Optimal configurations for the Heitmann-Radin energy

Matteo Novaga University of Pisa (joint work with L. De Luca and M. Ponsiglione)

Durham, August 2018 Optimal configurations for the Heitmann-Radin energy

・ 回 と く ヨ と く ヨ と

Heitmann-Radin sticky disc potential

$$V_{arepsilon}(r):= \left\{egin{array}{c} +\infty & ext{if } r < arepsilon \ -1 & ext{if } r = arepsilon \ 0 & ext{if } r > arepsilon . \end{array}
ight.$$

Given a configuration of points $X := \{x_1, \ldots, x_N\}$ the Heitmann-Radin energy of X is defined by

$$E_{\varepsilon}(X) := rac{1}{2} \sum_{i
eq j} V_{\varepsilon}(|x_j - x_i|).$$

・ロン ・回と ・ヨン・

The minimizers X_N of E_{ε} among configurations with N particles lie on a triangular lattice.

R. C. Heitmann, C. Radin: The ground state for sticky disks, J. Stat. Phys. 22 (1980).

Problem: Study the behaviour as $N \to +\infty$, or equiv. $\varepsilon \to 0$ (rescaling $\varepsilon \sim 1/\sqrt{N}$).

Minimal energy per particle: The kissing number is 6. Each bond joins two particles \rightsquigarrow Energy per particle is -3.

Empirical measure: $\mu := \sum \delta_{x_i}$. We set $\mathcal{E}_{\varepsilon}(\mu) := E_{\varepsilon}(X)$.

Total energy - bulk energy \rightsquigarrow Perimeter energy Energy functional: $\mathcal{F}_{\varepsilon}(\mu) := \varepsilon (\mathcal{E}_{\varepsilon}(\mu) + 3\mu(\mathbb{R}^2)).$

Compactness and convergence of minimizers

- If X_{ε} are "connected" and $\mathcal{F}_{\varepsilon}(\mu_{\varepsilon}) \leq C$, then $\varepsilon^2 \frac{\sqrt{3}}{2} \mu_{\varepsilon} \stackrel{*}{\rightharpoonup} \chi_{\Omega}$, for some set $\Omega \subset \mathbb{R}^2$ with $\chi_{\Omega} \in BV(\mathbb{R}^2)$.
- If X_{ε} are minimizers then Ω is a hexagon.

Y. Au Yeung, G. Friesecke, B. Schmidt: Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff shape, *Calc. Var.* 44 (2012).

Remark: The hexagon has lower (asymptotic) energy than the Euclidean ball.

Local orientation:

Let $\mathcal{F}_{\varepsilon}(\mu_{\varepsilon}) \leq C$. Most of the particles have 6 neighbors \rightsquigarrow they are vertices of some ε -equilateral triangle T_{ε} . Let $\theta(T_{\varepsilon}) \in (\frac{\pi}{3}, \frac{2}{3}\pi]$ represent the orientation of the triangle T_{ε} . We set

$$heta_{arepsilon} := \sum_{\mathcal{T}_{arepsilon}} heta(\mathcal{T}_{arepsilon}) \chi_{\mathcal{T}_{arepsilon}}.$$

Energy bound \rightsquigarrow *SBV* bounds for θ_{ε}

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\mathcal{F}_{\varepsilon}(\mu_{\varepsilon}) \leq C$. Then, up to a subsequence,

$$\theta_{\varepsilon}(\mu_{\varepsilon}) \rightharpoonup \theta \quad \text{in } SBV_{loc}(\mathbb{R}^2),$$

for some $\theta = \sum_{j \in J} \theta_j \chi_{\omega_j}$ in $SBV(\mathbb{R}^2)$, where $\{\omega_j\}_j$ is a Caccioppoli partition of Ω .

Optimal configurations for the Heitmann-Radin energy

(ロ) (同) (E) (E) (E)

Anisotropy:

$$\varphi: \mathbb{R}^2 \to [0, +\infty)$$
 (crystalline) norm on \mathbb{R}^2

Wulff shape:

$$\mathcal{W}_{arphi} = \{ arphi \leq 1 \}$$
 standard hexagon

Anisotropic perimeter:

$$\mathit{Per}_{arphi_{ heta}}(\Omega) := \int_{\partial^*\Omega} arphi(e^{i heta}
u) \, d\mathcal{H}^1$$

・ロト ・回ト ・ヨト ・ヨト

The following Γ -convergence result holds true:

(i) (Γ -liminf inequality) Let $\{\mu_{\varepsilon}\}$ satisfy the compactness result with $\theta = \overline{\theta}\chi_{\Omega}$ for some $\overline{\theta} \in (\frac{\pi}{3}, \frac{2}{3}\pi]$. Then

 $\liminf_{\varepsilon\to 0} \mathcal{F}_{\varepsilon}(\mu_{\varepsilon}) \geq \operatorname{Per}_{\varphi_{\overline{\theta}}}(\Omega).$

(ii) (Γ -limsup inequality) For every set $\Omega \subset \mathbb{R}^2$ of finite perimeter and for every $\overline{\theta} \in (\frac{\pi}{3}, \frac{2}{3}\pi]$, there exists a sequence $\{\mu_{\varepsilon}\}$ satisfying the compactness result with $\theta = \overline{\theta}\chi_{\Omega}$, such that

$$\limsup_{\varepsilon \to 0} \mathcal{F}_{\varepsilon}(\mu_{\varepsilon}) \leq \operatorname{\textit{Per}}_{\varphi_{\overline{\theta}}}(\Omega) \,.$$

イロン イヨン イヨン イヨン

Proof: Discrete Gauss-Bonnet theorem

De Luca, Friesecke: Crystallization in two dimensions and a discrete Gauss-Bonnet theorem, *J. Nonlinear Sci.* **28** (2018).

Optimal configurations for the Heitmann-Radin energy

・ロン ・回と ・ヨン ・ヨン

The following lower and upper bounds hold true.

(i) (Lower bound) For all $\{\mu_{\varepsilon}\}$ satisfying the compactness theorem, we have

$$\liminf_{\varepsilon\to 0} \mathcal{F}_{\varepsilon}(\mu_{\varepsilon}) \geq \mathcal{H}^1(\partial^*\Omega) + \frac{1}{2}\mathcal{H}^1(\cup_j \partial^*\omega_j \setminus \partial^*\Omega) \,.$$

(ii) (Upper bound) For every set $\Omega \subset \mathbb{R}^2$ of finite perimeter and for every $\theta \in SBV(\Omega; (\frac{\pi}{3}, \frac{2}{3}\pi])$ there exists a sequence $\{\mu_{\varepsilon}\}$ satisfying the compactness theorem, such that

$$\limsup_{\varepsilon \to 0} \mathcal{F}_{\varepsilon}(\mu_{\varepsilon}) \leq \sum_{j} \operatorname{Per}_{\varphi_{\theta_{j}}}(\omega_{j}).$$

Let $\Omega \subset \mathbb{R}^2$ be given.

Minimal energy among empirical measures converging to Ω :

$$\inf_{\varepsilon^2 \frac{\sqrt{3}}{2} \mu_{\varepsilon} \stackrel{*}{\longrightarrow} \chi_{\Omega}} \liminf_{\varepsilon \to 0} \varepsilon (\mathcal{E}_{\varepsilon}(\mu_{\varepsilon}) + 3\mu_{\varepsilon}(\mathbb{R}^2))$$

Depending on the shape of Ω , both single crystals and polycrystals could be energetically convenient:

Optimal configurations for the Heitmann-Radin energy

Both the lower and the upper bound are not sharp.

If two parts with different orientations touch each other along a curve, the energy might be lower than the sum of the perimeters.

(4回) (三) (三)

Question: Limit energy equal to $\sum_{j} \int_{\partial^* \omega_j} \varphi(\theta_+, \theta_-, \nu, \tau)$? The internal variable τ represents a microscopic translation.

Blow-up technique: Global lower bounds \rightsquigarrow local lower bounds (Gauss Bonnet \rightsquigarrow ?)

Question: Ginven a (smooth) set Ω , does local crystallization hold for large but finite *N*?

Three-dimensional case:

Minimal energy per particle: The kissing number is 12.

Each bond joins two particles \rightarrow Energy per particle is -6.

Energy functional: $\mathcal{F}_{\varepsilon}(\mu) := \varepsilon^2 (\mathcal{E}_{\varepsilon}(\mu) + 6\mu(\mathbb{R}^2)).$

The crystallization of global minimizers is not clear.

Problem: Find the optimal tessellation of a planar set with equilateral triangles or squares.

Setting:

 $\mathcal{A}_{\varepsilon} := \{ \Omega : \Omega \text{ union of triangles (or squares) of sidelength } \varepsilon \}$

Energy functional:

$$extsf{Per}_arepsilon(\Omega) := \left\{egin{array}{cc} extsf{Per}(\Omega) & extsf{if} \ \Omega \in \mathcal{A}_arepsilon \ +\infty & extsf{otherwise}. \end{array}
ight.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The Γ -limit of $\operatorname{Per}_{\varepsilon}$ as $\varepsilon \to 0$ is given by

$$\min_{\{\omega_j, heta_j\}_j} \sum_j \textit{Per}_{arphi_{ heta_j}}(\omega_j)$$

where $\{\omega_j\}_j$ are Caccioppoli partitions of Ω with local orientations $\{\theta_j\}_j$.

Remark: The result does not hold if triangles/squares are replaced by hexagons.

・ 同 ・ ・ ヨ ・ ・ ヨ ・

Characterize the sets for which the minimum is given by a constant orientation (convex sets?).

- Tessellations in three dimensions: we can only show that

$${\it Per}(\Omega) \, \leq \, {\sf \Gamma} - {\sf lim} \, {\it Per}_arepsilon\left(\Omega
ight) \, \leq \, \min_{\{\omega_j, heta_j\}_j} \; \sum_j {\it Per}_{arphi_{ heta_j}}(\omega_j).$$

・ロン ・回 と ・ ヨン ・ ヨン

Thanks for the attention

Durham, August 2018

Optimal configurations for the Heitmann-Radin energy

・ロト ・回ト ・ヨト ・ヨト