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Homogenization Theory of Hamilton-Jacobi Equation

Assume H(p, x) ∈ C (Rn × Rn) is uniformly coercive in the p variable and
periodic in the x variable.
For each ε > 0, let uε ∈ C (Rn × [0,∞)) be the viscosity solution to the
following Hamilton-Jacobi equation{

uεt + H
(
Duε, xε

)
= 0 in Rn × (0,∞),

uε(x , 0) = g(x) on Rn.
(1)

It was known (Lions-Papanicolaou-Varadhan, 1987), that uε, as ε→ 0,
converges locally uniformly to u, the solution of the effective equation,{

ut + H(Du) = 0 in Rn × (0,∞),

u(x , 0) = g(x) on Rn.
(2)

H : Rn → R is called “effective Hamiltonian” or “α function”, a nonlinear
averaging of the original H.
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Cell problem: for any p ∈ Rn, there exists a UNIQUE number H(p) such
that

H(p + Dv , y) = H(p) in Tn.

has periodic viscosity solutions v = v(y , p) (“corrector”).

Heuristically, the
two-scale asymptotic expansion says:

uε(x , t) ≈ u(x , t) + εv(
x

ε
,Du).

Note: The corrector v(x , p) for p = Du(x , t) basically captures the
oscillation of Duε at (x , t). y = x

ε .

• A natural and fundamental question:

How fast does uε → u?

According to the obove formal expansion, we “have” that

|uε − u| = O(ε).

However, there is NO way to justify this expansion rigorously!
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Previous Results

Why does the expansion not hold generically?

(I) The solution of the effective equation u(x , t) is in general not even C 1;
(2) There does not even exist a continuous selection of

p → v(x , p) : Rn → Lip(Rn).

The best known result was due to I. Capuzzo-Dolcetta and H. Ishii
(2001) based on pure PDE approaches:

|uε − u| ≤ O
(
ε
1
3

)
.

Strategy: (1) Using solutions to an auxiliary equation vλ to replace v .

λvλ + H(p + Dvλ, x) = 0;

(2) Employing the classical method of “doubling variables” to relax the
regularity requirment of u.
• Note: Armstrong, Cardaliaguet and Souganidis (2014) extended this to
convex H in the i.i.d setting and obtained O(ε1/8)
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Open Question

Whether the convergence rate O(ε1/3) can be improved?

In particular, when can we obtain the optimal one O(ε)?

Note: It is basically impossible to modify or refine the
Capuzzo-Dolcetta–H. Ishii method to achieve this goal. A completely
new approach has to be introduced.
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Main Result 1: General Convex Case (p → H(p, x))

Theorem (Mitake, Tran, Y. 2018)

Assume H is onvex in p and g ∈ Lip(Rn).
(i)

uε(x , t) ≥ u(x , t)− Cε for all (x , t) ∈ Rn × [0,∞).

The constant C > 0 in (i) and (ii) below depend only on H and
‖Dg‖L∞(Rn).

(ii) For fixed (x , t) ∈ Rn × (0,∞), if u is differentiable at (x , t) and H is
twice differentiable at p = Du(x , t), then

uε(x , t) ≤ u(x , t) + C̃x ,tε.

if the initial data g ∈ C 2(Rn) with ‖g‖C2(Rn) <∞. If g is merely
Lipschitz continuous, then

uε(x , t) ≤ u(x , t) + Cx ,t
√
ε.

Here C̃p is a constant depending on H,H, p and ‖g‖C2(Rn).
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Optimal Rate when n = 2

Theorem (Mitake, Tran, Y. 2018)

Assume n = 2 and g ∈ Lip(R2). Assume further that H is convex and
positively homogeneous of degree k in p for some k ≥ 1, that is,
H(λp, x) = λkH(p, x) for all (λ, x , p) ∈ [0,∞)× T2 × R2. Then,

|uε(x , t)− u(x , t)| ≤ Cε for all (x , t) ∈ R2 × [0,∞).

Here C > 0 is a constant depending only on H and ‖Dg‖L∞(R2).

Note that k = 1 corresponds to Hamiltonians associated with the front
propagation, which is probably one of the most physically relevant
situations in the homogenization theory. For example,

ut + a(x)|Du| = 0 in crystal growth, etc

and the well known G-equation in turbulent combustion

ut + |Du|+ V (x) · Du = 0.
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Optimal Rate when n = 1

Theorem (Mitake, Tran, Y. 2018)

Assume that n = 1 and H = H(p, x) is convex in p. Assume further that
g ∈ Lip(R). Then, for each T > 0,

‖uε − u‖L∞(R×[0,T ]) ≤ Cε.

Here C is a constant depending only on H and ‖g ′‖L∞(R).

• Son N.T. Tu extended to H(ux , x/ε, x) when n = 1 for some H (arxiv).

• For the one dimension case, the remaining question is to find the
optimal rate for general coercive H (i.e. Nonconvex H). Recall that the
Capuzzo-Dolcetta–Ishii result says that

‖uε − u‖L∞(R×[0,T ]) ≤ Cε
1
3 .

• We conjecture that the optimal rate is O (
√
ε).
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Sketch of Proof of the Lower Bound uε ≥ u − C ε

uε(0, 1) = inf
η(0)=0

{
g
(
εη
(
−ε−1

))
+ ε

∫ 0

−ε−1

L(η(t), η̇(t)) dt

}
Here L(q, x) = supp∈Rn{p · q − H(p, x)}. Also,

u(0, 1) = inf
y∈Rn

{
g(y) + L(−y)

}
.

For any p ∈ Rn and a “corrector” vp:

H(p + Dvp, y) = H(p),∫ 0

−ε−1

L(η(t), η̇(t))+H(p) dt ≥ p·η(0)−p·η
(
−ε−1

)
+vp(η(0))−vp

(
η
(
−ε−1

))
.

Accordingly, since L(q) = supp∈Rn{p · q − H(p)},

ε

∫ 0

−ε−1

(L(η(t), η̇(t)) dt ≥ L
(
−εη

(
−ε−1

))
− Cε.
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The Upper Bound and the Hamiltonian System

For any p ∈ Rn, if ξ : R→ Rn is a global charateristics of a corrector
vp, i.e.,

p · (ξ(t2)− ξ(t1)) + vp(ξ(t2))− vp(ξ(t1)) =

∫ t2

t1

L(ξ̇, ξ) + H(p) ds.

for all t1 < t2. The collection of those ξ is the so called “Mané set” in
weak KAM theory. Such ξ is an absolute minimizer of the action

A[γ] =

∫
L(γ̇(t), γ(t)) + H(p) dt.

Finding upper bound is basically reduced to the following question:

Question: Does the average slope

ξ(t)

t

converge as t →∞? More importantly, what is the convergence rate?
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• It is known that in weak KAM theory/Aubry-Mather theory that if
H is differentiable at p, then

lim
t→∞

ξ(t)

t
= DH(p). (3)

Connection with the convergence rate in homogenization:

(I ).

∣∣∣∣ξ(t)

t
− DH(p)

∣∣∣∣ ≤ C

t
⇒ |uε − u| ≤ O(ε) for g ∈ Lip(Rn)

(II ).

∣∣∣∣ξ(t)

t
− DH(p)

∣∣∣∣ ≤ C√
t
⇒

{
|uε − u| ≤ O(

√
ε) for g ∈ Lip(Rn)

|uε − u| ≤ O(ε) for g ∈ C 2(Rn).

By modifying the argument of (3), it is easy to show that if H is twice
differentiable at p, then (Gomes 2002)∣∣∣∣ξ(t)

t
− DH(p)

∣∣∣∣ ≤ C√
t
.
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n = 2 and the Aubry-Mather Theory

Key ingredient: 2d topology + the fact that two absolute minimizers ξ
cannot intersect twice lead to good description of the structure of absolute
minimizers (Aubry-Mather sets basically consist of recurrent ones).

• In particular, each absolute minimizer can be identifed with a circle
map: f : R→ R, continuous, increasing and f (x + 1) = f (x) + 1.

ξ̃

ξ

η0 η1 η2

There exists a rotation number α such that |f i (x)− x − αi | ≤ 1 for all i .
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Connection with the Convergence Rate

• If n = 2 and the Hamiltonian H(p, x) is Tonelli and homogeneous of
degree k , the H is differentiable away from 0 (Carnerio, 1995).

• Combining with the circle map identification and some weak KAM type
calcuations, we can deduce that for any global charateristics ξ : R→ R:∣∣∣∣ξ(t)

t
− DH(p)

∣∣∣∣ ≤ C

t
.

Via approximation, this leads to the O(ε) convergence rate for general
convex, coercive and homogeneous H.

Conjecture: For a general convex and coercive H(p, x) when n = 2, we
are working on to show that

|uε(x , t)− u(x , t)| ≤ Cx ,t ε for a.e. (x , t) ∈ R2 × (0,+∞).
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Some Remarks about the Higher Dimension Case n ≥ 3

• When n ≥ 3, there is NO topological obstructions for absolutely
minimizing curves. The generalized Aubry-Mather theory has very
limited applicability in obtaining properties of H.

For example, consider a simple metric Hamiltonian with smooth, positive
and periodic a(x)

H(p, x) = a(x)|p|.

and the associated effective Hamiltonian H(p):

a(x)|p + Dv | = H(p).

H(p) is convex, coercive and homogeneous of degree 1.
However, it is extremely hard to derive any further informaiton when
n ≥ 3? For instance, the following “simple” question is still open

Does there exist a non-constant smooth a(x) such that H ≡ |p|?

When n = 2, the answer is “No” (Bangert, 1994) based on Aubry-Mather
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Lack of Examples with Fractional Convergence Rate

For n ≥ 3, consider
H(p, x) = a(x)|p|.

Although it is very reasonable to believe that the optimal convergence rate
O(ε) is not achievable in general, we haven’t been able to construct an
example with fractional convergence rate since this involves handling
chaotic behaviors.

When n ≥ 3, the only well-understood interesting example is the classical
Hedlund example: The metric function a(x) is a smooth periodic
singular pertubation of 1 such that any minimizing geodesics is basically
confined in a small neighbourhood of one of three disjoint parallel lines.

So the Aubry-Mather set is very small and

H(p) = C max{|p1|, |p2|, |p3|}.

• The level surface is a cube, in particular not C 1, which is different from
n = 2.
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Chaotic streamlines in the ABC flows 36 1 

2n Y 

X '  

FIGURE 4. Sketch of the six principal vortices. 

tube parallel to one of the three axes, and will be called a principal vortex, or a vortex 
for short. We show here how the existence of these vortices can be derived from a 
naive analysis of (2.5a-c). A more systematic perturbation analysis, valid near the 
integrable case, will be presented in $4.  

We look for a region where the motion is predominantly in one direction, for 
example the y-direction; this will be called a y-vortex. We try therefore to maximize 
y. This gives 

X N i A ,  z = o .  
Integrating (2.5b), we obtain 

y = (A+B)t.  

(2.24) 

(2.25) 

Equations (2.5a,c) then reduce to 

X ~ C c o s y ,  LzCs iny .  (2.26) 

Since X and L are zero on the average, it is conceivable that the conditions (2.24) will 
remain satisfied along a streamline. In  a similar way, by considering the five other 
possible directions (we can specify both the axis x, y, or z and the sign), we obtain 
a total of six vortices; their arrangement is sketched on figure 4.  

We can go a little further and derive to first order the excursions of x and z from 
their mean values (2.24). Instead of (2.26) we write 

This has the general solution 

(2.27) 
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However, for this sort of “bad” example, the convergence rate is O(ε).
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However, for this sort of “bad” example, the convergence rate is O(ε).
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