Multi-particle diffusion limited aggregation

Alexandre Stauffer UNIVERSITY OF BATH, U.K.

Joint work with

Vladas Sidoravicius (NYU Shanghai)

Multi-particle diffusion limited aggregation (MDLA)

Initial configuration

- **Particles** distributed as IID Bernoulli (μ)
- Aggregate starts at the origin of \mathbb{Z}^d

Dynamics of particles

Particles move as continuous-time simple random walk with <u>exclusion rule</u>

No two particles at same vertex

When particle wants to jump onto aggregate:

- Jump is suppressed
- Particle added to aggregate
- Particle stops moving

Multi-particle diffusion limited aggregation (MDLA)

History:

1980 - Introduced by Rosenstock and Marquardt to study a phenomenon in photography

1981 - Witten and Sander introduced DLA as a simplification of MDLA and studied it via simulation

1984 - Voss reintroduced MDLA as a more realistic version of DLA

Mathematics of MDLA

Question: how quickly does aggregate grow?

Does aggregate has positive speed of growth?

(that is, does it reach vertex of distance t by time t?)

Thm [Kesten, Sidoravicius]

In d = 1, for any $\mu \in (0,1)$, reach of aggregate is of order \sqrt{t} almost surely

After our work: Sly showed positve speed for $\mu > 1$ (d = 1) Dembo and Tsai studied the case $\mu = 1$ (d = 1)

Main result

Thm [Sidoravicius, S.]

Unlike in dimension one, there exists a regime of positive speed of growth in dimensions $d \ge 2$

There exists $\mu_0 \in (0,1)$ such that for all $\mu > \mu_0$ we obtain $\mathbb{P}(aggregate \text{ grows with positive speed}) > 0$

Stronger result

Aggregate grows with positive speed in all directions.

♦ aggregate + surrounded areas \supset ball of radius *ct*

Open problem: What happens at low density?

Case $\mu = 1$

Equivalent to first passage percolation (FPP)

- Aggregate occupies neighbors at rate 1
- "Bulky" behavior instead of fractal-like
- Shape theorem [Richardson] $\frac{\text{Aggregate at time } t}{t} → a \text{ deterministic set}$

For $\mu < 1$

- ✤ Each time aggregate tries to occupy a vertex, with probability 1μ a hole is created
- Holes move as exclusion process

Our result for FPP in Hostile Env.

Theorem [Sidoravicius, S.] *Existence of a phase of strong survival*

For any speed of **Type 2** < 1, there exists $p_0 \in (0,1)$ such that for all density of **Type 2** < p_0 we obtain that $\mathbb{P}(\mathbf{Type 1} \text{ survives}) > 0$

Stronger result

Type-1 cluster at time t + surrounded areas \supset ball of radius *ct*

Corollary: MDLA has positive speed of growth

Coexistence

Holds for a simple variant, where passage times are deterministically set to 1 for **Type 1** and to λ for **Type 2**

