

Branching random walks in random environment

Marcel Ortgiese

Joint work with Matt Roberts (Bath)

LMS Durham Symposium 20 August 2018

Branching random walks

- Motion: Start with single particle at the origin that performs a simple random walk on Z^d (in continuous time).
- **Branching:** After an exponential waiting time, the particle splits into two new particles.
- The new particles behave independently (no interaction).

in a random potential:

- the potential {ξ(z), z ∈ Z^d} is a collection of i.i.d. non-negative random variables.
- **Modification:** when at site z, particles branch at rate $\xi(z)$.

Note: Other models introduce a random offspring distribution instead of changing the rates, e.g. space i.i.d., time i.i.d. or space-time i.i.d.

Branching random walks

- Motion: Start with single particle at the origin that performs a simple random walk on Z^d (in continuous time).
- **Branching:** After an exponential waiting time, the particle splits into two new particles.
- The new particles behave independently (no interaction).

in a random potential:

- the potential $\{\xi(z), z \in \mathbb{Z}^d\}$ is a collection of i.i.d. non-negative random variables.
- Modification: when at site z, particles branch at rate $\xi(z)$.

Note: Other models introduce a random offspring distribution instead of changing the rates, e.g. space i.i.d., time i.i.d. or space-time i.i.d.

Branching random walks

- Motion: Start with single particle at the origin that performs a simple random walk on Z^d (in continuous time).
- **Branching:** After an exponential waiting time, the particle splits into two new particles.
- The new particles behave independently (no interaction).

in a random potential:

- the potential $\{\xi(z), z \in \mathbb{Z}^d\}$ is a collection of i.i.d. non-negative random variables.
- Modification: when at site z, particles branch at rate $\xi(z)$.

Note: Other models introduce a random offspring distribution instead of changing the rates, e.g. space i.i.d., time i.i.d. or space-time i.i.d.

Start with one particle at the origin, then we can ask:

- How far do particles spread by time t?
- Equivalently: when do faraway sites z get hit?
- What does the height profile look like, i.e. how many particles N(t, z) are there at site z at time t?

More specifically:

- \bullet We are interested in large scale behaviour \rightsquigarrow scaling limit?
- Can we describe the site with the maximal number of particles?

- 1. The role of **averaging**:
 - over the environment.
 - over the branching/migration mechanism.
- 2. The competition between the benefit of **high peaks** vs. **cost of getting there**.

Start with one particle at the origin, then we can ask:

- How far do particles spread by time t?
- Equivalently: when do faraway sites z get hit?
- What does the height profile look like, i.e. how many particles N(t, z) are there at site z at time t?

More specifically:

- We are interested in large scale behaviour \rightsquigarrow scaling limit?
- Can we describe the site with the maximal number of particles?

- 1. The role of **averaging**:
 - over the environment.
 - over the branching/migration mechanism.
- 2. The competition between the benefit of **high peaks** vs. **cost of getting there**.

Start with one particle at the origin, then we can ask:

- How far do particles spread by time t?
- Equivalently: when do faraway sites z get hit?
- What does the height profile look like, i.e. how many particles N(t, z) are there at site z at time t?

More specifically:

- We are interested in large scale behaviour \rightsquigarrow scaling limit?
- Can we describe the site with the maximal number of particles?

- 1. The role of **averaging**:
 - over the environment.
 - over the branching/migration mechanism.
- 2. The competition between the benefit of **high peaks** vs. **cost of getting there**.

Start with one particle at the origin, then we can ask:

- How far do particles spread by time t?
- Equivalently: when do faraway sites z get hit?
- What does the height profile look like, i.e. how many particles N(t, z) are there at site z at time t?

More specifically:

- We are interested in large scale behaviour \rightsquigarrow scaling limit?
- Can we describe the site with the maximal number of particles?

- 1. The role of **averaging**:
 - over the environment.
 - over the branching/migration mechanism.
- 2. The competition between the benefit of **high peaks** vs. **cost of getting there**.

No migration: Consider a branching process, where particles split at rate r, but there is no migration. The expected number of particles u_t satisfies

$$\frac{d}{dt}u_t = r u_t.$$

I.e. if we start with one particle, $u_t = e^{rt}$.

Branching random walk with homogeneous branching rate. Suppose $\xi(x) \equiv r$ for all $x \in \mathbb{Z}^d$. A first moment calculation shows that:

Particle growth in constant environment

Particles spread in a ball of radius growing linearly in t.

More interesting questions: corrections to linear growth term.

No migration: Consider a branching process, where particles split at rate r, but there is no migration. The expected number of particles u_t satisfies

$$\frac{d}{dt}u_t = r u_t.$$

I.e. if we start with one particle, $u_t = e^{rt}$.

Branching random walk with homogeneous branching rate. Suppose $\xi(x) \equiv r$ for all $x \in \mathbb{Z}^d$. A first moment calculation shows that:

Particle growth in constant environment

Particles spread in a ball of radius growing linearly in t.

More interesting questions: corrections to linear growth term.

No migration: Consider a branching process, where particles split at rate r, but there is no migration. The expected number of particles u_t satisfies

$$\frac{d}{dt}u_t = r u_t.$$

I.e. if we start with one particle, $u_t = e^{rt}$.

Branching random walk with homogeneous branching rate. Suppose $\xi(x) \equiv r$ for all $x \in \mathbb{Z}^d$. A first moment calculation shows that:

Particle growth in constant environment

Particles spread in a ball of radius growing linearly in t.

More interesting questions: corrections to linear growth term.

Averaging: The parabolic Anderson model

Fix the (inhomogeneous) potential ξ , let

 $u(t,x) = E^{\xi}[\#\{\text{particles at site } x \text{ at time t }\}]$

for $t \ge 0, x \in \mathbb{Z}^d$. Then *u* solves the following equation that defines the **parabolic Anderson model**

$$\frac{\partial}{\partial t}u(t,z) = \Delta u(t,z) + \xi(z)u(t,z),$$

 $u(0,z) = \mathbb{1}_0(z),$

where Δ is the discrete Laplacian, defined as

$$\Delta f(x) = \sum_{y \in \mathbb{Z}^d: y \sim x} (f(y) - f(x)),$$

and $y \sim x$ if y is a neighbour of x.

Lots of research activity during the last 20 years in particular by [DONSKER, VARADHAN, **Gärtner, Molchanov**, SZNITMAN, ANTAL, CARMONA, DEN HOLLANDER, BISKUP, KÖNIG, VAN DER HOFSTAD, MÖRTERS, SIDOROVA, LACOIN, O., SCHNITZLER, TWAROWSKI, FIODOROV, MUIRHEAD, CHOUK, GAIRING, PERKOWSKI, ...]

Averaging: The parabolic Anderson model

Fix the (inhomogeneous) potential ξ , let

 $u(t,x) = E^{\xi}[\#\{\text{particles at site } x \text{ at time t }\}]$

for $t \ge 0, x \in \mathbb{Z}^d$. Then *u* solves the following equation that defines the **parabolic Anderson model**

$$\frac{\partial}{\partial t}u(t,z) = \Delta u(t,z) + \xi(z)u(t,z),$$

 $u(0,z) = \mathbb{1}_0(z),$

where $\boldsymbol{\Delta}$ is the discrete Laplacian, defined as

$$\Delta f(x) = \sum_{y \in \mathbb{Z}^d: y \sim x} (f(y) - f(x)),$$

and $y \sim x$ if y is a neighbour of x.

Lots of research activity during the last 20 years in particular by [DONSKER, VARADHAN, **Gärtner, Molchanov**, SZNITMAN, ANTAL, CARMONA, DEN HOLLANDER, BISKUP, KÖNIG, VAN DER HOFSTAD, MÖRTERS, SIDOROVA, LACOIN, O., SCHNITZLER, TWAROWSKI, FIODOROV, MUIRHEAD, CHOUK, GAIRING, PERKOWSKI, ...]

Averaging: The parabolic Anderson model

Fix the (inhomogeneous) potential ξ , let

 $u(t,x) = E^{\xi}[\#\{\text{particles at site } x \text{ at time t }\}]$

for $t \ge 0, x \in \mathbb{Z}^d$. Then *u* solves the following equation that defines the **parabolic Anderson model**

$$\frac{\partial}{\partial t}u(t,z) = \Delta u(t,z) + \xi(z)u(t,z),$$

 $u(0,z) = \mathbb{1}_0(z),$

where $\boldsymbol{\Delta}$ is the discrete Laplacian, defined as

$$\Delta f(x) = \sum_{y \in \mathbb{Z}^d: y \sim x} (f(y) - f(x)),$$

and $y \sim x$ if y is a neighbour of x.

Lots of research activity during the last 20 years in particular by [DONSKER, VARADHAN, **Gärtner, Molchanov**, SZNITMAN, ANTAL, CARMONA, DEN HOLLANDER, BISKUP, KÖNIG, VAN DER HOFSTAD, MÖRTERS, SIDOROVA, LACOIN, O., SCHNITZLER, TWAROWSKI, FIODOROV, MUIRHEAD, CHOUK, GAIRING, PERKOWSKI, ...]

The main idea is to understand

Intermittency

The solution u is concentrated in a **small** number of **remote** islands, where the potential ξ is particularly large.

 The behaviour of the model depends crucially on the decay of the tail probability Prob{ξ(0) > x} ~? for x → ∞.

For this talk, we will focus on these:

Example A: ξ has a Pareto distrbution, for some $\alpha > 0$:

 $\operatorname{Prob}\{\xi(0) > x\} = x^{-\alpha}.$

Example B: ξ has a Weibull distribution, for some $\gamma > 0$:

 $\operatorname{Prob}\{\xi(\mathbf{0}) > x\} = e^{-x^{\gamma}}.$

The main idea is to understand

Intermittency

The solution u is concentrated in a **small** number of **remote** islands, where the potential ξ is particularly large.

 The behaviour of the model depends crucially on the decay of the tail probability Prob{ξ(0) > x} ~? for x → ∞.

For this talk, we will focus on these:

Example A: ξ has a Pareto distrbution, for some $\alpha > 0$:

 $\operatorname{Prob}\{\xi(0) > x\} = x^{-\alpha}.$

Example B: ξ has a Weibull distribution, for some $\gamma > 0$:

 $\operatorname{Prob}\{\xi(\mathbf{0}) > x\} = e^{-x^{\gamma}}.$

The main idea is to understand

Intermittency

The solution u is concentrated in a **small** number of **remote** islands, where the potential ξ is particularly large.

 The behaviour of the model depends crucially on the decay of the tail probability Prob{ξ(0) > x} ~? for x → ∞.

For this talk, we will focus on these:

Example A: ξ has a Pareto distribution, for some $\alpha > 0$:

 $\operatorname{Prob}\{\xi(\mathbf{0}) > x\} = x^{-\alpha}.$

Example B: ξ has a Weibull distribution, for some $\gamma > 0$:

 $\operatorname{Prob}\{\xi(\mathbf{0}) > x\} = e^{-x^{\gamma}}.$

The main idea is to understand

Intermittency

The solution u is concentrated in a **small** number of **remote** islands, where the potential ξ is particularly large.

 The behaviour of the model depends crucially on the decay of the tail probability Prob{ξ(0) > x} ~? for x → ∞.

For this talk, we will focus on these:

Example A: ξ has a Pareto distribution, for some $\alpha > 0$:

$$\operatorname{Prob}\{\xi(\mathbf{0}) > x\} = x^{-\alpha}.$$

Example B: ξ has a Weibull distribution, for some $\gamma > 0$:

$$\operatorname{Prob}\{\xi(\mathbf{0}) > x\} = e^{-x^{\gamma}}.$$

Theorem 1

For either Pareto potential ($\alpha > d$) or Weibull potential (any $\gamma > 0$), there exists a process Z_t such that as $t \to \infty$,

$$rac{u(t,Z_t)}{\sum_z u(t,z)}
ightarrow 1, \quad \mbox{in probability}.$$

 Proved by [KÖNIG, LACOIN, MÖRTERS, SIDOROVA '09] – Pareto, [N. SIDOROVA, A. TWAROWSKI '14] [FIODOROV, MUIRHEAD '14] – Weibull.

• For lighter tails (double exponential), need a island of finite size that supports solution, [K[']ONIG, BISKUP, DOS SANTOS '16].

Earlier results mostly concern asymptotics of exptected total mass.

Question

Theorem 1

For either Pareto potential ($\alpha > d$) or Weibull potential (any $\gamma > 0$), there exists a process Z_t such that as $t \to \infty$,

$$\frac{u(t,Z_t)}{\sum_z u(t,z)} \to 1, \quad \text{in probability.}$$

 Proved by [KÖNIG, LACOIN, MÖRTERS, SIDOROVA '09] – Pareto, [N. SIDOROVA, A. TWAROWSKI '14] [FIODOROV, MUIRHEAD '14] – Weibull.

• For lighter tails (double exponential), need a island of finite size that supports solution, [K[']ONIG, BISKUP, DOS SANTOS '16].

Earlier results mostly concern asymptotics of exptected total mass.

Question

Theorem 1

For either Pareto potential ($\alpha > d$) or Weibull potential (any $\gamma > 0$), there exists a process Z_t such that as $t \to \infty$,

$$rac{u(t,Z_t)}{\sum_z u(t,z)}
ightarrow 1, \quad \mbox{in probability}.$$

- Proved by [KÖNIG, LACOIN, MÖRTERS, SIDOROVA '09] Pareto, [N. SIDOROVA, A. TWAROWSKI '14] [FIODOROV, MUIRHEAD '14] – Weibull.
- For lighter tails (double exponential), need a island of finite size that supports solution, [K[']ONIG, BISKUP, DOS SANTOS '16].

Earlier results mostly concern asymptotics of exptected total mass.

Question

Theorem 1

For either Pareto potential ($\alpha > d$) or Weibull potential (any $\gamma > 0$), there exists a process Z_t such that as $t \to \infty$,

$$\frac{u(t,Z_t)}{\sum_z u(t,z)} \to 1, \quad \text{in probability.}$$

- Proved by [KÖNIG, LACOIN, MÖRTERS, SIDOROVA '09] Pareto, [N. SIDOROVA, A. TWAROWSKI '14] [FIODOROV, MUIRHEAD '14] – Weibull.
- For lighter tails (double exponential), need a island of finite size that supports solution, [K[']ONIG, BISKUP, DOS SANTOS '16].

Earlier results mostly concern asymptotics of exptected total mass.

Question

Main question: If a BRW manages to cover a ball of radius r – what is the largest potential it has seen along the way?

How does $\max_{x \in B(0,r) \cap \mathbb{Z}^d} \xi(x)$ grow ?

More precise question: What is the **geometry of the peaks** of the potential on large scales?

Extreme value theory tells us:

- Fix a large scaling parameter *T*.
- Assume ξ is Pareto distributed, i.e. $\operatorname{Prob}\{\xi(z) > x\} \sim x^{-\alpha}, \ \alpha > d$.
- For $q = \frac{d}{\alpha d}$, introduce scaling for potential and space

$$a_T = \left(\frac{T}{\log T}\right)^q, \quad r_T = \left(\frac{T}{\log T}\right)^{q+1}.$$

Then, the rescaled environment converges:

$$\Pi_{\mathcal{T}} := \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_{\mathcal{T}}}, \frac{\xi(z)}{a_{\mathcal{T}}}\right)} \Rightarrow \Pi,$$

Main question: If a BRW manages to cover a ball of radius r – what is the largest potential it has seen along the way?

How does
$$\max_{x \in B(0,r) \cap \mathbb{Z}^d} \xi(x)$$
 grow ?

More precise question: What is the **geometry of the peaks** of the potential on large scales?

Extreme value theory tells us:

- Fix a large scaling parameter T.
- Assume ξ is Pareto distributed, i.e. $\operatorname{Prob}\{\xi(z) > x\} \sim x^{-\alpha}$, $\alpha > d$.
- For $q = \frac{d}{\alpha d}$, introduce scaling for potential and space

$$a_T = \left(\frac{T}{\log T}\right)^q, \quad r_T = \left(\frac{T}{\log T}\right)^{q+1}.$$

Then, the rescaled environment converges:

$$\Pi_{\mathcal{T}} := \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_{\mathcal{T}}}, \frac{\xi(z)}{a_{\mathcal{T}}}\right)} \Rightarrow \Pi,$$

Main question: If a BRW manages to cover a ball of radius r – what is the largest potential it has seen along the way?

How does
$$\max_{x \in B(0,r) \cap \mathbb{Z}^d} \xi(x)$$
 grow ?

More precise question: What is the **geometry of the peaks** of the potential on large scales?

Extreme value theory tells us:

- Fix a large scaling parameter T.
- Assume ξ is Pareto distributed, i.e. Prob{ξ(z) > x} ~ x^{-α}, α > d.
- For $q = \frac{d}{\alpha d}$, introduce scaling for potential and space

$$a_T = \left(rac{T}{\log T}
ight)^q, \quad r_T = \left(rac{T}{\log T}
ight)^{q+1}.$$

Then, the rescaled environment converges:

$$\Pi_{\mathcal{T}} := \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_{\mathcal{T}}}, \frac{\xi(z)}{a_{\mathcal{T}}}\right)} \Rightarrow \Pi,$$

Main question: If a BRW manages to cover a ball of radius r – what is the largest potential it has seen along the way?

How does
$$\max_{x \in B(0,r) \cap \mathbb{Z}^d} \xi(x)$$
 grow ?

More precise question: What is the **geometry of the peaks** of the potential on large scales?

Extreme value theory tells us:

- Fix a large scaling parameter T.
- Assume ξ is Pareto distributed, i.e. Prob{ξ(z) > x} ~ x^{-α}, α > d.
- For $q = \frac{d}{\alpha d}$, introduce scaling for potential and space

$$a_T = \left(\frac{T}{\log T}\right)^q, \quad r_T = \left(\frac{T}{\log T}\right)^{q+1}.$$

Then, the rescaled environment converges:

$$\Pi_{\mathcal{T}} := \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_{\mathcal{T}}}, \frac{\xi(z)}{a_{\mathcal{T}}}\right)} \Rightarrow \Pi,$$

Main question: If a BRW manages to cover a ball of radius r – what is the largest potential it has seen along the way?

How does
$$\max_{x \in B(0,r) \cap \mathbb{Z}^d} \xi(x)$$
 grow ?

More precise question: What is the **geometry of the peaks** of the potential on large scales?

Extreme value theory tells us:

- Fix a large scaling parameter T.
- Assume ξ is Pareto distributed, i.e. Prob{ξ(z) > x} ~ x^{-α}, α > d.
- For $q = \frac{d}{\alpha d}$, introduce scaling for potential and space

$$a_T = \left(\frac{T}{\log T}\right)^q, \quad r_T = \left(\frac{T}{\log T}\right)^{q+1}.$$

Then, the rescaled environment converges:

$$\Pi_{\mathcal{T}} := \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_{\mathcal{T}}}, \frac{\xi(z)}{a_{\mathcal{T}}}\right)} \Rightarrow \Pi,$$

Main question: If a BRW manages to cover a ball of radius r – what is the largest potential it has seen along the way?

How does
$$\max_{x \in B(0,r) \cap \mathbb{Z}^d} \xi(x)$$
 grow ?

More precise question: What is the **geometry of the peaks** of the potential on large scales?

Extreme value theory tells us:

- Fix a large scaling parameter T.
- Assume ξ is Pareto distributed, i.e. Prob{ξ(z) > x} ~ x^{-α}, α > d.
- For $q = \frac{d}{\alpha d}$, introduce scaling for potential and space

$$a_T = \left(\frac{T}{\log T}\right)^q, \quad r_T = \left(\frac{T}{\log T}\right)^{q+1}.$$

Then, the rescaled environment converges:

$$\Pi_{\mathcal{T}} := \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_{\mathcal{T}}}, \frac{\xi(z)}{a_{\mathcal{T}}}\right)} \Rightarrow \Pi,$$

Then, the rescaled environment converges:

$$\Pi_{\mathcal{T}} := \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_{\mathcal{T}}}, \frac{\xi(z)}{a_{\mathcal{T}}}\right)} \Rightarrow \Pi,$$

Then, the rescaled environment converges:

$$\Pi_{\mathcal{T}} := \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_{\mathcal{T}}}, \frac{\xi(z)}{a_{\mathcal{T}}}\right)} \Rightarrow \Pi,$$

Then, the rescaled environment converges:

$$\Pi_{\mathcal{T}} := \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_{\mathcal{T}}}, \frac{\xi(z)}{a_{\mathcal{T}}}\right)} \Rightarrow \Pi,$$

Then, the rescaled environment converges:

$$\Pi_{\mathcal{T}} := \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_{\mathcal{T}}}, \frac{\xi(z)}{a_{\mathcal{T}}}\right)} \Rightarrow \Pi,$$

Consider for $z \in r_T^{-1}\mathbb{Z}^d$, $t \ge 0$: Hitting times:

Support:

 $H_T(z) = \inf\{t \ge 0 : N(tT, r_T z) \ge 1\},$ $S_T(t) = \{z \in \mathbb{R}^d : H_T(z) \le t\}$

 $M_T(t,z) = \frac{1}{a_T} \log_+ N(tT,r_T z)$

Rescaled number of particles:

with interpolation for $z \notin r_T^{-1} \mathbb{Z}^d$.

Theorem 2 (O., Roberts '16, '18)

The triple

$$\left((H_{\mathcal{T}}(z))_{z\in\mathbb{R}^d},(S_{\mathcal{T}}(t))_{t\geq 0},(M_{\mathcal{T}}(t,z))_{t\geq 0,z\in\mathbb{R}^d}\right)$$

converges in distribution (in a suitable topology) to

 $(h_{\Pi}, s_{\Pi}, m_{\Pi}) = ((h_{\Pi}(z))_{z \in \mathbb{R}^d}, (s_{\Pi}(t))_{t \ge 0}, (m_{\Pi}(t, z))_{t \ge 0, z \in \mathbb{R}^d}),$

Consider for $z \in r_T^{-1}\mathbb{Z}^d$, $t \ge 0$: Hitting times:

Support:

 $H_T(z) = \inf\{t \ge 0 : N(tT, r_T z) \ge 1\},$ $S_T(t) = \{z \in \mathbb{R}^d : H_T(z) \le t\}$

 $M_T(t,z) = \frac{1}{a_T} \log_+ N(tT,r_T z)$

Rescaled number of particles:

with interpolation for $z \notin r_T^{-1} \mathbb{Z}^d$.

Theorem 2 (O., Roberts '16, '18)

The triple

$$\left((H_{\mathcal{T}}(z))_{z\in\mathbb{R}^d},(S_{\mathcal{T}}(t))_{t\geq 0},(M_{\mathcal{T}}(t,z))_{t\geq 0,z\in\mathbb{R}^d}\right)$$

converges in distribution (in a suitable topology) to

 $(h_{\Pi}, s_{\Pi}, m_{\Pi}) = ((h_{\Pi}(z))_{z \in \mathbb{R}^d}, (s_{\Pi}(t))_{t \ge 0}, (m_{\Pi}(t, z))_{t \ge 0, z \in \mathbb{R}^d}),$

Consider for $z \in r_T^{-1}\mathbb{Z}^d$, $t \ge 0$: Hitting times:

Support:

 $H_T(z) = \inf\{t \ge 0 : N(tT, r_T z) \ge 1\},$ $S_T(t) = \{z \in \mathbb{R}^d : H_T(z) \le t\}$

 $M_T(t,z) = \frac{1}{a_T} \log_+ N(tT,r_T z)$

Rescaled number of particles:

with interpolation for $z \notin r_T^{-1} \mathbb{Z}^d$.

Theorem 2 (O., Roberts '16, '18)

The triple

$$\left((H_{\mathcal{T}}(z))_{z\in\mathbb{R}^d},(S_{\mathcal{T}}(t))_{t\geq 0},(M_{\mathcal{T}}(t,z))_{t\geq 0,z\in\mathbb{R}^d}\right)$$

converges in distribution (in a suitable topology) to

 $(h_{\Pi}, s_{\Pi}, m_{\Pi}) = ((h_{\Pi}(z))_{z \in \mathbb{R}^d}, (s_{\Pi}(t))_{t \ge 0}, (m_{\Pi}(t, z))_{t \ge 0, z \in \mathbb{R}^d}),$

Consider for $z \in r_T^{-1}\mathbb{Z}^d$, $t \ge 0$: Hitting times:

Support:

 $egin{aligned} & H_T(z) = \inf\{t \geq 0 : N(tT, r_T z) \geq 1\}, \ & S_T(t) = \{z \in \mathbb{R}^d \, : \, H_T(z) \leq t\} \end{aligned}$

Rescaled number of particles:

$$M_T(t,z) = \frac{1}{a_T} \log_+ N(tT,r_T z)$$

with interpolation for $z \notin r_T^{-1} \mathbb{Z}^d$.

Theorem 2 (O., Roberts '16, '18)

The triple

$$\Big((H_{\mathcal{T}}(z))_{z\in\mathbb{R}^d},(S_{\mathcal{T}}(t))_{t\geq 0},(M_{\mathcal{T}}(t,z))_{t\geq 0,z\in\mathbb{R}^d}\Big),$$

converges in distribution (in a suitable topology) to

 $(h_{\Pi}, s_{\Pi}, m_{\Pi}) = ((h_{\Pi}(z))_{z \in \mathbb{R}^d}, (s_{\Pi}(t))_{t \ge 0}, (m_{\Pi}(t, z))_{t \ge 0, z \in \mathbb{R}^d}),$
- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. \rightsquigarrow start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. \rightsquigarrow start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. \rightsquigarrow start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. \rightsquigarrow start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. \rightsquigarrow start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. \rightsquigarrow start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. \rightsquigarrow start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. \rightsquigarrow start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. → start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. \rightsquigarrow start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. → start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. → start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. → start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. → start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. → start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. → start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. → start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. \rightsquigarrow start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. \rightsquigarrow start of a new 'lilypad'.

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. \rightsquigarrow start of a new 'lilypad'.

Starting in a point z with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at z and branch at rate $\xi(z)$
- 'lilypad' of particles spreads out at speed proportional to $\xi(z)$. (*)
- Continue until point with higher potential is found. → start of a new 'lilypad'.

Let h(0) = 0, and we define the hitting time of $z \in \mathbb{R}^d$ by the **lilypad** model as

$$h(z) = \inf\Big(\sum_{j=0}^{\infty}q\frac{|y_{j+1}-y_j|}{\xi(y_{j+1})}\Big),$$

where $|\cdot|$ is the ℓ^1 -norm and the inf is over all sequences (y_i) with $y_0 = z$ and $(y_i, \xi(y_i)) \in \Pi, i \ge 1$ such that $|y_n| \to 0$.

- Need to show this is well-defined.
- Support and number of particles are corollaries.

Claim

'Lilypad' of particles spreads out at speed proportional to $\xi(z)$.

Recall that we rescale our systems

space
$$r_T = \left(\frac{T}{\log T}\right)^{q+1}$$
 potential $a_T = \left(\frac{T}{\log T}\right)^q$.

We start in a point $r_T x$ with potential of size $\xi_T(x) = \xi(r_T x)/a_T \approx 1$ and assume there are no further good points nearby. When do we reach a point $r_T z$?

$$\mathbb{E}_{r_{T}x}[N(tT, r_{T}z)] \approx e^{\xi_{T}(x)a_{T}tT} \mathbb{P}_{r_{T}x}\{ \text{ reach } r_{T}z \text{ in time } o(tT) \}$$
$$\approx e^{\xi_{T}(x)a_{T}tT} e^{-q|z-x|r_{T}\log T}$$
$$= e^{a(T)T(\xi_{T}(x)t-q|z-x|)}.$$

We reach the point z when this expectation is pprox 1, i.e. at time

$$t = q \frac{|z - x|}{\xi_T(x)}.$$

Claim

'Lilypad' of particles spreads out at speed proportional to $\xi(z)$.

Recall that we rescale our systems

space
$$r_T = \left(\frac{T}{\log T}\right)^{q+1}$$
 potential $a_T = \left(\frac{T}{\log T}\right)^q$.

We start in a point $r_T x$ with potential of size $\xi_T(x) = \xi(r_T x)/a_T \approx 1$ and assume there are no further good points nearby. When do we reach a point $r_T z$?

$$\mathbb{E}_{r_{T}x}[N(tT, r_{T}z)] \approx e^{\xi_{T}(x)a_{T}tT} \mathbb{P}_{r_{T}x}\{ \text{ reach } r_{T}z \text{ in time } o(tT) \}$$
$$\approx e^{\xi_{T}(x)a_{T}tT} e^{-q|z-x|r_{T}\log T}$$
$$= e^{a(T)T(\xi_{T}(x)t-q|z-x|)}.$$

We reach the point z when this expectation is pprox 1, i.e. at time

$$t = q \frac{|z - x|}{\xi_T(x)}.$$

Claim

'Lilypad' of particles spreads out at speed proportional to $\xi(z)$.

Recall that we rescale our systems

space
$$r_T = \left(\frac{T}{\log T}\right)^{q+1}$$
 potential $a_T = \left(\frac{T}{\log T}\right)^q$.

We start in a point $r_T x$ with potential of size $\xi_T(x) = \xi(r_T x)/a_T \approx 1$ and assume there are no further good points nearby. When do we reach a point $r_T z$?

 $\mathbb{E}_{r_{T}x}[N(tT, r_{T}z)] \approx e^{\xi_{T}(x)a_{T}tT} \mathbb{P}_{r_{T}x}\{ \text{ reach } r_{T}z \text{ in time } o(tT) \}$ $\approx e^{\xi_{T}(x)a_{T}tT} e^{-q|z-x|r_{T}\log T}$ $= e^{a(T)T(\xi_{T}(x)t-q|z-x|)}.$

We reach the point z when this expectation is pprox 1, i.e. at time

$$t=q\frac{|z-x|}{\xi_{\mathcal{T}}(x)}.$$

Claim

'Lilypad' of particles spreads out at speed proportional to $\xi(z)$.

Recall that we rescale our systems

space
$$r_T = \left(\frac{T}{\log T}\right)^{q+1}$$
 potential $a_T = \left(\frac{T}{\log T}\right)^q$.

We start in a point $r_T x$ with potential of size $\xi_T(x) = \xi(r_T x)/a_T \approx 1$ and assume there are no further good points nearby. When do we reach a point $r_T z$?

$$\mathbb{E}_{r_T x}[N(tT, r_T z)] \approx e^{\xi_T(x)a_T tT} \mathbb{P}_{r_T x}\{ \text{ reach } r_T z \text{ in time } o(tT) \}$$
$$\approx e^{\xi_T(x)a_T tT} e^{-q|z-x|r_T \log T}$$
$$= e^{a(T)T(\xi_T(x)t-q|z-x|)}.$$

We reach the point z when this expectation is pprox 1, i.e. at time

$$t=q\frac{|z-x|}{\xi_{\mathcal{T}}(x)}.$$

Claim

'Lilypad' of particles spreads out at speed proportional to $\xi(z)$.

Recall that we rescale our systems

space
$$r_T = \left(\frac{T}{\log T}\right)^{q+1}$$
 potential $a_T = \left(\frac{T}{\log T}\right)^q$.

We start in a point $r_T x$ with potential of size $\xi_T(x) = \xi(r_T x)/a_T \approx 1$ and assume there are no further good points nearby. When do we reach a point $r_T z$?

$$\mathbb{E}_{r_T \times}[N(tT, r_T z)] \approx e^{\xi_T(x)a_T tT} \mathbb{P}_{r_T \times}\{ \text{ reach } r_T z \text{ in time } o(tT) \}$$
$$\approx e^{\xi_T(x)a_T tT} e^{-q|z-x|r_T \log T}$$
$$= e^{a(T)T(\xi_T(x)t-q|z-x|)}.$$

We reach the point z when this expectation is pprox 1, i.e. at time

$$t=q\frac{|z-x|}{\xi_{T}(x)}.$$

Claim

'Lilypad' of particles spreads out at speed proportional to $\xi(z)$.

Recall that we rescale our systems

space
$$r_T = \left(\frac{T}{\log T}\right)^{q+1}$$
 potential $a_T = \left(\frac{T}{\log T}\right)^q$.

We start in a point $r_T x$ with potential of size $\xi_T(x) = \xi(r_T x)/a_T \approx 1$ and assume there are no further good points nearby. When do we reach a point $r_T z$?

$$\mathbb{E}_{r_{T}x}[N(tT, r_{T}z)] \approx e^{\xi_{T}(x)a_{T}tT} \mathbb{P}_{r_{T}x}\{ \text{ reach } r_{T}z \text{ in time } o(tT) \}$$
$$\approx e^{\xi_{T}(x)a_{T}tT} e^{-q|z-x|r_{T}\log T}$$
$$= e^{a(T)T(\xi_{T}(x)t-q|z-x|)}.$$

We reach the point z when this expectation is \approx 1, i.e. at time

$$t=q\frac{|z-x|}{\xi_{T}(x)}.$$

Claim

'Lilypad' of particles spreads out at speed proportional to $\xi(z)$.

Recall that we rescale our systems

space
$$r_T = \left(\frac{T}{\log T}\right)^{q+1}$$
 potential $a_T = \left(\frac{T}{\log T}\right)^q$.

We start in a point $r_T x$ with potential of size $\xi_T(x) = \xi(r_T x)/a_T \approx 1$ and assume there are no further good points nearby. When do we reach a point $r_T z$?

$$\mathbb{E}_{r_{T}x}[N(tT, r_{T}z)] \approx e^{\xi_{T}(x)a_{T}tT} \mathbb{P}_{r_{T}x}\{ \text{ reach } r_{T}z \text{ in time } o(tT) \}$$
$$\approx e^{\xi_{T}(x)a_{T}tT} e^{-q|z-x|r_{T}\log T}$$
$$= e^{a(T)T(\xi_{T}(x)t-q|z-x|)}.$$

We reach the point z when this expectation is \approx 1, i.e. at time

$$t=q\frac{|z-x|}{\xi_{T}(x)}.$$

The limiting support is defined as

 $s(t) := \{z \in \mathbb{R}^d : h(z) \le t\}.$

$$s(t):=\{z\in\mathbb{R}^d\ :\ h(z)\leq t\}.$$

The (log-)number of particles m(t, z) follows two rules:

- If z is a site with high potential, number of particles start growing at rate ξ(z) as soon as z is hit.
- Costs to go from nearest good site y to z is q|y z| (on logarithmic scale).

Thus,

$$m(t,z) = \xi(z)(t-h(z)).$$

The (log-)number of particles m(t, z) follows two rules:

- If z is a site with high potential, number of particles start growing at rate ξ(z) as soon as z is hit.
- Costs to go from nearest good site y to z is q|y z| (on logarithmic scale).

Thus,

$$m(t,z) = \sup_{y} \{\xi_T(y)(t-h(y))-q|y-z|\}.$$

- Limit is random in contrast to earlier work on BRWRE [COMETS, POPOV '07], but also not of SDE/SPDE-type.
- Corollary: Log of number of particles at site is random in leading order!
- We call the limit process the lilypad process.
- Lilypads grow like ℓ^1 -balls:
 - Reason is that the front is driven by extreme large deviation events (underlying RW talkes ≫ T steps in time T).
 - Dominating term comes from number of steps taken to get from x to $z \rightsquigarrow \ell^1$ norm.
 - Scaling limit is not universal (e.g. not the same for other lattices).

- Limit is random in contrast to earlier work on BRWRE [COMETS, POPOV '07], but also not of SDE/SPDE-type.
- Corollary: Log of number of particles at site is random in leading order!
- We call the limit process the lilypad process.
- Lilypads grow like ℓ^1 -balls:
 - Reason is that the front is driven by extreme large deviation events (underlying RW talkes ≫ T steps in time T).
 - Dominating term comes from number of steps taken to get from x to $z \rightsquigarrow \ell^1$ norm.
 - Scaling limit is not universal (e.g. not the same for other lattices).

- Limit is random in contrast to earlier work on BRWRE [COMETS, POPOV '07], but also not of SDE/SPDE-type.
- Corollary: Log of number of particles at site is random in leading order!
- We call the limit process the **lilypad process**.
- Lilypads grow like ℓ^1 -balls:
 - Reason is that the front is driven by extreme large deviation events (underlying RW talkes ≫ T steps in time T).
 - Dominating term comes from number of steps taken to get from x to $z \rightsquigarrow \ell^1$ norm.
 - Scaling limit is not universal (e.g. not the same for other lattices).

- Limit is random in contrast to earlier work on BRWRE [COMETS, POPOV '07], but also not of SDE/SPDE-type.
- Corollary: Log of number of particles at site is random in leading order!
- We call the limit process the **lilypad process**.
- Lilypads grow like ℓ^1 -balls:
 - Reason is that the front is driven by extreme large deviation events (underlying RW talkes ≫ T steps in time T).
 - Dominating term comes from number of steps taken to get from x to $z \rightsquigarrow \ell^1$ norm.
 - Scaling limit is not universal (e.g. not the same for other lattices).

- Limit is random in contrast to earlier work on BRWRE [COMETS, POPOV '07], but also not of SDE/SPDE-type.
- Corollary: Log of number of particles at site is random in leading order!
- We call the limit process the **lilypad process**.
- Lilypads grow like ℓ^1 -balls:
 - Reason is that the front is driven by extreme large deviation events (underlying RW talkes ≫ T steps in time T).
 - Dominating term comes from number of steps taken to get from x to $z \rightsquigarrow \ell^1$ norm.
 - Scaling limit is not universal (e.g. not the same for other lattices).

- Limit is random in contrast to earlier work on BRWRE [COMETS, POPOV '07], but also not of SDE/SPDE-type.
- Corollary: Log of number of particles at site is random in leading order!
- We call the limit process the **lilypad process**.
- Lilypads grow like ℓ^1 -balls:
 - Reason is that the front is driven by extreme large deviation events (underlying RW talkes ≫ T steps in time T).
 - Dominating term comes from number of steps taken to get from x to $z \rightsquigarrow \ell^1$ norm.
 - Scaling limit is not universal (e.g. not the same for other lattices).

- Limit is random in contrast to earlier work on BRWRE [COMETS, POPOV '07], but also not of SDE/SPDE-type.
- Corollary: Log of number of particles at site is random in leading order!
- We call the limit process the **lilypad process**.
- Lilypads grow like ℓ^1 -balls:
 - Reason is that the front is driven by extreme large deviation events (underlying RW talkes ≫ T steps in time T).
 - Dominating term comes from number of steps taken to get from x to $z \rightsquigarrow \ell^1$ norm.
 - Scaling limit is not universal (e.g. not the same for other lattices).

Step 1: Decoupling the randomness:

• Define a discrete lilypad process in terms of the point process

$$\Pi_T = \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_T}, \frac{\xi(z)}{a_T}\right)}.$$

We show in [O. AND ROBERTS '16] that the branching random walks hitting times are well approximated by the hitting times in the discrete lilypad process (which only depend on the environment!)

- Use moments, but starting from a good point!
- plus elaborate induction arguments.
- It remains to show that the discrete lilypad model converges.

- Since Π_T ⇒ Π, any continuous functional of the point process will also converge.
- Our functionals are only continuous if they depend on finitely many points: thus need to 'cut off' points with small potential or that are too far out.

Step 1: Decoupling the randomness:

• Define a discrete lilypad process in terms of the point process

$$\Pi_T = \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_T}, \frac{\xi(z)}{a_T}\right)}.$$

We show in [O. AND ROBERTS '16] that the branching random walks hitting times are well approximated by the hitting times in the discrete lilypad process (which only depend on the environment!)

- Use moments, but starting from a good point!
- plus elaborate induction arguments.
- It remains to show that the discrete lilypad model converges.

- Since Π_T ⇒ Π, any continuous functional of the point process will also converge.
- Our functionals are only continuous if they depend on finitely many points: thus need to 'cut off' points with small potential or that are too far out.

Step 1: Decoupling the randomness:

• Define a discrete lilypad process in terms of the point process

$$\Pi_T = \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_T}, \frac{\xi(z)}{a_T}\right)}.$$

We show in [O. AND ROBERTS '16] that the branching random walks hitting times are well approximated by the hitting times in the discrete lilypad process (which only depend on the environment!)

- Use moments, but starting from a good point!
- plus elaborate induction arguments.
- It remains to show that the discrete lilypad model converges.

- Since Π_T ⇒ Π, any continuous functional of the point process will also converge.
- Our functionals are only continuous if they depend on finitely many points: thus need to 'cut off' points with small potential or that are too far out.

Step 1: Decoupling the randomness:

• Define a discrete lilypad process in terms of the point process

$$\Pi_T = \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_T}, \frac{\xi(z)}{a_T}\right)}.$$

We show in [O. AND ROBERTS '16] that the branching random walks hitting times are well approximated by the hitting times in the discrete lilypad process (which only depend on the environment!)

- Use moments, but starting from a good point!
- plus elaborate induction arguments.
- It remains to show that the discrete lilypad model converges.

- Since Π_T ⇒ Π, any continuous functional of the point process will also converge.
- Our functionals are only continuous if they depend on finitely many points: thus need to 'cut off' points with small potential or that are too far out.

Step 1: Decoupling the randomness:

• Define a discrete lilypad process in terms of the point process

$$\Pi_T = \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_T}, \frac{\xi(z)}{a_T}\right)}.$$

We show in [O. AND ROBERTS '16] that the branching random walks hitting times are well approximated by the hitting times in the discrete lilypad process (which only depend on the environment!)

- Use moments, but starting from a good point!
- plus elaborate induction arguments.
- It remains to show that the discrete lilypad model converges.

- Since $\Pi_{\mathcal{T}} \Rightarrow \Pi,$ any continuous functional of the point process will also converge.
- Our functionals are only continuous if they depend on finitely many points: thus need to 'cut off' points with small potential or that are too far out.

Step 1: Decoupling the randomness:

• Define a discrete lilypad process in terms of the point process

$$\Pi_T = \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_T}, \frac{\xi(z)}{a_T}\right)}.$$

We show in [O. AND ROBERTS '16] that the branching random walks hitting times are well approximated by the hitting times in the discrete lilypad process (which only depend on the environment!)

- Use moments, but starting from a good point!
- plus elaborate induction arguments.
- It remains to show that the discrete lilypad model converges.

- Since $\Pi_{\mathcal{T}} \Rightarrow \Pi,$ any continuous functional of the point process will also converge.
- Our functionals are only continuous if they depend on finitely many points: thus need to 'cut off' points with small potential or that are too far out.

One-point localisation

For u(x, t) the solution of the parabolic Anderson model (i.e. the expected number of particles) it is known from [KÖNIG ET.AL '09] that there exists a process Z_t^{PAM} such that

$$rac{u(t, Z_t^{\mathrm{PAM}})}{\sum_{z \in \mathbb{Z}^d} u(t, z)} o 1 ext{ in probability as } t o \infty.$$

Q: Does the same hold for the branching random walk?

Recall that we write N(t, z) for the number of particles at site z at time t.

```
Theorem 1 (O. and Roberts '17)

There exists a process Z_t^{(1)} such that
\frac{N(t, Z_t^{(1)})}{\sum_{z \in \mathbb{Z}^d} N(t, z)} \to 1 \text{ in probability as } t \to \infty.
```

• Convergence cannot hold almost surely, otherwise we need two points for transition times (conjecture).

One-point localisation

For u(x, t) the solution of the parabolic Anderson model (i.e. the expected number of particles) it is known from [KÖNIG ET.AL '09] that there exists a process Z_t^{PAM} such that

$$rac{u(t,Z_t^{\mathrm{PAM}})}{\sum_{z\in\mathbb{Z}^d}u(t,z)}
ightarrow 1$$
 in probability as $t
ightarrow\infty.$

Q: Does the same hold for the branching random walk?

Recall that we write N(t, z) for the number of particles at site z at time t.

Theorem 1 (O. and Roberts '17) There exists a process $Z_t^{(1)}$ such that $\frac{N(t, Z_t^{(1)})}{\sum_{z \in \mathbb{Z}^d} N(t, z)} \to 1 \text{ in probability as } t \to \infty.$

• Convergence cannot hold almost surely, otherwise we need two points for transition times (conjecture).

Proof of the one-point localisation

• From scaling limit theorem, we now that at a typical large time *t*, we have

$$\frac{1}{a_t}\log N(t,r_t^{-1}z)\approx$$

This implies that there is localisation in the rescaled picture, i.e. there exists $\varepsilon > 0$ and a process Z_t such that

$$\frac{\sum_{z \in B(Z_t, \varepsilon_{r_t})} N(t, z)}{\sum_{w \in \mathbb{Z}^d} N(t, w)} \to 1 \text{ in prob.}$$

Here Z_t is defined as the maximizer of the corresponding lilypad process, see [O. AND ROBERTS '16].

- Remains to worry about particles in a 'small' ball around Z_t. Strategy:
 - Need to control when exactly the good point Z_t is hit for the first time → Stopping lines.
 - Then show that it is too expensive to leave the good point! (here we very much rely on the extreme growth of potential!)

Proof of the one-point localisation

• From scaling limit theorem, we now that at a typical large time *t*, we have

$$\frac{1}{a_t}\log N(t,r_t^{-1}z) \approx$$

This implies that there is localisation in the rescaled picture, i.e. there exists $\varepsilon > 0$ and a process Z_t such that

$$\frac{\sum_{z \in B(Z_t, \varepsilon r_t)} N(t, z)}{\sum_{w \in \mathbb{Z}^d} N(t, w)} \to 1 \text{ in prob.}$$

Here Z_t is defined as the maximizer of the corresponding lilypad process, see [O. AND ROBERTS '16].

- Remains to worry about particles in a 'small' ball around Z_t. Strategy:
 - Need to control when exactly the good point Z_t is hit for the first time → Stopping lines.
 - Then show that it is too expensive to leave the good point! (here we very much rely on the extreme growth of potential!)

Proof of the one-point localisation

• From scaling limit theorem, we now that at a typical large time *t*, we have

$$\frac{1}{a_t}\log N(t,r_t^{-1}z) \approx$$

This implies that there is localisation in the rescaled picture, i.e. there exists $\varepsilon > 0$ and a process Z_t such that

$$\frac{\sum_{z \in B(Z_t, \varepsilon r_t)} N(t, z)}{\sum_{w \in \mathbb{Z}^d} N(t, w)} \to 1 \text{ in prob.}$$

Here Z_t is defined as the maximizer of the corresponding lilypad process, see [O. AND ROBERTS '16].

- Remains to worry about particles in a 'small' ball around Z_t. Strategy:
 - Need to control when exactly the good point Z_t is hit for the first time → Stopping lines.
 - Then show that it is too expensive to leave the good point! (here we very much rely on the extreme growth of potential!)

 Recall: The solution u(t, x) of the parabolic Anderson model describes the expected number of particles in the branching random walk (when averaging over branching/migration).

Our methods also give a scaling limit for

$$\Lambda_T(t,z) = rac{1}{a_T T} \log u(tT,r_T z), \quad z \in \mathbb{R}^d$$

using a description via a 'modified lilypad process'.

- New hitting times τ_T(z) (= time such that Λ(t, z) > 1) depend for peaks only on position and potential (and otherwise only on nearest peak).
- Support can be disconnected!

 Recall: The solution u(t, x) of the parabolic Anderson model describes the expected number of particles in the branching random walk (when averaging over branching/migration).

Our methods also give a scaling limit for

$$\Lambda_T(t,z) = rac{1}{a_T T} \log u(tT,r_T z), \quad z \in \mathbb{R}^d$$

using a description via a 'modified lilypad process'.

- New hitting times τ_T(z) (= time such that Λ(t, z) > 1) depend for peaks only on position and potential (and otherwise only on nearest peak).
- Support can be disconnected!

- Support of the BRW: green.
- "Support" of the parabolic Anderson model: blue.

- Support of the BRW: green.
- "Support" of the parabolic Anderson model: blue.

- Support of the BRW: green.
- "Support" of the parabolic Anderson model: blue.

- Support of the BRW: green.
- "Support" of the parabolic Anderson model: blue.

- Support of the BRW: green.
- "Support" of the parabolic Anderson model: blue.

- Support of the BRW: green.
- "Support" of the parabolic Anderson model: blue.

- Branching random walk: green.
- Expected number of particles (PAM): blue.

- Branching random walk: green.
- Expected number of particles (PAM): blue.

- Branching random walk: green.
- Expected number of particles (PAM): blue.

- Branching random walk: green.
- Expected number of particles (PAM): blue.

- Branching random walk: green.
- Expected number of particles (PAM): blue.

- Branching random walk: green.
- Expected number of particles (PAM): blue.

- Branching random walk: green.
- Expected number of particles (PAM): blue.

So far all results have been for Pareto potential.

Next step: Weibull potentials:

 $\operatorname{Prob}\{\xi(0) > z\} \sim e^{-z^{\gamma}}.$

Localisation and asymptotics of total mass of the parabolic Anderson model well understood:

- [Gärtner, Molchanov '98, van der Hofstad, Sidorova, Mörters '08, Lacoin, H, Mörters '12, Sidorova, Twarowski '14, Fidorov, Muirhead '14].
- This class includes heavy-tailed and non-heavy tailed distributions.
- For any $\gamma > 0$: one-point localisation (in probability).

So far all results have been for Pareto potential.

Next step: Weibull potentials:

 $\operatorname{Prob}\{\xi(\mathbf{0})>z\}\sim e^{-z^{\gamma}}.$

Localisation and asymptotics of total mass of the parabolic Anderson model well understood:

- [GÄRTNER, MOLCHANOV '98, VAN DER HOFSTAD, SIDOROVA, MÖRTERS '08, LACOIN, H, MÖRTERS '12, SIDOROVA, TWAROWSKI '14, FIDOROV, MUIRHEAD '14].
- This class includes heavy-tailed and non-heavy tailed distributions.
- For any $\gamma > 0$: one-point localisation (in probability).

Rescaling the environment

Extreme value theory tells us to rescale differently this time: Spatial rescaling:

$$r_{T} = rac{T(\log T)^{rac{1}{\gamma}-1}}{\log \log T}$$

For the potential we need:

$$a_T = (d \log r_T)^{\frac{1}{\gamma}}, \quad b_T = (d \log r_T)^{\frac{1}{\gamma}-1}.$$

Then, the rescaled point process

$$\Pi_{\mathcal{T}} = \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_{\mathcal{T}}}, \frac{\xi(z) - a_{\mathcal{T}}}{b_{\mathcal{T}}}\right)},$$

converges to a Poisson point process on $\mathbb{R}^d \times \mathbb{R}$.

Note the leading order of maximal value of Π_T on a compact set is **deterministic**!

Also it is known that there exists Z_T^1 :

$$\frac{1}{T}\log\sum_{z}u(T,z)\sim\frac{1}{T}\log u(T,Z_{T}^{1})\sim a_{T}+b_{T} \text{ random term.}$$

22
Rescaling the environment

Extreme value theory tells us to rescale differently this time: Spatial rescaling:

$$r_T = rac{T(\log T)^{rac{1}{\gamma}-1}}{\log\log T}$$

For the potential we need:

$$a_T = (d \log r_T)^{\frac{1}{\gamma}}, \quad b_T = (d \log r_T)^{\frac{1}{\gamma}-1}.$$

Then, the rescaled point process

$$\Pi_{\mathcal{T}} = \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_{\mathcal{T}}}, \frac{\xi(z) - a_{\mathcal{T}}}{b_{\mathcal{T}}}\right)},$$

converges to a Poisson point process on $\mathbb{R}^d \times \mathbb{R}$.

Note the leading order of maximal value of Π_T on a compact set is **deterministic**!

Also it is known that there exists Z_T^1 :

$$\frac{1}{T}\log\sum_{z}u(T,z)\sim\frac{1}{T}\log u(T,Z_{T}^{1})\sim a_{T}+b_{T} \text{ random term.}$$

Rescaling the environment

Extreme value theory tells us to rescale differently this time: Spatial rescaling:

$$T_T = rac{T(\log T)^{rac{1}{\gamma}-1}}{\log\log T}$$

For the potential we need:

$$a_T = (d \log r_T)^{\frac{1}{\gamma}}, \quad b_T = (d \log r_T)^{\frac{1}{\gamma}-1}.$$

Then, the rescaled point process

$$\Pi_{\mathcal{T}} = \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_{\mathcal{T}}}, \frac{\xi(z) - a_{\mathcal{T}}}{b_{\mathcal{T}}}\right)},$$

converges to a Poisson point process on $\mathbb{R}^d \times \mathbb{R}$.

Note the leading order of maximal value of Π_T on a compact set is **deterministic**!

Also it is known that there exists Z_T^1 :

$$\frac{1}{T}\log\sum_{z}u(T,z)\sim\frac{1}{T}\log u(T,Z_{T}^{1})\sim a_{T}+b_{T} \text{ random term.}$$

Rescaling the environment

Extreme value theory tells us to rescale differently this time: Spatial rescaling:

$$r_T = rac{T(\log T)^{rac{1}{\gamma}-1}}{\log\log T}$$

For the potential we need:

$$a_T = (d \log r_T)^{\frac{1}{\gamma}}, \quad b_T = (d \log r_T)^{\frac{1}{\gamma}-1}.$$

Then, the rescaled point process

$$\Pi_{\mathcal{T}} = \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_{\mathcal{T}}}, \frac{\xi(z) - a_{\mathcal{T}}}{b_{\mathcal{T}}}\right)},$$

converges to a Poisson point process on $\mathbb{R}^d \times \mathbb{R}$.

Note the leading order of maximal value of Π_T on a compact set is **deterministic**!

Also it is known that there exists Z_T^1 :

$$\frac{1}{T}\log\sum_{z}u(T,z)\sim\frac{1}{T}\log u(T,Z_{T}^{1})\sim a_{T}+b_{T} \text{ random term.}$$

22

Q: Are BRW and PAM still different?

Proposition 3

For Weibull potential with γ small, we have that

$$\frac{1}{Tb_{T}}\Big(\log\sum_{z}u(T,z)-\log\sum_{z}N(T,z)\Big)\to 0,$$

in probability. I.e. PAM and BRW agree to first orders (including the random term).

Moreover, there exists $\varepsilon > 0$ and a site X_T with

 $|X_T| \geq r_T \log \log(T)^{\varepsilon}.$

such that $N(T, X_T) \ge 1$.

- Recall for the maximizer in the PAM $|Z_T^1|/r_T$ converges.
- So the support of the BRW grows on different scale from maximizer.
- Claim: On the scale of the maximizer, there are particles everywhere.

Q: Are BRW and PAM still different?

Proposition 3

For Weibull potential with γ small, we have that

$$\frac{1}{Tb_{T}}\Big(\log\sum_{z}u(T,z)-\log\sum_{z}N(T,z)\Big)\to 0,$$

in probability. I.e. PAM and BRW agree to first orders (including the random term).

Moreover, there exists $\varepsilon > 0$ and a site X_T with

 $|X_{\mathcal{T}}| \geq r_{\mathcal{T}} \log \log(\mathcal{T})^{\varepsilon}.$

such that $N(T, X_T) \geq 1$.

- Recall for the maximizer in the PAM $|Z_T^1|/r_T$ converges.
- So the support of the BRW grows on different scale from maximizer.
- Claim: On the scale of the maximizer, there are particles everywhere.

Q: Are BRW and PAM still different?

Proposition 3

For Weibull potential with γ small, we have that

$$\frac{1}{Tb_{T}}\Big(\log\sum_{z}u(T,z)-\log\sum_{z}N(T,z)\Big)\to 0,$$

in probability. I.e. PAM and BRW agree to first orders (including the random term).

Moreover, there exists $\varepsilon > 0$ and a site X_T with

$$|X_T| \ge r_T \log \log(T)^{\varepsilon}.$$

such that $N(T, X_T) \geq 1$.

- Recall for the maximizer in the PAM $|Z_T^1|/r_T$ converges.
- So the support of the BRW grows on different scale from maximizer.
- Claim: On the scale of the maximizer, there are particles everywhere.

Q: Are BRW and PAM still different?

Proposition 3

For Weibull potential with γ small, we have that

$$\frac{1}{Tb_{T}}\Big(\log\sum_{z}u(T,z)-\log\sum_{z}N(T,z)\Big)\to 0,$$

in probability. I.e. PAM and BRW agree to first orders (including the random term).

Moreover, there exists $\varepsilon > 0$ and a site X_T with

$$|X_{T}| \geq r_{T} \log \log(T)^{\varepsilon}.$$

such that $N(T, X_T) \geq 1$.

- Recall for the maximizer in the PAM $|Z_T^1|/r_T$ converges.
- So the support of the BRW grows on different scale from maximizer.
- Claim: On the scale of the maximizer, there are particles everywhere.

Q: Are BRW and PAM still different?

Proposition 3

For Weibull potential with γ small, we have that

$$\frac{1}{Tb_{T}}\Big(\log\sum_{z}u(T,z)-\log\sum_{z}N(T,z)\Big)\to 0,$$

in probability. I.e. PAM and BRW agree to first orders (including the random term).

Moreover, there exists $\varepsilon > 0$ and a site X_T with

$$|X_{T}| \geq r_{T} \log \log(T)^{\varepsilon}.$$

such that $N(T, X_T) \ge 1$.

- Recall for the maximizer in the PAM $|Z_T^1|/r_T$ converges.
- So the support of the BRW grows on different scale from maximizer.
- Claim: On the scale of the maximizer, there are particles everywhere.

- Try to get to a good site z with $z_T := z/r_T$ and $\xi_T(z) = \frac{\xi(z) a_T}{b_T}$ of order one.
- Taking the route via a decent site *w* near the origin, we can show that the first particle arrives at *z* no later than

$$\frac{|z_T|}{\gamma d^{1/\gamma}} \frac{T}{\log T}$$

• Then, by time T, we have at least the following number of particles:

$$\exp\left\{\xi(z)\left(T - \frac{|z_T|}{\gamma d^{1/\gamma}} \frac{T}{\log T}\right)\right\}$$
$$= \exp\left\{a_T T + b_T T\left(\xi_T(z) - \frac{|z_T|}{\gamma d^{1/\gamma - 1}}\right) + o(b_T T)\right\}$$

- Try to get to a good site z with z_T := z/r_T and ξ_T(z) = ξ(z)-a_T/b_T of order one.
- Taking the route via a decent site *w* near the origin, we can show that the first particle arrives at *z* no later than

$$\frac{|z_{T}|}{\gamma d^{1/\gamma}} \frac{T}{\log T}.$$

• Then, by time T, we have at least the following number of particles:

$$\exp\left\{\xi(z)\left(T - \frac{|z_T|}{\gamma d^{1/\gamma}} \frac{T}{\log T}\right)\right\}$$
$$= \exp\left\{a_T T + b_T T\left(\xi_T(z) - \frac{|z_T|}{\gamma d^{1/\gamma - 1}}\right) + o(b_T T)\right\}$$

- Try to get to a good site z with $z_T := z/r_T$ and $\xi_T(z) = \frac{\xi(z) a_T}{b_T}$ of order one.
- Taking the route via a decent site *w* near the origin, we can show that the first particle arrives at *z* no later than

$$\frac{|z_{T}|}{\gamma d^{1/\gamma}} \frac{T}{\log T}.$$

• Then, by time T, we have at least the following number of particles:

$$\exp\left\{\xi(z)\left(T - \frac{|z_T|}{\gamma d^{1/\gamma}} \frac{T}{\log T}\right)\right\}$$
$$= \exp\left\{a_T T + b_T T\left(\xi_T(z) - \frac{|z_T|}{\gamma d^{1/\gamma - 1}}\right) + o(b_T T)\right\}$$

- Try to get to a good site z with $z_T := z/r_T$ and $\xi_T(z) = \frac{\xi(z) a_T}{b_T}$ of order one.
- Taking the route via a decent site *w* near the origin, we can show that the first particle arrives at *z* no later than

$$\frac{|z_{T}|}{\gamma d^{1/\gamma}} \frac{T}{\log T}$$

• Then, by time T, we have at least the following number of particles:

$$\exp\left\{\xi(z)\left(T - \frac{|z_T|}{\gamma d^{1/\gamma}} \frac{T}{\log T}\right)\right\}$$
$$= \exp\left\{a_T T + b_T T\left(\xi_T(z) - \frac{|z_T|}{\gamma d^{1/\gamma - 1}}\right) + o(b_T T)\right\}$$

For the parabolic Anderson model / branching random walks:

$$\log u(tT, r_T x) \sim tTa_T + Tb_T \Lambda_T(t, x),$$

$$\Lambda(t,x) = \sup_{z \in \Pi} \Big\{ t\xi(z) - \frac{|z-x|}{\gamma d^{1/\gamma - 1}} \Big\}.$$

For the parabolic Anderson model / branching random walks:

$$\log u(tT, r_T x) \sim tTa_T + Tb_T \Lambda_T(t, x),$$

For the parabolic Anderson model / branching random walks:

$$\log u(tT, r_T x) \sim tTa_T + Tb_T \Lambda_T(t, x),$$

For the parabolic Anderson model / branching random walks:

$$\log u(tT, r_T x) \sim tTa_T + Tb_T \Lambda_T(t, x),$$

For the parabolic Anderson model / branching random walks:

$$\log u(tT, r_T x) \sim tTa_T + Tb_T \Lambda_T(t, x),$$

For the parabolic Anderson model / branching random walks:

$$\log u(tT, r_T x) \sim tTa_T + Tb_T \Lambda_T(t, x),$$

For the parabolic Anderson model / branching random walks:

$$\log u(tT, r_T x) \sim tTa_T + Tb_T \Lambda_T(t, x),$$

For the parabolic Anderson model / branching random walks:

$$\log u(tT, r_T x) \sim tTa_T + Tb_T \Lambda_T(t, x),$$

For branching random walks in random environment

- Double exponential potential?
- Branching rate 1 and (soft or hard) killing according to random potential?
- Correlated potentials? \rightsquigarrow any new effects?

- In Pareto case: the population growth is super-exponential and front of particles is driven by extreme large-deviations events.
- Is there an interesting model with more realistic particle behaviour that shows similar effect as our lilypad model?
- Incorporate local competition to restrain population growth?

For branching random walks in random environment

- Double exponential potential?
- Branching rate 1 and (soft or hard) killing according to random potential?
 - \sim corresponds to parabolic Anderson model with bounded potential. [Engländer 2011, 2015]
- Correlated potentials? \rightsquigarrow any new effects?

- In Pareto case: the population growth is super-exponential and front of particles is driven by extreme large-deviations events.
- Is there an interesting model with more realistic particle behaviour that shows similar effect as our lilypad model?
- Incorporate local competition to restrain population growth?

For branching random walks in random environment

- Double exponential potential?
- Branching rate 1 and (soft or hard) killing according to random potential?

 \sim corresponds to parabolic Anderson model with bounded potential. [ENGLÄNDER 2011, 2015]

• Correlated potentials? \rightsquigarrow any new effects?

- In Pareto case: the population growth is super-exponential and front of particles is driven by extreme large-deviations events.
- Is there an interesting model with more realistic particle behaviour that shows similar effect as our lilypad model?
- Incorporate local competition to restrain population growth?

For branching random walks in random environment

- Double exponential potential?
- Branching rate 1 and (soft or hard) killing according to random potential?
 - \sim corresponds to parabolic Anderson model with bounded potential. [ENGLÄNDER 2011, 2015]
- Correlated potentials? \rightsquigarrow any new effects?

- In Pareto case: the population growth is super-exponential and front of particles is driven by extreme large-deviations events.
- Is there an interesting model with more realistic particle behaviour that shows similar effect as our lilypad model?
- Incorporate local competition to restrain population growth?

For branching random walks in random environment

- Double exponential potential?
- Branching rate 1 and (soft or hard) killing according to random potential?
 - \sim corresponds to parabolic Anderson model with bounded potential. [ENGLÄNDER 2011, 2015]
- Correlated potentials? \rightsquigarrow any new effects?

Related (more realistic) models of population growth in random environment:

- In Pareto case: the population growth is super-exponential and front of particles is driven by extreme large-deviations events.
- Is there an interesting model with more realistic particle behaviour that shows similar effect as our lilypad model?

• Incorporate local competition to restrain population growth?

For branching random walks in random environment

- Double exponential potential?
- Branching rate 1 and (soft or hard) killing according to random potential?
 - \sim corresponds to parabolic Anderson model with bounded potential. [ENGLÄNDER 2011, 2015]
- Correlated potentials? \rightsquigarrow any new effects?

- In Pareto case: the population growth is super-exponential and front of particles is driven by extreme large-deviations events.
- Is there an interesting model with more realistic particle behaviour that shows similar effect as our lilypad model?
- Incorporate local competition to restrain population growth?