as on the spatial variable x ∈ [0 , 1].
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Sketch of the proof

We are able to justify the use of the chain rule to get that for
every t ∈ [0 ,T ],

∥D(t)∥2L2 = ∥u0∥2L2 − 2

∫ t

0

∥∥D ′(s)
∥∥2
L2 ds

+2

∫ t

0
⟨b(V (s) + D(s)) ,D(s)⟩L2 ds. (8)

A second application of the chain rule yields

Φ
(
∥D(t)∥2L2

)
= Φ

(
∥u0∥2L2

)
− 2

∫ t

0
Φ′ (∥D(s)∥2L2

) ∥∥D ′(s)
∥∥2
L2 ds

+ 2

∫ t

0
Φ′ (∥D(s)∥2L2

)
⟨b(V (s) + D(s)) ,D(s)⟩L2 ds.

(9)
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Sketch of the proof

Using the growth condition of the drift b we can show that

⟨b(V (s) + D(s)) ,D(s)⟩L2 6 C̄
{
∥D(s)∥2L2 logL + ∥D(s)∥2L2 + 1

}
,

uniformly for all s ∈ [0 ,T ], where C̄ is a non-random and finite
constant, and depends only on (Cb ,M). Thus, we may apply the
logarithmic Sobolev inequality to get

⟨b(V (s) + D(s)) ,D(s)⟩L2 6 ∥D ′(s)∥2L2

+ c∗
{
∥D(s)∥2L2 + ∥D(s)∥2L2 log+

(
∥D(s)∥2L2

)
+ 1
}
,

uniformly for all s ∈ [0 ,T ], where c∗ is a non-random and finite
constant, and depends only on (Cb ,M).

Tusheng Zhang Global Solutions to Stochastic Reaction-Diffusion Equations



Sketch of the proof

We can deduce the following from (9):

Φ
(
∥D(t)∥2L2

)
6 Φ

(
∥u0∥2L2

)
+ C

∫ t

0
Φ′ (∥D(s)∥2L2

)
×
{
1 + ∥D(s)∥2L2 log+

(
∥D(s)∥2L2

)}
ds. (10)

But Φ′(r)[1 + r log+ r ] = Φ(r) for all r > 0. Therefore, the
preceding inequality implies that

Φ
(
∥D(t)∥2L2

)
6 Φ

(
∥u0∥2L2

)
+ C

∫ t

0
Φ
(
∥D(s)∥2L2

)
ds,

uniformly for all t ∈ [0 ,T ], where the implied constant is
non-random and finite, and depends only on (Cb ,M ,T ). It
follows from Gronwall’s inequality, that supt∈[0,T ]Φ(∥D(t)∥2L2) is
a.s. bounded from above by a non-random finite number
B(Cb ,M ,T ), that depends only on (Cb ,M), whence

sup
R>0

E
[
Φ
(
∥d(T ∧ τ(R) ∧ τM(R)∥2L2

)]
6 B(Cb ,M ,T ). (11)
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Sketch of the proof

On the other hand, we can show that

∥d(T ∧ τ(R) ∧ τM(R))∥L2 > R −M

a.s. on the event {τ(R) 6 T 6 τM(R)}, whence

Φ
(
∥d(T ∧ τ(R) ∧ τM(R))∥2L2

)
> Φ

(
(R −M)2

)
a.s. on {τ(R) 6 T 6 τM(R)} as long as R > M.
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Sketch of the proof

Combine this with (11) to see that

P {τ(R) 6 T 6 τM(R)} 6 B(Cb ,M ,T )

Φ ((R −M)2)
for all R > M > 0.
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Sketch of the proof

The preceding inequality and (7) together show that

P {τ(R) 6 T} 6 B(Cb ,M ,T )

Φ ((R −M)2)
+

A

M
,

for all R > M. We first let R → ∞ and then M → ∞ in order to
see that

P{τ < T} = lim
R→∞

P {τ(R) < T} = 0.

Since T > 0 is arbitrary, this proves the theorem.
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Part II: L∞-setting

In this second part, I will introduce another main result in the
L∞-setting under a different set of conditions. The approach is
also quite different. First let us recall the definition of the solution.
Definition 2. A random field solution to (1) is a jointly
measurable and adapted space-time process
u := {u(t , x)}(t,x)∈R+×[0,1] such that, for all (t , x) ∈ R+ × [0 , 1],

u(t , x) = (Gtu0)(x) +

∫
(0,t)×(0,1)

Gt−s(x , y)b(u(s , y))ds dy

+

∫
(0,t)×(0,1)

Gt−s(x , y)σ(u(s , y)) ξ(ds dy),

almost surely, where {Gt}t>0 and G are respectively the heat
semigroup and heat kernel for the Dirichlet Laplacian.
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Part II: L∞-setting

For every globally Lipschitz function f : R → R, there are
constants c(f ) and L(f ) such that

|f (z)| 6 c(f ) + L(f )|z |, for all z ∈ R. (12)

One possibility is to take c(f ) = |f (0)| and L(f ) = Lip(f ), but
often, L(f ) can be chosen strictly smaller than Lip(f )
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Part II: L∞-setting

Here is our second main result:
Theorem 2. Suppose that:

I u0 ∈ ∪0<α61Cα
0 ;

I b and σ are locally Lipschitz functions such that
|b(z)| = O(|z | log |z |) as |z | → ∞; and

I |σ(z)| = o
(
|z |(log |z |)1/4

)
as |z | → ∞.

Then, the SPDE (1) has a unique random field solution in
L∞[0 , 1]. In fact, u has a continuous modification that satisfies

sup
t∈[0,T ]

sup
x∈[0,1]

|u(t , x)| < ∞ a.s., for all T ∈ (0 ,∞). (13)

Tusheng Zhang Global Solutions to Stochastic Reaction-Diffusion Equations



Some uniform bounds

To prove Theorem 2, we first establish some rather precise moment
bounds of the solution of the stochastic heat equation in the
classical case that

b and σ are globally Lipschitz continuous.

We consider only the case that

L(b) > 4L(σ)4 > 0. (14)
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Some uniform bounds

Proposition 3. The following logical implication is valid:

u0 ∈
∪

0<α61

Cα
0 =⇒ P

{
u(t) ∈

∪
0<α61

Cα
0 for all t > 0

}
= 1.
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Some uniform bounds

Set
M1 := c(b) + c(σ); M2 := L(b) + L(σ); and

M3 := ∥u0∥L∞ +
c(b)

L(b)
+

c(σ)

L(σ)
.
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Some uniform bounds

Proposition 4. Choose and fix α ∈ (0 , 1]. There exists a finite
universal constant A—independent of (b , σ)—such that

sup
06x<x ′61

E

(∣∣∣∣u(t , x)− u(t , x ′)

|x ′ − x |α∧(1/2)

∣∣∣∣k
)

6 Ak
(
∥u0∥kCα

0
+ kk/2Mk

1 + kk/2Mk
2 Mk

3 e
AkL(b)t

)
, (15)

uniformly for all u0 ∈ Cα
0 , t > 0, and k ∈ [2 ,

√
L(b)/L(σ)2].
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Some uniform bounds

Proposition 5. Fix T0 > 0. Choose and fix some α ∈ (0 , 1], and
define µ := min(14 ,

1
2α). Then there exists a finite constant

A—independent of (b , σ)—such that

sup
x∈[0,1]

E

(∣∣∣∣u(T , x)− u(t , x)

(T − t)µ

∣∣∣∣k
)

6 Ak
(
∥u0∥kCα

0
+ kk/2

[
Mk

1 +Mk
2Mk

3e
AkL(b)(T )

])
, (16)

for all u0 ∈ Cα
0 , 0 6 t < T 6 T0, and k ∈ [2 ,

√
L(b)/L(σ)2].
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Some uniform bounds

The following estimate plays a key role.
Proposition 6. Let u = {u(t , x)}t>0,x∈[0,1] denote the solution of
SHE, and define ϖ := max(12 , 6/α) and fix T0 > 0. If u0 ∈ Cα

0

for some α ∈ (0 , 1] and
√

Lip(b) > ϖLip(σ)2, then there exists a
finite constant A—independent of L(b), L(σ)—such that for all
T ∈ [0,T0],

E

(
sup

t∈[0,T ]
sup

x∈[0,1]
|u(t , x)|k

)
6 Ak(1 ∨ T )k(1+

α
2
∧ 1

4
)
(
∥u0∥kCα

0

+kk/2Mk
1 + kk/2Mk

2Mk
3 e

AkL(b)T
)
, (17)

uniformly for all k ∈
(
ϖ ,
√

L(b)/L(σ)2
]
.
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Some uniform bounds

The proof of Proposition 6 is also lengthy. It requires estimates
providing precise dependence of the moment bounds of

E [|u(t, x)− u(s, y)|k ]

on the Linear growth constants of the coefficients b and σ.
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Sketch of the proof of Theorem 2

For all N > 1 let bN be the following truncation of the drift
function:

bN(z) :=


b(z) if |z | 6 N,

b(N) if z > N,

b(−N) if z < −N.

(18)

Let σN(z) denote the corresponding truncation of the diffusion
coefficient σ.
Consider the stochastic PDE

u̇N(t , x) =
1
2u

′′
N(t , x)+bN (uN(t , x))+σN (uN(t , x)) ξ(t , x), (19)

subject to uN(0) = u0. Since bN is globally Lipschitz, the solution
uN exists for all time.
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Sketch of the proof of Theorem 2

Consider also the stopping times

τN := inf

{
t > 0 : sup

x∈[0,1]
|uN(t , x)| > N

}
,

where inf ∅ := ∞. One has

uN(t , x) = uN+1(t , x) for all t ∈ [0 , τN) and x ∈ [0 , 1].

Since uN is well defined for all time, and is a continuous function
of (t , x), this proves that τN 6 τN+1 a.s. for all N > 1, and
therefore there exists a space-time stochastic process u such that
for all N > 1, u(t , x) = uN(t , x) for all x ∈ [0 , 1] and t ∈ [0 , τN).
Consider the stopping time

τ∞ = lim
N↑∞

τN .

The aim is to show that τ∞ = ∞ a.s.
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Sketch of the proof of Theorem 2

The proof is divided into several steps. We first assume that the
drift b in (1) has the following special form: There exist two
constants ϑ1, ϑ2 ∈ R such that ϑ2 ̸= 0 and

b̃(z) = ϑ1 + ϑ2|z | log+ |z | for all z ∈ R, (20)

where we recall log+(a) := log(a ∨ e) for all a > 0.
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Sketch of the proof of Theorem 2

Define
b̃N(z) := ϑ1 + ϑ2(|z | ∧ N) log+ (|z | ∧ N) ,

for all N > 3. We can take

L(b̃N) = ϑ2(logN). (21)
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Sketch of the proof of Theorem 2

For every fixed integer N > 3, the following stochastic PDE is well
posed for all time:

U̇N(t , x) =
1
2U

′′
N(t , x) + b̃N (UN(t , x)) + σN (UN(t , x)) ξ(t , x),

valid for all t > 0 and x ∈ [0 , 1], subject to UN(0) ≡ u0.
Define

τ
(1)
N := inf

{
t > 0 : sup

x∈[0,1]
|UN(t , x)| > N

}
,

where inf ∅ := ∞. As an important part of the proof, we need to
show that

τ (1)∞ := lim
N↗∞

τ
(1)
N = ∞ a.s. (22)
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Sketch of the proof of Theorem 2

We apply Proposition 6 to show that τ
(1)
∞ is greater than a

positive, deterministic constant δ. In order to justify this assertion,
we appeal to the Chebyshev inequality to see that for every ε > 0
and N > 3,

P
{
τ
(1)
N < ε

}
= P

{
sup

t∈[0,ε]
sup

x∈[0,1]
|UN(t , x)| > N

}

6 N−kE

(
sup

t∈[0,ε]
sup

x∈[0,1]
|UN(t , x)|k

)
. (23)
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Sketch of the proof of Theorem 2

Next, we may apply (21) and Proposition 6 in order to see that
there exist universal constants A and B such that

E

(
sup

t∈[0,ε]
sup

x∈[0,1]
|UN(t , x)|k

)
6 Ak∥u0∥kCα

0
(B + logN)kNAkϑ2ε.

(24)

Here we have used the assumption that σ(z) = o(|z |(log |z |)
1
4 ) as

|z | → ∞ in order to be able to apply Proposition 6.
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Sketch of the proof of Theorem 2

In other words, we now have

P{τ (1)N < ε} 6 Ak∥u0∥kCα
0
(B + logN)kNk(Aϑ2ε−1), (25)

uniformly for all sufficiently large integers N and ε ∈ (0, 1).
Provided that ε < A−1ϑ−1

2 , the right-hand side converges to 0 as

N → ∞, so (25) implies that τ
(1)
∞ > ε with probability one. This in

turn proves that

τ (1)∞ > δ :=
1

2
min(A−1ϑ−1

2 , 1) a.s. (26)

As δ is independent of the initial function, we can further exploit

the Markov property to prove that τ
(1)
∞ = ∞.
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Sketch of the proof of Theorem 2

Finally we prove the theorem in the general case where b is an
arbitrary locally-Lipschitz function that satisfies the growth
condition |b(z)| = O(|z | log |z |) as |z | → ∞.
We can find ϑ1 ∈ R and ϑ2 > 0 such that

b−(z) 6 b(z) 6 b+(z), for all z ∈ R,

where

b±(z) := ϑ1 ± ϑ2|z | log+ |z |, for all z ∈ R.

Let U±(t , x) denote the solution to (1), where b is replaced by b±.
By analogy with (18), let bN,− and bN,+ be the truncations of b−
and b+, respectively. Then

bN,−(z) 6 bN(z) 6 bN,+(z).
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Sketch of the proof of Theorem 2

Let uN be the solution to (19), UN,− (resp. UN,+) be the solution
to (19) with bN replaced by bN,− (resp. bN,+). According to the
comparison theorem, for all (t, x) ∈ R+ × [0, 1],

UN,−(t , x) 6 uN(t , x) 6 UN,+(t , x). (27)

We have shown in Step 2 that

sup
t∈[0,T ]

sup
x∈[0,1]

|U±(t, x)| < ∞ for all T > 0. (28)

For any given (t , x), for N sufficiently large,
U±(t, x) = UN,±(t, x), therefore (27) implies that

U−(t , x) 6 uN(t , x) 6 U+(t , x). (29)
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Sketch of the proof of Theorem 2

Recall that

τN = inf{t > 0 : sup
x∈[0,1]

|uN(t, x)| > N}.

Then (28) and (29) imply that limN→∞ τN = ∞ a.s., and we can
define

u(t , x) = uN(t , x), for t ∈ [0 , τN ] and x ∈ [0 , 1].

As above, this definition is coherent. By (29),

U−(t, x) 6 u(t, x) 6 U+(t, x), for all t ∈ R+ and x ∈ [0, 1].
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Sketch of the proof of Theorem 2

We can show that u is the solution of the equation:

u(t , x) = (Gtu0)(x) +

∫
(0,t)×(0,1)

Gt−s(x , y)b(u(s , y))ds dy

+

∫
(0,t)×(0,1)

Gt−s(x , y)σ(u(s , y)) ξ(ds dy),

and
sup

t∈[0,T ]
sup

x∈[0,1]
|u(t , x)| < ∞ for all T > 0,
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