Homogenization for the Stochastic heat equation $d \geq 3$

Ofer Zeitouni

Durham University, August 2018

Stochastic heat equation

$$
\partial_{t} u=\frac{1}{2} \Delta u+\lambda V(t, x) u, \quad x \in \mathbb{R}^{d}, d \geq 3
$$

Stochastic heat equation

$$
\partial_{t} u=\frac{1}{2} \Delta u+\lambda V(t, x) u, \quad x \in \mathbb{R}^{d}, d \geq 3
$$

Here, $V(t, x)$ is random field, molification of space-time white noise:

$$
V(t, x)=\int_{\mathbb{R}^{d+1}} \phi(t-s) \psi(x-y) d W(s, y)
$$

Stochastic heat equation

$$
\partial_{t} u=\frac{1}{2} \Delta u+\lambda V(t, x) u, \quad x \in \mathbb{R}^{d}, d \geq 3
$$

Here, $V(t, x)$ is random field, molification of space-time white noise:

$$
V(t, x)=\int_{\mathbb{R}^{d+1}} \phi(t-s) \psi(x-y) d W(s, y)
$$

For simplicity, we always take ϕ, ψ compactly supported with ψ isotropic.

Stochastic heat equation

$$
\partial_{t} u=\frac{1}{2} \Delta u+\lambda V(t, x) u, \quad x \in \mathbb{R}^{d}, d \geq 3
$$

Here, $V(t, x)$ is random field, molification of space-time white noise:

$$
V(t, x)=\int_{\mathbb{R}^{d+1}} \phi(t-s) \psi(x-y) d W(s, y)
$$

For simplicity, we always take ϕ, ψ compactly supported with ψ isotropic.
Rescale: $u_{\varepsilon}(t, x):=u\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right)$ satisfies

$$
\partial_{t} u_{\varepsilon}=\frac{1}{2} \Delta u_{\varepsilon}+\frac{\lambda}{\varepsilon^{2}} V\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right) u_{\varepsilon} . u_{\varepsilon}(0, x)=u_{0}(x) \in \mathcal{C}_{b}\left(\mathbb{R}^{d}\right)
$$

Stochastic heat equation

$$
\partial_{t} u=\frac{1}{2} \Delta u+\lambda V(t, x) u, \quad x \in \mathbb{R}^{d}, d \geq 3
$$

Here, $V(t, x)$ is random field, molification of space-time white noise:

$$
V(t, x)=\int_{\mathbb{R}^{d+1}} \phi(t-s) \psi(x-y) d W(s, y)
$$

For simplicity, we always take ϕ, ψ compactly supported with ψ isotropic.
Rescale: $u_{\varepsilon}(t, x):=u\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right)$ satisfies

$$
\partial_{t} u_{\varepsilon}=\frac{1}{2} \Delta u_{\varepsilon}+\frac{\lambda}{\varepsilon^{2}} V\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right) u_{\varepsilon} . u_{\varepsilon}(0, x)=u_{0}(x) \in \mathcal{C}_{b}\left(\mathbb{R}^{d}\right)
$$

The noise $\varepsilon^{-2} V\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right)$ does not converge to white noise \dot{W} - rather to $\epsilon^{d / 2-1} \dot{W}$.

The Feynmann-Kac representation

$$
\partial_{t} u=\frac{1}{2} \Delta u+\lambda V(t, x) u
$$

The Feynmann-Kac representation

$$
\begin{gathered}
\partial_{t} u=\frac{1}{2} \Delta u+\lambda V(t, x) u \\
u(t, x)=E_{B}^{x}\left(u_{0}\left(X_{t}\right) \exp \left(\lambda \int_{0}^{t} V\left(t-\tau, B_{\tau}\right) d \tau\right)\right)
\end{gathered}
$$

The Feynmann-Kac representation

$$
\begin{gathered}
\partial_{t} u=\frac{1}{2} \Delta u+\lambda V(t, x) u \\
u(t, x)=E_{B}^{x}\left(u_{0}\left(X_{t}\right) \exp \left(\lambda \int_{0}^{t} V\left(t-\tau, B_{\tau}\right) d \tau\right)\right)
\end{gathered}
$$

In particular, if V is white in time, can be made into a martingale (in t) using time reversal and substraction of the (deterministic) quadratic variation.

$$
\begin{gathered}
\partial_{t} u=\frac{1}{2} \Delta u+\lambda V(t, x) u \\
u(t, x)=E_{B}^{x}\left(u_{0}\left(X_{t}\right) \exp \left(\int_{0}^{t} V\left(t-\tau, B_{\tau}\right) d \tau-\frac{\lambda^{2} t}{2} R_{V}(0)\right)\right)
\end{gathered}
$$

The Feynmann-Kac representation

$$
\begin{gathered}
\partial_{t} u=\frac{1}{2} \Delta u+\lambda V(t, x) u \\
u(t, x)=E_{B}^{x}\left(u_{0}\left(X_{t}\right) \exp \left(\lambda \int_{0}^{t} V\left(t-\tau, B_{\tau}\right) d \tau\right)\right)
\end{gathered}
$$

In particular, if V is white in time, can be made into a martingale (in t) using time reversal and substraction of the (deterministic) quadratic variation.

$$
\begin{gathered}
\partial_{t} u=\frac{1}{2} \Delta u+\lambda V(t, x) u \\
u(t, x)=E_{B}^{x}\left(u_{0}\left(X_{t}\right) \exp \left(\int_{0}^{t} V\left(t-\tau, B_{\tau}\right) d \tau-\frac{\lambda^{2} t}{2} R_{V}(0)\right)\right)
\end{gathered}
$$

Advantage: Martingale!

The Feynmann-Kac representation

$$
\begin{gathered}
\partial_{t} u=\frac{1}{2} \Delta u+\lambda V(t, x) u \\
u(t, x)=E_{B}^{x}\left(u_{0}\left(X_{t}\right) \exp \left(\lambda \int_{0}^{t} V\left(t-\tau, B_{\tau}\right) d \tau\right)\right)
\end{gathered}
$$

In particular, if V is white in time, can be made into a martingale (in t) using time reversal and substraction of the (deterministic) quadratic variation.

$$
\begin{gathered}
\partial_{t} u=\frac{1}{2} \Delta u+\lambda V(t, x) u \\
u(t, x)=E_{B}^{x}\left(u_{0}\left(X_{t}\right) \exp \left(\int_{0}^{t} V\left(t-\tau, B_{\tau}\right) d \tau-\frac{\lambda^{2} t}{2} R_{V}(0)\right)\right)
\end{gathered}
$$

Advantage: Martingale!
In non-white in time case, the correction term is itself not deterministic.

$$
\partial_{t} u_{\varepsilon}=\frac{1}{2} \Delta u_{\varepsilon}+\frac{\lambda}{\varepsilon^{2}} V\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right) u_{\varepsilon} .
$$

Special case: V - white in time, $u_{0}=1$.

Theorem (Mukherjee, Shamov, Z. '16)

There exits $\lambda_{*} \in(0, \infty)$ so that:

- (Weak disorder) For $\lambda<\lambda^{*}$, solutions converge weakly in distribution to a deterministic limit, and $u_{\varepsilon}(x)$ converges to a random variable $Z_{\infty}>0$.
- (Strong disorder) For $\lambda>\lambda^{*}, u_{\epsilon}(0) \rightarrow 0$ in probability.

$$
\partial_{t} u_{\varepsilon}=\frac{1}{2} \Delta u_{\varepsilon}+\frac{\lambda}{\varepsilon^{2}} V\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right) u_{\varepsilon} .
$$

Special case: V - white in time, $u_{0}=1$.

Theorem (Mukherjee, Shamov, Z. '16)

There exits $\lambda_{*} \in(0, \infty)$ so that:

- (Weak disorder) For $\lambda<\lambda^{*}$, solutions converge weakly in distribution to a deterministic limit, and $u_{\varepsilon}(x)$ converges to a random variable $Z_{\infty}>0$.
- (Strong disorder) For $\lambda>\lambda^{*}, u_{\epsilon}(0) \rightarrow 0$ in probability.

In this talk, we focus on the weak disorder phase, and try to understand better the convergence.

$\partial_{t} u_{\varepsilon}=\frac{1}{2} \Delta u_{\varepsilon}+\frac{\lambda}{\varepsilon^{2}} V\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right) u_{\varepsilon}$.

Back to non-white in time. $\lambda<\lambda_{0}<\lambda_{*}$

$\partial_{t} u_{\varepsilon}=\frac{1}{2} \Delta u_{\varepsilon}+\frac{\lambda}{\varepsilon^{2}} V\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right) u_{\varepsilon}$.

Back to non-white in time. $\lambda<\lambda_{0}<\lambda_{*}$

Theorem (Ryzhik, Gu, Z. '17)

There exist c_{1}, c_{2} depending on λ such that for any $t>0$ and $g \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, we have

$$
\int_{\mathbb{R}^{d}} u_{\varepsilon}(t, x) \exp \left\{-\frac{c_{1} t}{\varepsilon^{2}}-c_{2}\right\} g(x) d x \rightarrow_{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{d}} \bar{u}(t, x) g(x) d x
$$

$$
\frac{1}{\varepsilon^{d / 2-1}} \int_{\mathbb{R}^{d}}\left(u_{\varepsilon}(t, x)-\mathbb{E}\left[u_{\varepsilon}(t, x)\right]\right) \exp \left\{-\frac{c_{1} t}{\varepsilon^{2}}-c_{2}\right\} g(x) d x \Rightarrow_{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{d}} \mathbf{U}(t, x) g(x) d x
$$

in distribution. \bar{u} - solution of effective heat equation

$$
\partial_{t} \bar{u}=\frac{1}{2} \nabla \cdot \boldsymbol{a}_{\mathrm{eff}} \nabla \bar{u}, \quad \bar{u}(0, x)=u_{0}(x), \boldsymbol{a}_{\mathrm{eff}} \in \mathbb{R}_{\mathrm{sym}}^{d \times d} \text { effective diffusion, }
$$

\mathbf{U} solves the additive stochastic heat equation

$$
\partial_{t} \mathbf{U}=\frac{1}{2} \nabla \cdot \boldsymbol{a}_{\text {eff }} \nabla \mathbf{U}+\lambda \nu_{\text {eff }} \bar{u} \dot{W}, \quad \mathbf{U}(0, x)=0, \nu_{\text {eff }}^{2}>0 \text { effective variance }
$$

$\partial_{t} u_{\varepsilon}=\frac{1}{2} \Delta u_{\varepsilon}+\frac{\lambda}{\varepsilon^{2}} V\left(\frac{t}{\varepsilon^{2}}, \frac{X}{\varepsilon}\right) u_{\varepsilon}$.

$$
\partial_{t} \bar{u}=\frac{1}{2} \nabla \cdot \boldsymbol{a}_{\mathrm{eff}} \nabla \bar{u}, \quad \bar{u}(0, x)=u_{0}(x),
$$

Heat equation

$$
\partial_{t} \mathbf{U}=\frac{1}{2} \nabla \cdot \boldsymbol{a}_{\mathrm{eff}} \nabla \mathbf{U}+\lambda \nu_{\mathrm{eff}} \bar{u} \dot{W}, \quad \mathbf{U}(0, x)=0
$$

Edwards-Wilkinson equation (additive noise).

$\partial_{t} u_{\varepsilon}=\frac{1}{2} \Delta u_{\varepsilon}+\frac{\lambda}{\varepsilon^{2}} V\left(\frac{t}{\varepsilon^{2}}, \frac{X}{\varepsilon}\right) u_{\varepsilon}$.

$$
\partial_{t} \bar{u}=\frac{1}{2} \nabla \cdot \boldsymbol{a}_{\mathrm{eff}} \nabla \bar{u}, \quad \bar{u}(0, x)=u_{0}(x),
$$

Heat equation

$$
\partial_{t} \mathbf{U}=\frac{1}{2} \nabla \cdot \boldsymbol{a}_{\mathrm{eff}} \nabla \mathbf{U}+\lambda \nu_{\mathrm{eff}} \bar{u} \dot{W}, \quad \mathbf{U}(0, x)=0
$$

Edwards-Wilkinson equation (additive noise).
Mostly probabilistic methods, more below.

$\partial_{t} u_{\varepsilon}=\frac{1}{2} \Delta u_{\varepsilon}+\frac{\lambda}{\varepsilon^{2}} V\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right) u_{\varepsilon}$.

$$
\partial_{t} \bar{u}=\frac{1}{2} \nabla \cdot \boldsymbol{a}_{\mathrm{eff}} \nabla \bar{u}, \quad \bar{u}(0, x)=u_{0}(x),
$$

Heat equation

$$
\partial_{t} \mathbf{U}=\frac{1}{2} \nabla \cdot \boldsymbol{a}_{\mathrm{eff}} \nabla \mathbf{U}+\lambda \nu_{\mathrm{eff}} \bar{u} \dot{W}, \quad \mathbf{U}(0, x)=0
$$

Edwards-Wilkinson equation (additive noise).
Mostly probabilistic methods, more below.
Related results: Magnen-Unterberger '17, applies to Hopf-Cole transform (KPZ) and gives same EW limit. Different methods.

$\partial_{t} u_{\varepsilon}=\frac{1}{2} \Delta u_{\varepsilon}+\frac{\lambda}{\varepsilon^{2}} V\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right) u_{\varepsilon}$.

$$
\partial_{t} \bar{u}=\frac{1}{2} \nabla \cdot \boldsymbol{a}_{\mathrm{eff}} \nabla \bar{u}, \quad \bar{u}(0, x)=u_{0}(x),
$$

Heat equation

$$
\partial_{t} \mathbf{U}=\frac{1}{2} \nabla \cdot \boldsymbol{a}_{\mathrm{eff}} \nabla \mathbf{U}+\lambda \nu_{\mathrm{eff}} \bar{u} \dot{W}, \quad \mathbf{U}(0, x)=0
$$

Edwards-Wilkinson equation (additive noise).
Mostly probabilistic methods, more below.
Related results: Magnen-Unterberger '17, applies to Hopf-Cole transform (KPZ) and gives same EW limit. Different methods. Mukherjee '17 averaged CLT; Comets, Cosco, Mukherjee '18 rates of convergence to limit Z_{∞}, fluctuations from limit. (White in time noise).

Some homogenization...

$\partial_{t} U^{\varepsilon}=\frac{1}{2} \Delta u^{\varepsilon}+\frac{1}{\varepsilon^{2}}\left(\beta V\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right)-\lambda\right) u^{\varepsilon}, u^{\varepsilon}(0, x)=u_{0}(x)$.
Rename variables:

$$
\begin{equation*}
\partial_{t} u=\frac{1}{2} \Delta u+(\beta V-\lambda) u \tag{1}
\end{equation*}
$$

$u(0, x)=u_{0}(\epsilon X)$. Denote by ψ solution of (1) with $u_{0}=1$. Recall that \bar{u} is (weak) limit of homogenized equation $\bar{u}_{t}=\left(a_{\text {eff }} / 2\right) \Delta \bar{u}$.

Some homogenization...

$\partial_{t} U^{\S}=\frac{1}{2} \Delta u^{\S}+\frac{1}{\varepsilon^{2}}\left(\beta V\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right)-\lambda\right) u^{\S}, u^{\xi}(0, x)=u_{0}(x)$.
Rename variables:

$$
\begin{equation*}
\partial_{t} u=\frac{1}{2} \Delta u+(\beta V-\lambda) u \tag{1}
\end{equation*}
$$

$u(0, x)=u_{0}(\epsilon X)$. Denote by ψ solution of (1) with $u_{0}=1$. Recall that \bar{u} is (weak) limit of homogenized equation $\bar{u}_{t}=\left(a_{\text {eff }} / 2\right) \Delta \bar{u}$.

Theorem (Dunlap,Gu,Ryzhik,Z. '18)

For $\beta<\beta_{0}<\beta_{*}$ there exist $\lambda=\lambda(\beta)$ and a stationary solution $\tilde{\Psi}(t, x)$ so that

$$
\lim _{t \rightarrow \infty} E|\Psi(t, x)-\tilde{\Psi}(t, x)|^{2}=0
$$

Further,

$$
E\left|u^{\varepsilon}(t, x)-\bar{u}(t, x) \Psi^{\varepsilon}(t, x)\right|^{2} \rightarrow_{\varepsilon \rightarrow 0} 0
$$

where $\Psi^{\varepsilon}(t, x)=\Psi\left(t / \varepsilon^{2}, x / \varepsilon\right)$.

Some homogenization...

$$
\partial_{t} u^{\varepsilon}=\frac{1}{2} \Delta u^{\varepsilon}+\frac{1}{\varepsilon^{2}}\left(\beta V\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right)-\lambda\right) u^{\varepsilon}, u^{\varepsilon}(0, x)=u_{0}(x) .
$$

$$
\partial_{t} \bar{u}=\frac{1}{2} a_{\mathrm{eff}} \Delta \bar{u}, \bar{u}(0, x)=u_{0}(x)
$$

Some homogenization...

$$
\partial_{t} u^{\natural}=\frac{1}{2} \Delta u^{\natural}+\frac{1}{\varepsilon^{\varepsilon}}\left(\beta V\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right)-\lambda\right) u^{\S}, u^{\S}(0, x)=u_{0}(x) .
$$

$$
\partial_{t} \bar{u}=\frac{1}{2} a_{\mathrm{eff}} \Delta \bar{u}, \bar{u}(0, x)=u_{0}(x)
$$

Introduce the corrector

$$
\begin{aligned}
" \partial_{s} u_{1}(t, x, s, y)= & \frac{1}{2} \Delta_{y} u_{1}(t, x, s, y)+(\beta V(s, y)-\lambda) u_{1}(t, x, s, y) \\
& +\nabla_{y} \Psi(s, y) \cdot \nabla_{x} \bar{u}(t, x)^{\prime \prime}
\end{aligned}
$$

Some homogenization...

$$
\partial_{t} u^{\varepsilon}=\frac{1}{2} \Delta u^{\varepsilon}+\frac{1}{\varepsilon^{2}}\left(\beta V\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right)-\lambda\right) u^{\varepsilon}, u^{\varepsilon}(0, x)=u_{0}(x) .
$$

$$
\partial_{t} \bar{u}=\frac{1}{2} a_{\text {eff }} \Delta \bar{u}, \bar{u}(0, x)=u_{0}(x) .
$$

Introduce the corrector

$$
\begin{aligned}
" \partial_{s} u_{1}(t, x, s, y)= & \frac{1}{2} \Delta_{y} u_{1}(t, x, s, y)+(\beta V(s, y)-\lambda) u_{1}(t, x, s, y) \\
& +\nabla_{y} \Psi(s, y) \cdot \nabla_{x} \bar{u}(t, x)^{\prime \prime}
\end{aligned}
$$

not quite..
Theorem (Dunlap,Gu,Ryzhik,Z. '18-second order convergence)
$0 \leq \beta<\beta_{0}, g \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right), \gamma \in(1,2)$. For any $\zeta<(1-\gamma / 2) \wedge(\gamma-1)$, there exists $C>0$ so that
$\operatorname{Var}\left(\varepsilon^{-d / 2+1} \int g(x)\left[u^{\varepsilon}(t, x)-\psi^{\varepsilon}(t, x) \bar{u}(t, x)-\varepsilon u_{1}^{\varepsilon}(t, x)\right] \mathrm{d} x\right) \leq C \varepsilon^{2 \zeta}$.

Some homogenization...

$\partial_{t} u^{\S}=\frac{1}{2} \Delta u^{\varepsilon}+\frac{1}{\varepsilon^{\varepsilon}}\left(\beta V\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right)-\lambda\right) u^{\varepsilon}, u^{\S}(0, x)=u_{0}(x)$.
Recall the Edwards-Wilkinson limit:

$$
\partial_{t} \mathbf{U}=\frac{1}{2} \nabla \cdot \boldsymbol{a}_{\mathrm{eff}} \nabla \mathbf{U}+\lambda \nu_{\mathrm{eff}} \bar{u} \dot{W}, \quad \mathbf{U}(0, x)=0
$$

Theorem (Dunlap,Gu,Ryzhik,Z. '18-effective noise strength)

$$
\nu_{\mathrm{eff}}^{2}=\frac{a_{\mathrm{eff}} \lim _{\varepsilon \rightarrow 0} \iint g(x) g(\tilde{x})\left(\frac{1}{\varepsilon^{d-2}} \operatorname{Cov}\left(\widetilde{\Psi}\left(0, \frac{x}{\varepsilon}\right), \widetilde{\Psi}\left(0, \frac{\tilde{x}}{\varepsilon}\right)\right)\right) \mathrm{d} x \mathrm{~d} \tilde{x}}{\bar{c} \beta^{2} e^{2 \alpha_{\infty}} \iint g(x) g(\tilde{x})|x-\tilde{x}|^{2-d} \mathrm{~d} x \mathrm{~d} \tilde{x}}
$$

where α_{∞} has an explicit representation.

Some homogenization...

$$
\partial_{t} u^{\S}=\frac{1}{2} \Delta u^{\varepsilon}+\frac{1}{\varepsilon^{\varepsilon}}\left(\beta V\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right)-\lambda\right) u^{\S}, u^{\S}(0, x)=u_{0}(x) .
$$

Recall the Edwards-Wilkinson limit:

$$
\partial_{t} \mathbf{U}=\frac{1}{2} \nabla \cdot \boldsymbol{a}_{\mathrm{eff}} \nabla \mathbf{U}+\lambda \nu_{\mathrm{eff}} \bar{u} \dot{W}, \quad \mathbf{U}(0, x)=0
$$

Theorem (Dunlap,Gu,Ryzhik,Z. '18-effective noise strength)

$$
\nu_{\mathrm{eff}}^{2}=\frac{a_{\mathrm{eff}} \lim _{\varepsilon \rightarrow 0} \iint g(x) g(\tilde{x})\left(\frac{1}{\varepsilon^{d-2}} \operatorname{Cov}\left(\widetilde{\Psi}\left(0, \frac{x}{\varepsilon}\right), \widetilde{\Psi}\left(0, \frac{\tilde{x}}{\varepsilon}\right)\right)\right) \mathrm{d} x \mathrm{~d} \tilde{x}}{\bar{c} \beta^{2} e^{2 \alpha_{\infty}} \iint g(x) g(\tilde{x})|x-\tilde{x}|^{2-d} \mathrm{~d} x \mathrm{~d} \tilde{x}}
$$

where α_{∞} has an explicit representation.
Weak version of

$$
\operatorname{Cov}(\widetilde{\Psi}(0,0), \widetilde{\Psi}(0, y)) \sim \frac{\bar{c} \beta^{2} \nu^{2} e^{2 \alpha_{\infty}}}{a_{\mathrm{eff}}|y|^{d-2}}, y \gg 1
$$

Some homogenization...

$\partial_{t} U^{\S}=\frac{1}{2} \Delta u^{\varepsilon}+\frac{1}{\varepsilon^{2}}\left(\beta V\left(\frac{t}{\varepsilon^{2}}, \frac{x}{\varepsilon}\right)-\lambda\right) u^{\varepsilon}, u^{\varepsilon}(0, x)=u_{0}(x)$.
Recall the Edwards-Wilkinson limit:

$$
\partial_{t} \mathbf{U}=\frac{1}{2} \nabla \cdot \boldsymbol{a}_{\mathrm{eff}} \nabla \mathbf{U}+\lambda \nu_{\mathrm{eff}} \bar{u} \dot{W}, \quad \mathbf{U}(0, x)=0
$$

Theorem (Dunlap,Gu,Ryzhik,Z. '18 - effective noise strength)

$$
\nu_{\mathrm{eff}}^{2}=\frac{a_{\mathrm{eff}} \lim _{\varepsilon \rightarrow 0} \iint g(x) g(\tilde{x})\left(\frac{1}{\varepsilon^{d-2}} \operatorname{Cov}\left(\widetilde{\Psi}\left(0, \frac{x}{\varepsilon}\right), \widetilde{\Psi}\left(0, \frac{\tilde{x}}{\varepsilon}\right)\right)\right) \mathrm{d} x \mathrm{~d} \tilde{x}}{\bar{c} \beta^{2} e^{2 \alpha_{\infty}} \iint g(x) g(\tilde{x})|x-\tilde{x}|^{2-d} \mathrm{~d} x \mathrm{~d} \tilde{x}}
$$

where α_{∞} has an explicit representation.
Weak version of

$$
\operatorname{Cov}(\widetilde{\Psi}(0,0), \widetilde{\Psi}(0, y)) \sim \frac{\bar{c} \beta^{2} \nu^{2} e^{2 \alpha_{\infty}}}{a_{\mathrm{eff}}|y|^{d-2}}, y \gg 1
$$

An expression for $a_{\text {eff }}$ in terms of a solvability condition for a second order corrector is also available.

The white in time case I

$$
\begin{gathered}
\partial_{t} u=\frac{1}{2} \Delta u+\lambda V(t, x) u \\
u(t, x)=E_{B}^{x}\left(u_{0}\left(X_{t}\right) \exp \left(\int_{0}^{t} V\left(t-\tau, B_{\tau}\right) d \tau-\frac{\lambda^{2} t}{2} R_{V}(0)\right)\right)
\end{gathered}
$$

The white in time case I

$$
\begin{gathered}
\partial_{t} u=\frac{1}{2} \Delta u+\lambda V(t, x) u \\
u(t, x)=E_{B}^{\chi}\left(u_{0}\left(X_{t}\right) \exp \left(\int_{0}^{t} V\left(t-\tau, B_{\tau}\right) d \tau-\frac{\lambda^{2} t}{2} R_{V}(0)\right)\right)
\end{gathered}
$$

In law, after rescalling and reversing time, and recalling that $V(t, x)=\int_{\mathbb{R}^{d}} \phi(x-y) \dot{W}(t, d y)$, need to compute

$$
\hat{u}_{\varepsilon}(0)=E_{B}\left(\exp \left(\lambda \int_{0}^{t / \varepsilon^{2}} \int_{\mathbb{R}^{d}} \phi\left(y-B_{s}\right) \dot{W}(s, d y)-\frac{\lambda^{2}}{2 \varepsilon^{2}} V(0)\right)\right),
$$

where $V(x)=\int \phi(x-y) \phi(y) d y$

The white in time case I

$$
\begin{gathered}
\partial_{t} u=\frac{1}{2} \Delta u+\lambda V(t, x) u \\
u(t, x)=E_{B}^{\chi}\left(u_{0}\left(X_{t}\right) \exp \left(\int_{0}^{t} V\left(t-\tau, B_{\tau}\right) d \tau-\frac{\lambda^{2} t}{2} R_{V}(0)\right)\right)
\end{gathered}
$$

In law, after rescalling and reversing time, and recalling that $V(t, x)=\int_{\mathbb{R}^{d}} \phi(x-y) \dot{W}(t, d y)$, need to compute

$$
\hat{u}_{\varepsilon}(0)=E_{B}\left(\exp \left(\lambda \int_{0}^{t / \varepsilon^{2}} \int_{\mathbb{R}^{d}} \phi\left(y-B_{s}\right) \dot{W}(s, d y)-\frac{\lambda^{2}}{2 \varepsilon^{2}} V(0)\right)\right),
$$

where $V(x)=\int \phi(x-y) \phi(y) d y$
Martingale, link with polymer measures.

The white in time case I

$$
\begin{gathered}
\partial_{t} u=\frac{1}{2} \Delta u+\lambda V(t, x) u \\
u(t, x)=E_{B}^{\chi}\left(u_{0}\left(X_{t}\right) \exp \left(\int_{0}^{t} V\left(t-\tau, B_{\tau}\right) d \tau-\frac{\lambda^{2} t}{2} R_{V}(0)\right)\right)
\end{gathered}
$$

In law, after rescalling and reversing time, and recalling that $V(t, x)=\int_{\mathbb{R}^{d}} \phi(x-y) \dot{W}(t, d y)$, need to compute

$$
\hat{u}_{\varepsilon}(0)=E_{B}\left(\exp \left(\lambda \int_{0}^{t / \varepsilon^{2}} \int_{\mathbb{R}^{d}} \phi\left(y-B_{s}\right) \dot{W}(s, d y)-\frac{\lambda^{2}}{2 \varepsilon^{2}} V(0)\right)\right),
$$

where $V(x)=\int \phi(x-y) \phi(y) d y$
Martingale, link with polymer measures.

The white in time case II

For λ small, can do L^{2} computations: for example,

$$
\begin{aligned}
E\left(\hat{u}_{\varepsilon}(0)^{2}\right)= & E_{B, B^{\prime}}\left(\operatorname { e x p } \left(\lambda \int_{0}^{t / \varepsilon^{2}} \int_{\mathbb{R}^{d}} \phi\left(y-B_{s}\right) \dot{W}(s, d y)+\right.\right. \\
& \left.\left.\int_{0}^{t / \varepsilon^{2}} \int_{\mathbb{R}^{d}} \phi\left(y^{\prime}-B_{s^{\prime}}^{\prime}\right) \dot{W}\left(s^{\prime}, d y^{\prime}\right)-\frac{\lambda^{2}}{\varepsilon^{2}} V(0)\right)\right)
\end{aligned}
$$

The white in time case II

For λ small, can do L^{2} computations: for example,

$$
\begin{aligned}
E\left(\hat{u}_{\varepsilon}(0)^{2}\right)= & E_{B, B^{\prime}}\left(\operatorname { e x p } \left(\lambda \int_{0}^{t / \varepsilon^{2}} \int_{\mathbb{R}^{d}} \phi\left(y-B_{s}\right) \dot{W}(s, d y)+\right.\right. \\
& \left.\left.\int_{0}^{t / \varepsilon^{2}} \int_{\mathbb{R}^{d}} \phi\left(y^{\prime}-B_{s^{\prime}}^{\prime}\right) \dot{W}\left(s^{\prime}, d y^{\prime}\right)-\frac{\lambda^{2}}{\varepsilon^{2}} V(0)\right)\right)
\end{aligned}
$$

Because ϕ is compactly supported, this involves the total time that two independent BM's spend at bouded distance from each other. In dimension $d \geq 3$, this has exponential moments.

The white in time case III

$$
\hat{u}_{\varepsilon}(0)=E_{B}\left(\exp \left(\lambda \int_{0}^{t / \varepsilon^{2}} \int_{\mathbb{R}^{d}} \phi\left(y-B_{s}\right) \dot{W}(s, d y)-\frac{\lambda^{2}}{2 \varepsilon^{2}} V(0)\right)\right)=E_{B} \Lambda_{\varepsilon}
$$

The white in time case III

$$
\hat{u}_{\varepsilon}(0)=E_{B}\left(\exp \left(\lambda \int_{0}^{t / \varepsilon^{2}} \int_{\mathbb{R}^{d}} \phi\left(y-B_{s}\right) \dot{W}(s, d y)-\frac{\lambda^{2}}{2 \varepsilon^{2}} V(0)\right)\right)=E_{B} \Lambda_{\varepsilon}
$$

Λ_{ε} is a map from a $X \times Y$ to \mathbb{R} where $X=\mathcal{C}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$ supports the Wiener measure P_{0} and Y is a Gaussian space with measure G. Define the measures $d Q_{\varepsilon} /\left(d P_{0} \times d G\right)=\Lambda_{\varepsilon}(x, y)$. Note that $\hat{u}_{\varepsilon}=E_{0} \Lambda_{\varepsilon}$, i.e. random "total mass" of Q_{ε}.

The white in time case III

$$
\hat{u}_{\varepsilon}(0)=E_{B}\left(\exp \left(\lambda \int_{0}^{t / \varepsilon^{2}} \int_{\mathbb{R}^{d}} \phi\left(y-B_{s}\right) \dot{W}(s, d y)-\frac{\lambda^{2}}{2 \varepsilon^{2}} V(0)\right)\right)=E_{B} \Lambda_{\varepsilon}
$$

Λ_{ε} is a map from a $X \times Y$ to \mathbb{R} where $X=\mathcal{C}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$ supports the Wiener measure P_{0} and Y is a Gaussian space with measure G. Define the measures $d Q_{\varepsilon} /\left(d P_{0} \times d G\right)=\Lambda_{\varepsilon}(x, y)$. Note that $\hat{u}_{\varepsilon}=E_{0} \Lambda_{\varepsilon}$, i.e. random "total mass" of Q_{ε}. Example of a Gaussian Multiplicative Chaos.
From general theory, convergence will occur if (and only if) \hat{u}_{ε} is uniformly integrable; If not, it will converge to 0 !

The white in time case III

$$
\hat{u}_{\varepsilon}(0)=E_{B}\left(\exp \left(\lambda \int_{0}^{t / \varepsilon^{2}} \int_{\mathbb{R}^{d}} \phi\left(y-B_{s}\right) \dot{W}(s, d y)-\frac{\lambda^{2}}{2 \varepsilon^{2}} V(0)\right)\right)=E_{B} \Lambda_{\varepsilon}
$$

Λ_{ε} is a map from a $X \times Y$ to \mathbb{R} where $X=\mathcal{C}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$ supports the Wiener measure P_{0} and Y is a Gaussian space with measure G. Define the measures $d Q_{\varepsilon} /\left(d P_{0} \times d G\right)=\Lambda_{\varepsilon}(x, y)$. Note that $\hat{u}_{\varepsilon}=E_{0} \Lambda_{\varepsilon}$, i.e. random "total mass" of Q_{ε}. Example of a Gaussian Multiplicative Chaos.
From general theory, convergence will occur if (and only if) \hat{u}_{ε} is uniformly integrable; If not, it will converge to 0 !
Similar arguments go back to random polymer measures: Comets-Yosida '05, ..

The limits, I

We only work in the L^{2} phase.
Define the measure \widehat{P} and normalization constant ζ :

$$
\begin{aligned}
& \zeta_{t}:=\log E_{B}\left[\exp \left\{\frac{\lambda^{2}}{2} \int_{[0, t]^{2}} R\left(s-u, B_{s}-B_{u}\right) d s d u\right\}\right] \\
& \widehat{E}_{B, t}[f(B)]:=E_{B}\left[f(B) \exp \left\{\frac{\lambda^{2}}{2} \int_{[0, t]^{2}} R\left(s-u, B_{s}-B_{u}\right) d s d u-\zeta_{t}\right\}\right] .
\end{aligned}
$$

The limits, I

We only work in the L^{2} phase.
Define the measure \widehat{P} and normalization constant ζ :

$$
\begin{aligned}
& \zeta_{t}:=\log E_{B}\left[\exp \left\{\frac{\lambda^{2}}{2} \int_{[0, t]^{2}} R\left(s-u, B_{s}-B_{u}\right) d s d u\right\}\right] \\
& \widehat{E}_{B, t}[f(B)]:=E_{B}\left[f(B) \exp \left\{\frac{\lambda^{2}}{2} \int_{[0, t]^{2}} R\left(s-u, B_{s}-B_{u}\right) d s d u-\zeta_{t}\right\}\right] .
\end{aligned}
$$

We will see that $\zeta_{t} \sim c_{1} t+c_{2}$. On the other hand, rescaling,

$$
\mathbb{E}\left[u_{\varepsilon}(t, x)\right] e^{-\zeta_{t / \varepsilon^{2}}}=\widehat{\mathbb{E}}_{B, t / \varepsilon^{2}}\left[u_{0}\left(x+\varepsilon B_{t / \varepsilon^{2}}\right)\right]
$$

The limits, I

We only work in the L^{2} phase.
Define the measure \widehat{P} and normalization constant ζ :

$$
\begin{aligned}
& \zeta_{t}:=\log E_{B}\left[\exp \left\{\frac{\lambda^{2}}{2} \int_{[0, t]^{2}} R\left(s-u, B_{s}-B_{u}\right) d s d u\right\}\right] \\
& \widehat{E}_{B, t}[f(B)]:=E_{B}\left[f(B) \exp \left\{\frac{\lambda^{2}}{2} \int_{[0, t]^{2}} R\left(s-u, B_{s}-B_{u}\right) d s d u-\zeta_{t}\right\}\right] .
\end{aligned}
$$

We will see that $\zeta_{t} \sim c_{1} t+c_{2}$. On the other hand, rescaling,

$$
\mathbb{E}\left[u_{\varepsilon}(t, x)\right] e^{-\zeta_{t / \varepsilon^{2}}}=\widehat{\mathbb{E}}_{B, t / \varepsilon^{2}}\left[u_{0}\left(x+\varepsilon B_{t / \varepsilon^{2}}\right)\right]
$$

Thus, we need to show that $\varepsilon B_{t / \varepsilon^{2}}$ converges to a Brownian motion.

The limits, I

We only work in the L^{2} phase.
Define the measure \widehat{P} and normalization constant ζ :

$$
\begin{aligned}
& \zeta_{t}:=\log E_{B}\left[\exp \left\{\frac{\lambda^{2}}{2} \int_{[0, t]^{2}} R\left(s-u, B_{s}-B_{u}\right) d s d u\right\}\right] \\
& \widehat{E}_{B, t}[f(B)]:=E_{B}\left[f(B) \exp \left\{\frac{\lambda^{2}}{2} \int_{[0, t]^{2}} R\left(s-u, B_{s}-B_{u}\right) d s d u-\zeta_{t}\right\}\right] .
\end{aligned}
$$

We will see that $\zeta_{t} \sim c_{1} t+c_{2}$. On the other hand, rescaling,

$$
\mathbb{E}\left[u_{\varepsilon}(t, x)\right] e^{-\zeta_{t / \varepsilon^{2}}}=\widehat{\mathbb{E}}_{B, t / \varepsilon^{2}}\left[u_{0}\left(x+\varepsilon B_{t / \varepsilon^{2}}\right)\right]
$$

Thus, we need to show that $\varepsilon B_{t / \varepsilon^{2}}$ converges to a Brownian motion. The main computational tool is a general Markov device, coming from the theory of Doeblin chains, described next.

Independence decomposition

Suppose that $\left\{X_{n}\right\}$ is a Markov chain, on an abstract space \mathcal{X}, with transition probabilities $\pi(x, d y)$ satisfying

$$
\pi(x, d y) \geq p \mu(d y)
$$

for some probability measure μ and $p>0$.

Independence decomposition

Suppose that $\left\{X_{n}\right\}$ is a Markov chain, on an abstract space \mathcal{X}, with transition probabilities $\pi(x, d y)$ satisfying

$$
\pi(x, d y) \geq p \mu(d y)
$$

for some probability measure μ and $p>0$. Then $\sum_{i=1}^{n}\left[f\left(X_{i}\right)-E_{\text {stat }} f(X)\right] / \sigma_{f} \sqrt{n}$ satisfies the invariance principle.

Independence decomposition

Suppose that $\left\{X_{n}\right\}$ is a Markov chain, on an abstract space \mathcal{X}, with transition probabilities $\pi(x, d y)$ satisfying

$$
\pi(x, d y) \geq p \mu(d y)
$$

for some probability measure μ and $p>0$.
Then $\sum_{i=1}^{n}\left[f\left(X_{i}\right)-E_{\text {stat }} f(X)\right] / \sigma_{f} \sqrt{n}$ satisfies the invariance principle.
$\left\{X_{n}\right\}$ can be constructed as follows: let $\left\{B_{n}\right\}$ be a collection of iid Bernolli (p). Then write

$$
X_{i}=B_{i} Y_{i}+\left(1-B_{i}\right) Z_{i}
$$

where Y_{i} are iid, $\sim \mu$, and Z_{i}, conditioned on history, is distributed as $\sim\left(\pi\left(X_{i-1}, d y\right)-p \mu(d y)\right) /(1-p)$.

Independence decomposition

Suppose that $\left\{X_{n}\right\}$ is a Markov chain, on an abstract space \mathcal{X}, with transition probabilities $\pi(x, d y)$ satisfying

$$
\pi(x, d y) \geq p \mu(d y)
$$

for some probability measure μ and $p>0$.
Then $\sum_{i=1}^{n}\left[f\left(X_{i}\right)-E_{\text {stat }} f(X)\right] / \sigma_{f} \sqrt{n}$ satisfies the invariance principle.
$\left\{X_{n}\right\}$ can be constructed as follows: let $\left\{B_{n}\right\}$ be a collection of iid Bernolli (p). Then write

$$
X_{i}=B_{i} Y_{i}+\left(1-B_{i}\right) Z_{i}
$$

where Y_{i} are iid, $\sim \mu$, and Z_{i}, conditioned on history, is distributed as $\sim\left(\pi\left(X_{i-1}, d y\right)-p \mu(d y)\right) /(1-p)$.
Apply it here to pieces of paths of length 1: $X_{i}=\left\{B_{i+t}\right\}_{t \in(0,1)}$.

Independence decomposition

Suppose that $\left\{X_{n}\right\}$ is a Markov chain, on an abstract space \mathcal{X}, with transition probabilities $\pi(x, d y)$ satisfying

$$
\pi(x, d y) \geq p \mu(d y)
$$

for some probability measure μ and $p>0$.
Then $\sum_{i=1}^{n}\left[f\left(X_{i}\right)-E_{\text {stat }} f(X)\right] / \sigma_{f} \sqrt{n}$ satisfies the invariance principle.
$\left\{X_{n}\right\}$ can be constructed as follows: let $\left\{B_{n}\right\}$ be a collection of iid Bernolli (p). Then write

$$
X_{i}=B_{i} Y_{i}+\left(1-B_{i}\right) Z_{i}
$$

where Y_{i} are iid, $\sim \mu$, and Z_{i}, conditioned on history, is distributed as $\sim\left(\pi\left(X_{i-1}, d y\right)-p \mu(d y)\right) /(1-p)$.
Apply it here to pieces of paths of length 1: $X_{i}=\left\{B_{i+t}\right\}_{t \in(0,1)}$. Asymptotics of ζ_{t} from Krein-Rutman.

The Edwards-Wilkinson limit I

Define $\Phi_{t, x, B}(s, y):=\int_{0}^{t} \phi(t-r-s) \psi\left(x+B_{r}-y\right) d r$, and martingale
$M_{t, x, B}(r):=\int_{-\infty}^{r} \int_{\mathbb{R}^{d}} \Phi_{t, x, B}(s, y) d W(s, y),\left\langle M_{t, x, B}\right\rangle_{r}=\int_{-\infty}^{r} \int_{\mathbb{R}^{d}}\left|\Phi_{t, x, B}(s, y)\right|^{2} d s d y$
Then, by the Clark-Ocone formula,

$$
\begin{aligned}
(u(t, x)-\mathbb{E}[u(t, x)]) e^{-\zeta_{t}}= & \lambda \int_{-1}^{t} \int_{\mathbb{R}^{d}} \widehat{\mathbb{E}}_{B, t}\left[u\left(0, x+B_{t}\right) \Phi_{t, x, B}(r, y)\right. \\
& \left.\exp \left\{\lambda M_{t, x, B}(r)-\frac{\lambda^{2}}{2}\left\langle M_{t, x, B}\right\rangle_{r}\right\}\right] d W(r, y) .
\end{aligned}
$$

The Edwards-Wilkinson limit I

$$
\begin{aligned}
&(u(t, x)-\mathbb{E}[u(t, x)]) e^{-\zeta_{t}}= \lambda \int_{-1}^{t} \int_{\mathbb{R}^{d}} \widehat{\mathbb{E}}_{B, t}\left[u\left(0, x+B_{t}\right) \Phi_{t, x, B}(r, y)\right. \\
&\left.\exp \left\{\lambda M_{t, x, B}(r)-\frac{\lambda^{2}}{2}\left\langle M_{t, x, B}\right\rangle_{r}\right\}\right] d W(r, y) . \\
& A_{\varepsilon}:=\int_{\mathbb{R}^{d}} g(x)(u(t, x)-\mathbb{E}[u(t, x)]) e^{-\zeta_{t}}=\lambda \int_{-1}^{t / \varepsilon^{2}} \int_{\mathbb{R}^{d}} Z_{t}^{\varepsilon}(r, y) d W(r, y)
\end{aligned}
$$

The Edwards-Wilkinson limit I

$$
\begin{aligned}
&(u(t, x)-\mathbb{E}[u(t, x)]) e^{-\zeta_{t}}= \lambda \int_{-1}^{t} \int_{\mathbb{R}^{d}} \widehat{\mathbb{E}}_{B, t}\left[u\left(0, x+B_{t}\right) \Phi_{t, x, B}(r, y)\right. \\
&\left.\exp \left\{\lambda M_{t, x, B}(r)-\frac{\lambda^{2}}{2}\left\langle M_{t, x, B}\right\rangle_{r}\right\}\right] d W(r, y) . \\
& A_{\varepsilon}:=\int_{\mathbb{R}^{d}} g(x)(u(t, x)-\mathbb{E}[u(t, x)]) e^{-\zeta_{t}}=\lambda \int_{-1}^{t / \varepsilon^{2}} \int_{\mathbb{R}^{d}} Z_{t}^{\varepsilon}(r, y) d W(r, y)
\end{aligned}
$$

Writing the time integral as sum over intervals (of length $\varepsilon^{-\beta}$ with $\beta<2$) with short deletions (of order $\varepsilon^{-\alpha}, \alpha<\beta$) essentially represents A_{ε} as sum of iids, hence need only to understand variances.

The Edwards-Wilkinson limit I

$$
\begin{aligned}
&(u(t, x)-\mathbb{E}[u(t, x)]) e^{-\zeta_{t}}= \lambda \int_{-1}^{t} \int_{\mathbb{R}^{d}} \widehat{\mathbb{E}}_{B, t}\left[u\left(0, x+B_{t}\right) \Phi_{t, x, B}(r, y)\right. \\
&\left.\exp \left\{\lambda M_{t, x, B}(r)-\frac{\lambda^{2}}{2}\left\langle M_{t, x, B}\right\rangle_{r}\right\}\right] d W(r, y) . \\
& A_{\varepsilon}:=\int_{\mathbb{R}^{d}} g(x)(u(t, x)-\mathbb{E}[u(t, x)]) e^{-\zeta_{t}}=\lambda \int_{-1}^{t / \varepsilon^{2}} \int_{\mathbb{R}^{d}} Z_{t}^{\varepsilon}(r, y) d W(r, y)
\end{aligned}
$$

Writing the time integral as sum over intervals (of length $\varepsilon^{-\beta}$ with $\beta<2$) with short deletions (of order $\varepsilon^{-\alpha}, \alpha<\beta$) essentially represents A_{ε} as sum of iids, hence need only to understand variances.
Computing variances involves expectation with respect to pairs of Brownian motions B, B^{\prime}, under the measure $\widehat{\mathbb{P}}$. Note that the interaction involves only compact (in time) intervals: B_{t} interacts only with $B_{t+s}^{\prime},|s| \leq 1$.

The Edwards-Wilkinson limit I

$$
\begin{aligned}
&(u(t, x)-\mathbb{E}[u(t, x)]) e^{-\zeta_{t}}= \lambda \int_{-1}^{t} \int_{\mathbb{R}^{d}} \widehat{\mathbb{E}}_{B, t}\left[u\left(0, x+B_{t}\right) \Phi_{t, x, B}(r, y)\right. \\
&\left.\exp \left\{\lambda M_{t, x, B}(r)-\frac{\lambda^{2}}{2}\left\langle M_{t, x, B}\right\rangle_{r}\right\}\right] d W(r, y) . \\
& A_{\varepsilon}:=\int_{\mathbb{R}^{d}} g(x)(u(t, x)-\mathbb{E}[u(t, x)]) e^{-\zeta_{t}}=\lambda \int_{-1}^{t / \varepsilon^{2}} \int_{\mathbb{R}^{d}} Z_{t}^{\varepsilon}(r, y) d W(r, y)
\end{aligned}
$$

Writing the time integral as sum over intervals (of length $\varepsilon^{-\beta}$ with $\beta<2$) with short deletions (of order $\varepsilon^{-\alpha}, \alpha<\beta$) essentially represents A_{ε} as sum of iids, hence need only to understand variances.
Computing variances involves expectation with respect to pairs of Brownian motions B, B^{\prime}, under the measure $\widehat{\mathbb{P}}$. Note that the interaction involves only compact (in time) intervals: B_{t} interacts only with $B_{t+s}^{\prime},|s| \leq 1$. More explicitly:

The Edwards-Wilkinson limit II

$$
\begin{aligned}
& \mathcal{J}_{\varepsilon}\left(M_{1}, M_{2}\right)=\lambda^{2} \int_{-1}^{M_{1}} \int_{-1}^{M_{2}} \\
& R_{\phi}\left(u_{1}, u_{2}\right) R_{\psi}\left(x_{1}-x_{2}+\Delta B_{\frac{t-r}{\varepsilon^{2}}-s_{1}, \frac{t-r}{\varepsilon^{2}}+u_{1}}^{1}-\Delta B_{\frac{t-r}{\varepsilon^{2}}-s_{2}, \frac{t-r}{\varepsilon^{2}}+u_{2}}^{2}\right) d u_{1} d u_{2} . \\
& \quad \mathcal{I}_{\varepsilon}=\prod_{i=1}^{2} g\left(\varepsilon x_{i}+y-\varepsilon B_{\frac{t-r}{\varepsilon^{2}}-s_{i}}^{i}\right) u_{0}\left(\varepsilon x_{i}+y+\varepsilon \Delta B_{\frac{t-r}{\varepsilon^{2}}-s_{i}, \frac{t}{\varepsilon^{2}}}^{i}\right)
\end{aligned}
$$

The Edwards-Wilkinson limit II

$$
\begin{aligned}
& \mathcal{J}_{\varepsilon}\left(M_{1}, M_{2}\right)=\lambda^{2} \int_{-1}^{M_{1}} \int_{-1}^{M_{2}} \\
& R_{\phi}\left(u_{1}, u_{2}\right) R_{\psi}\left(x_{1}-x_{2}+\Delta B_{\frac{t-r}{\varepsilon^{2}}-s_{1}, \frac{t r}{\varepsilon^{2}}+u_{1}}^{1}-\Delta B_{\frac{t-r}{\varepsilon^{2}}-s_{2}, \frac{t-r}{\varepsilon^{2}}+u_{2}}^{2}\right) d u_{1} d u_{2} \\
& \quad \mathcal{I}_{\varepsilon}=\prod_{i=1}^{2} g\left(\varepsilon X_{i}+y-\varepsilon B_{\frac{t-r}{\varepsilon^{2}}-s_{i}}^{i}\right) u_{0}\left(\varepsilon x_{i}+y+\varepsilon \Delta B_{\frac{t-r}{\varepsilon^{2}}-s_{i}, \frac{t}{\varepsilon^{2}}}^{i}\right)
\end{aligned}
$$

Variance involves computing

$$
\begin{aligned}
& \frac{1}{\varepsilon^{d-2}} \mathbb{E}\left[\int_{t_{1} / \varepsilon^{2}}^{t_{2} / \varepsilon^{2}} \int_{\mathbb{R}^{d}}\left|Z_{t}^{\varepsilon}(r, y)\right|^{2} d y d r\right] \\
& =\int_{t_{1}}^{t_{2}} \int_{\mathbb{R}^{3 d}} \int_{[0,1]^{2}} \widehat{\mathbb{E}}_{B^{1}, B^{2}, t / \varepsilon^{2}}\left[\mathcal{I}_{\varepsilon} e^{\mathcal{J}_{\varepsilon}\left(\frac{r}{\varepsilon^{2}}, \frac{r}{\varepsilon^{2}}\right)}\right] \prod_{i=1}^{2} \phi\left(s_{i}\right) \psi\left(x_{i}\right) d \bar{s} d \bar{x} d y d r .
\end{aligned}
$$

The Edwards-Wilkinson limit II

$$
\begin{aligned}
& \mathcal{J}_{\varepsilon}\left(M_{1}, M_{2}\right)=\lambda^{2} \int_{-1}^{M_{1}} \int_{-1}^{M_{2}} \\
& R_{\phi}\left(u_{1}, u_{2}\right) R_{\psi}\left(x_{1}-x_{2}+\Delta B_{\frac{t-r}{\varepsilon^{2}}-s_{1}, \frac{t-r}{\varepsilon^{2}}+u_{1}}^{1}-\Delta B_{\frac{t-r}{\varepsilon^{2}}-s_{2}, \frac{t-r}{\varepsilon^{2}}+u_{2}}^{2}\right) d u_{1} d u_{2} . \\
& \quad \mathcal{I}_{\varepsilon}=\prod_{i=1}^{2} g\left(\varepsilon x_{i}+y-\varepsilon B_{\frac{t-r}{\varepsilon^{2}}-s_{i}}^{i}\right) u_{0}\left(\varepsilon x_{i}+y+\varepsilon \Delta B_{\frac{t-r}{\varepsilon^{2}}-s_{i}, \frac{t}{\varepsilon^{2}}}^{i}\right)
\end{aligned}
$$

Variance involves computing

$$
\begin{aligned}
& \frac{1}{\varepsilon^{d-2}} \mathbb{E}\left[\int_{t_{1} / \varepsilon^{2}}^{t_{2} / \varepsilon^{2}} \int_{\mathbb{R}^{d}}\left|Z_{t}^{\varepsilon}(r, y)\right|^{2} d y d r\right] \\
& =\int_{t_{1}}^{t_{2}} \int_{\mathbb{R}^{3 d}} \int_{[0,1]^{2}} \widehat{\mathbb{E}}_{B^{1}, B^{2}, t / \varepsilon^{2}}\left[\mathcal{I}_{\varepsilon} e^{\mathcal{J}_{\varepsilon}\left(\frac{r}{\varepsilon^{2}}, \frac{r}{\varepsilon^{2}}\right)}\right] \prod_{i=1}^{2} \phi\left(s_{i}\right) \psi\left(x_{i}\right) d \bar{s} d \bar{x} d y d r .
\end{aligned}
$$

Proceed now with the Doeblin trick to compute the expectation.

Stationary limits and correctors

$$
\partial_{t} \Psi=\frac{1}{2} \Delta \Psi+(\beta V-\lambda) \Psi, \Psi(0, x)=1 .
$$

Stationary limits and correctors

$$
\partial_{t} \Psi=\frac{1}{2} \Delta \psi+(\beta V-\lambda) \Psi, \Psi(0, x)=1 .
$$

To show convergence to stationary solution, start at $-S$ and show convergence by computing L^{2} norm of difference starting from different (large) S - again, use F-K and decoupling of chains.

Stationary limits and correctors

$$
\partial_{t} \Psi=\frac{1}{2} \Delta \psi+(\beta V-\lambda) \Psi, \Psi(0, x)=1 .
$$

To show convergence to stationary solution, start at $-S$ and show convergence by computing L^{2} norm of difference starting from different (large) S - again, use F-K and decoupling of chains.
Corrector construction: formally, write
$u^{\varepsilon}(t, x)=u^{(0)}\left(t, x, t / \varepsilon^{2}, x / \varepsilon\right)+\varepsilon u^{(1)}\left(t, x, t / \varepsilon^{2}, x / \varepsilon\right)+\varepsilon^{2} u^{(2)}\left(t, x, t / \varepsilon^{2}, x / \varepsilon\right)+\cdots$

Stationary limits and correctors

$$
\partial_{t} \Psi=\frac{1}{2} \Delta \psi+(\beta V-\lambda) \Psi, \Psi(0, x)=1 .
$$

To show convergence to stationary solution, start at $-S$ and show convergence by computing L^{2} norm of difference starting from different (large) S - again, use F-K and decoupling of chains.
Corrector construction: formally, write
$u^{\varepsilon}(t, x)=u^{(0)}\left(t, x, t / \varepsilon^{2}, x / \varepsilon\right)+\varepsilon u^{(1)}\left(t, x, t / \varepsilon^{2}, x / \varepsilon\right)+\varepsilon^{2} u^{(2)}\left(t, x, t / \varepsilon^{2}, x / \varepsilon\right)+\cdots$
From variance computation, $u^{(0)}=\bar{u}(t, x) \Psi\left(t / \varepsilon^{2}, x / \varepsilon\right)$.

Stationary limits and correctors

$$
\partial_{t} \Psi=\frac{1}{2} \Delta \Psi+(\beta V-\lambda) \Psi, \Psi(0, x)=1 .
$$

To show convergence to stationary solution, start at $-S$ and show convergence by computing L^{2} norm of difference starting from different (large) S - again, use F-K and decoupling of chains.
Corrector construction: formally, write
$u^{\varepsilon}(t, x)=u^{(0)}\left(t, x, t / \varepsilon^{2}, x / \varepsilon\right)+\varepsilon u^{(1)}\left(t, x, t / \varepsilon^{2}, x / \varepsilon\right)+\varepsilon^{2} u^{(2)}\left(t, x, t / \varepsilon^{2}, x / \varepsilon\right)+\cdots$
From variance computation, $u^{(0)}=\bar{u}(t, x) \Psi\left(t / \varepsilon^{2}, x / \varepsilon\right)$.
Formally,

$$
\begin{gathered}
\partial_{s} u_{1}(t, x, s, y)=\frac{1}{2} \Delta_{y} u_{1}(t, x, s, y)+(\beta V(s, y)-\lambda) u_{1}(t, x, s, y) \\
\\
+\nabla_{y} \Psi(s, y) \cdot \nabla_{x} \bar{u}(t, x), \text { which solves } \\
u_{1}(t, x, s, y)=\sum_{k=1}^{d} \zeta^{(k)}(s, y) \frac{\partial \bar{u}(t, x)}{\partial x_{k}}, \partial_{s} \zeta^{(k)}=\frac{\Delta}{2} \zeta^{(k)}+(\beta V(s, y)-\lambda) \zeta^{(k)}+\frac{\partial \Psi(s, y)}{\partial y_{k}}
\end{gathered}
$$

Stationary limits and correctors

$$
u_{1}(t, x, s, y)=\sum_{k=1}^{d} \zeta^{(k)}(s, y) \frac{\partial \bar{u}(t, x)}{\partial x_{k}}, \partial_{s} \zeta^{(k)}=\frac{\Delta}{2} \zeta^{(k)}+(\beta V(s, y)-\lambda) \zeta^{(k)}+\frac{\partial \Psi(s, y)}{\partial y_{k}}
$$

Stationary limits and correctors

$$
u_{1}(t, x, s, y)=\sum_{k=1}^{d} \zeta^{(k)}(s, y) \frac{\partial \bar{u}(t, x)}{\partial x_{k}}, \partial_{s} \zeta^{(k)}=\frac{\Delta}{2} \zeta^{(k)}+(\beta V(s, y)-\lambda) \zeta^{(k)}+\frac{\partial \Psi(s, y)}{\partial y_{k}}
$$

Slightly modify the above by taking the forcing only at discrete times along a sequence $j \varepsilon^{-\gamma}, \gamma \in(1,2)$.

Stationary limits and correctors

$u_{1}(t, x, s, y)=\sum_{k=1}^{d} \zeta^{(k)}(s, y) \frac{\partial \bar{u}(t, x)}{\partial x_{k}}, \partial_{s} \zeta^{(k)}=\frac{\Delta}{2} \zeta^{(k)}+(\beta V(s, y)-\lambda) \zeta^{(k)}+\frac{\partial \Psi(s, y)}{\partial y_{k}}$
Slightly modify the above by taking the forcing only at discrete times along a sequence $j \varepsilon^{-\gamma}, \gamma \in(1,2)$.
Now evaluate variances, using the Doeblin approach for decomposition.

