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Introduction

Markov chain Monte Carlo (MCMC) is used to estimate multi-dimensional
integrals that represent expectations with respect to intractable probability
distributions. Let π be an intractable pdf and let

J =

∫
S

f (u)π(u)µ(du).

One can simulate a Markov chain Φ = {Φk}∞k=0 that converges to π and
estimate J by Jm = m−1∑m−1

k=0 f (Φk ).



Introduction

Given f , the accuracy of the estimation essentially depends on two factors.

1. The convergence rate of Φ, and

2. The correlation between the f (Φk )s under stationarity.

These two factors can be investigated jointly under an operator theory
framework. They are largely dependent on the spectrum and in particular, the
spectral gap of the Markov operator associated with Φ.



Introduction

Let P be the Markov operator associated with Φ.

Denote the spectral gap of P by δ. Then 0 ≤ δ ≤ 1. Suppose Φ is reversible,
then

1.
dTV (Φk ; Φ∞) ≤ C(1− δ)k ,

where dTV (Φk ; Φ∞) is the total variation distance between the
distribution of Φk and the stationary distribution of Φ.

2. Moreover, (1− δ)k is the maximum absolute correlation between Φj and
Φj+k as j →∞. This implies that

lim sup
m→∞

var
[
m1/2(Jm − J)

]
≤ 2− δ

δ
varπf .

Goal: Estimate δ.



Estimating (bounding) δ

Theoretical approach: Path arguments (Diaconis and Stroock, 1991),
conductance and Cheeger’s inequality (Lawler and Sokal, 1988; Sinclair and
Jerrum, 1989), drift and minorization (Rosenthal, 1995).

Computational approach: Finite-rank approximation, random matrix
approximation (Koltchinskii and Giné, 2000).

Simulation approach: autocorrelation plot and others (Garren and Smith,
2000).



Markov operators

(S,U , µ) is a countably generated, σ-finite measure space.

Define a (separable) Hilbert space consisting of complex valued functions
on S that are square integrable with respect to π(u), namely

L2(π) :=
{

f : S → C
 ∫

S
|f (u)|2π(u)µ(du) <∞

}
.

For f , g ∈ L2(π), their inner product is given by

〈f , g〉π =

∫
S

f (u)g(u)π(u)µ(du).



Markov operators

Let p(u, u′), u, u′ ∈ S be the Markov transition density (Mtd) that gives rise
to Φ, i.e. for any A ∈ U

P(Φk ∈ A|Φ0 = u) =

∫
A

p(k)(u, u′)µ(du′),

where

p(k)(u, u′) :=

{
p(u, u′) k = 1,∫

S p(k−1)(u,w)p(w , u′)µ(dw) k > 1.

The transition density p(u, u′) defines the following linear (Markov)
operator P. For any f ∈ L2(π),

Pf (u) =

∫
S

p(u, u′)f (u′)µ(du′).



Markov operators

We say that P is trace-class if it is compact and has absolutely summable
eigenvalues.

Suppose P is non-negative and trace-class. Then all the eigenvalues of P
are non-negative. Let {λi}∞i=0 be the (positive) eigenvalues of P in decreasing
order, taking into account multiplicity. Then λ0 = 1, and

∑∞
i=0 λi <∞. Under

mild assumptions, we have λ1 < 1.

The spectral gap δ = 1− λ1, where λ1 is the second largest eigenvalue of P.

Question: How to estimate λ1?



Power sums of eigenvalues

For k ∈ N, let sk =
∑∞

i=0 λ
k
i . Let uk = (sk − 1)1/k and

lk = (sk − 1)/(sk−1 − 1). Then we have the following.

Proposition
As k →∞,

uk ↓ λ1,

lk ↑ λ1.

To bound λ1, we can consider estimating the sk s. We will make use of the
following trace formula

sk =

∫
S

p(k)(u, u)µ(du).



Data augmentation (DA) operators

Let SU = S and πU(u) = π(u). Define (SV ,V, ν) to be a σ-finite measure
space such that V is countably generated. Consider the random element
(U,V ) taking values in SU × SV with joint pdf πU,V (u, v). Suppose that the
marginal pdf of U is πU(u) and denote the marginal pdf of V by πV (v).

We call Φ a DA chain, and accordingly, P a DA operator, if p(u, u′) can be
expressed as

p(u, u′) =

∫
SV

πU|V (u′|v)πV |U(v |u) ν(dv).

This chain is reversible with respect to πU := π.



Data augmentation (DA) operators

Mtd:
p(u, u′) =

∫
SV

πU|V (u′|v)πV |U(v |u) ν(dv).

To simulate a DA chain, we need to be able to sample from πU|V (·|v) and
πV |U(v |u). Simulation process: u → v → u′. Here, v is a latent variable.
Alternatively, one can simply view DA as the marginal chain of a Gibbs
sampler.

A DA operator is necessarily non-negative.

Note that even if Φ is reversible but not a DA chain, {Φ2k}∞k=0 is. Note that the
corresponding Mtd is

p(2)(u, u′) =

∫
S

p(u, v)p(v , u′)µ(dv).

If we take
πU,V (u, v) = π(u)p(u, v) = π(v)p(v , u)

then πU|V (u′|v) = p(v , u′), and πV |U(v |u) = p(v , u).



Integral representation of sk

Theorem
The DA operator P is trace-class if and only if∫

SU

p(u, u)µ(du) :=

∫
SU

∫
SV

πU|V (u|v)πV |U(v |u) ν(dv)µ(du) <∞. (1)

If (1) holds, then for any positive integer k ,

sk :=
∞∑
i=0

λk
i =

∫
SU

p(k)(u, u)µ(du).

In order to find sk , k ∈ N, all we need is to evaluate
∫

SU
p(k)(u, u)µ(du). This

is in general not easy. We will introduce a way of estimating these integrals
using classical Monte Carlo.



Estimating sk

Let ψ : SU → (0,∞) be a pdf that’s positive everywhere. Then∫
SU

p(k)(u, u)µ(du)

=

∫
SV

∫
SU

πU|V (u|v)

ψ(u)

×
(∫

SU

πV |U(v |w)p(k−1)(u,w)µ(dw)

)
ψ(u)µ(du)ν(dv).

Note that

η(u, v) :=

(∫
SU

πV |U(v |w)p(k−1)(u,w)µ(dw)

)
ψ(u)

is a pdf on SU × SV .



Estimating sk

Recall that

sk =

∫
SU

p(k)(u, u) =

∫
SV

∫
SU

πU|V (u|v)

ψ(u)
η(u, v)µ(du)ν(dv),

where

η(u, v) :=

(∫
SU

πV |U(v |w)p(k−1)(u,w)µ(dw)

)
ψ(u).

Suppose that {U∗,V ∗} ∼ η. Then

sk = E
πU|V (U∗|V ∗)

ψ(U∗)
≈ 1

N

N∑
i=1

πU|V (U∗i |V ∗i )

ψ(U∗i )
,

where {U∗i ,V ∗i }N
i=1 are iid copies of (U∗,V ∗).



Estimating sk

How to simulate η? Recall that

η(u, v) :=

(∫
SU

πV |U(v |w)p(k−1)(u,w)µ(dw)

)
ψ(u).

One can use the algorithm below.

Algorithm 1: i th iteration. (U∗,V ∗) ∼ η
1. Generate U∗ from ψ(u).

2. If k = 1, set W = U∗. If k ≥ 2, given U∗ = u, generate W from
p(k−1)(u,w) by running k − 1 iterations of the DA algorithm of interest.

3. Given W = w , generate V ∗ from πV |U(v |w).



Estimating sk

For the estimation to be statistically valid, we’d like the estimator to have finite
variance, i.e.

D2 := var
(
πU|V (U∗|V ∗)

ψ(U∗)

)
<∞.

The following theorem provides a sufficient condition for this to be true.

Theorem
The variance, D2, is finite if∫

SV

∫
SU

π3
U|V (u|v)πV |U(v |u)

ψ2(u)
µ(du) ν(dv) <∞.



Estimating sk

Recall that

D2

:= var
(
πU|V (U∗|V ∗)

ψ(U∗)

)
=

∫
SU×SV

π2
U|V (u|v)

ψ2(u)

(∫
SU

πV |U(v |w)p(k−1)(u,w)µ(dw)

)
ψ(u) dvdu − s2

k .

(Variance of the estimator is D2/N.)

Heuristically, if ψ ≈ πU , then as k →∞,

D2 ≈
∫

SU×SV

π2
U|V (u|v)

π2
U(u)

πV (v) dvdu − 1,

i.e. D2 ≈ s1 − 1. Therefore, it’s beneficial to choose ψ that resembles the
target distribution if the sum of eigenvalues, s1, is small.



Illustration

Let SU = SV = R, πU(u) ∝ exp(−u2), and

πV |U(v |u) ∝ exp
{
− 4
(

v − u
2

)2}
.

Then
πU|V (u|v) ∝ exp{−2(u − v)2}.

This characterizes one of the simplest DA chains known, with Mtd

p(u, u′) =

∫
R
πU|V (u′|v)πV |U(v |u) dv

being the pdf of a normal distribution.
The spectrum of the corresponding Markov operator P has been studied
thoroughly. It’s easy to verify that P is trace-class. In fact, for any
non-negative integer i , λi = 1/2i . This implies for any positive integer k ,

sk =
∞∑
i=0

1
2ik =

1
1− 2−k .



Illustration

With N = 105, our estimates for sk , k = 1, 2, 3, 4 are as follows.

Table: Estimated power sums of eigenvalues for the Gaussian chain

k True sk Est. sk Est. D/
√

N Est. lk Est. uk

1 2.000 1.996 0.004 0.000 0.996
2 1.333 1.331 0.004 0.333 0.575
3 1.143 1.142 0.004 0.429 0.522
4 1.067 1.068 0.004 0.482 0.511



Illustration

Let Y1,Y2, . . . ,Yn be independent Bernoulli random variables with
P(Yi = 1|β) = Φ(xT

i β), where xi , β ∈ Rp. Take the prior on β to be
Np(Q−1v ,Q−1), where v ∈ Rp and Q is positive definite. The resulting
posterior distribution is intractable, but Albert and Chib (1993) devised a DA
algorithm to sample from it.

Posterior:

π(β|Y )

∝
n∏

i=1

(
Φ(xT

i β)
)yi
(

1− Φ(xT
i β)

)1−yi
exp

{
−1

2
(β −Q−1v)T Q(β −Q−1v)

}
.

Albert and Chib’s chain:

zi |β ∼

{
TN(xT

i β, 0,∞), Yi = 1,
TN(xT

i β,−∞, 0), Yi = 0;

β|z ∼ N
(

(X T X + Q)−1(X T z + v), (X T X + Q)−1
)
.



Chakraborty and Khare (2017) showed that when all the eigenvalues of
Q−1/2X T XQ−1/2 are less than 7/2, then the corresponding Markov operator
is trace-class.

We will use our method to estimate the spectral gap of the chain. The dataset
we examine is the ”lupus” data (van Dyk 2001), which has n = 55
observations and p = 3 features.

For the prior, we take v = 0, and Q = X T X/3.499999. This is a g-prior-like
prior that Chakraborty and Khare used.



Illustration

N = 4× 105.

Table: Estimated power sums of eigenvalues for the AC chain

k Est. sk Est. D/
√

N Est. lk Est. uk

1 6.744 0.072 0.000 5.744
2 2.041 0.007 0.181 1.020
3 1.363 0.004 0.349 0.713
4 1.156 0.004 0.430 0.628
5 1.068 0.003 0.436 0.584

By CLT, a (conservative) asymptotic 95% CI for λ1 is (0.397, 0.595).
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