Are atomistic equilibrium distributions ordered?

Florian Theil

University of Warwick

Durham, August 2018

Structure

- **1** Models without reference configuration
- **2** Screening assumption
- 3 Atomistic dislocation models

Equilibrium models for crystals without underlying lattice Joint work with Luke Williams

Box $\Lambda \subset \mathbb{R}^d$, $d \in \{1, 2, 3\}$, torus, periodic boundary conditions

Configurations: $Y \subset \Lambda$, $\#Y = |\Lambda| = n$

Interaction potential: v(r), e.g. $v(r) = r^{-12} - r^{-6}$

Hamiltonian: $H[Y] = \sum_{y,y' \in Y} v(|y - y'|)$ Boltzmann-Gibbs distribution (canonical ensemble, density = 1):

$$\mathbb{P}_{\theta,\Lambda}(Y) = e^{-\beta (H[Y] - n f_{\Lambda}(\theta))},$$

inverse temperature β , free energy

$$f_{\Lambda}(eta) = -rac{1}{n\,eta}\log\int_{\Lambda^n}\mathrm{e}^{-eta\,H[Y]}.$$

Problem: Characterization of $\min_{\#Y=n} H[Y]$ can be hard.

Decomposition into cells

Reference cell: $\boxtimes \subset \mathbb{R}^2$, eg $\boxtimes = \{(0,0), (0,1), (1,0), (1,1)\}.$

Definition: $\Box \in \mathcal{T}$ if

- $\blacksquare \Box \subset Y,$
- $\prod_{R \in SO(2), t \in \mathbb{R}^2} \max_{y \in \Box} \min_{y' \in Y} |Ry + t y'| < \varepsilon = 0.1$
- $\operatorname{int}(\operatorname{conv}(\Box)) \cap Y = \emptyset.$

Admissible configurations Y:

- \mathcal{T} is unique.
- $\operatorname{meas}(\operatorname{conv}(\Box) \cap \operatorname{conv}(\Box')) = 0 \text{ if } \Box \neq \Box'$
- Simply connected cells can be mapped to simply connected lattice points.

Illustration

Local Hamiltonian

Local model: $H_{\text{loc}}[Y] = \sum_{\Box \in \mathcal{T}} v(\Box)$. Cell energy: $v(\Box) \in \mathbb{R}$, min $v = v(\boxtimes) = -\sigma < 0$.

Euclidean invariance: $v(R\Box + t) = v(\Box)$ for all $R \in SO(d), t \in \mathbb{R}^d$.

lf

- $\bullet \min v < 0,$
- lacksquare is unit-cell of lattice ${\cal L}$
- periodic boundary conditions

then H is minimized by lattice configurations.

Continuum interpolation

- $u_{\Box} : \operatorname{conv}(\Box) \to \operatorname{conv}(\boxtimes)$ piecewise affine, $\boxtimes = u_{\Box}(\Box)$,
- $V_{\Box} = \nabla u_{\Box}$ (piecewise constant)
- $D = \Lambda \setminus \bigcup_{\Box \in \mathcal{T}} \operatorname{conv}(\Box).$
- Choose reasonable interpolation in *D*.
- $\operatorname{supp}\operatorname{curl}(V) \subset D$
- $W(V) := (v(\Box) + \tau) \det V^{-1}$ so that $\int_{\operatorname{conv}(\Box)} W(V) = v(\Box) + \tau$.

Integral representation of the energy:

$$E[Y] = -\tau |\Lambda| + \int_{\Lambda \setminus D} W(V(x)) \, \mathrm{d}x + \tau |D|$$

Properties of W:

- Euclidean invariance: $W(RF) = W(F) \quad \forall R \in SO(d).$
- $W(F) \ge c \operatorname{dist}(F, SO(d))^2$

Orientational order

Order parameter: $\operatorname{supp}(\varphi) \subset \mathbb{R}^d$ compact, $\int_{SO(d)} \mathrm{d}R \, \varphi(R \cdot) = 0.$

$$a = n^{-1} \max_{R \in SO(d)} \sum_{y \neq y' \in Y} (\varphi(R(y - y'))),$$

$$A_{\beta} = \lim_{n \to \infty} \mathbb{E}_{\beta}(a).$$

Orientational symmetry breaking: There exists β_{crit} such that

$$A_{\beta} \left\{ \begin{array}{ll} = 0 & \text{if } \beta < \beta_{\text{crit}}, \\ > 0 & \text{if } \beta > \beta_{\text{crit}}. \end{array} \right.$$

Only results on inequality!

Translational symmetry breaking

Bravais lattice $\mathcal{L} \subset \mathbb{R}^d$. Order parameter: $\varphi \in C(\mathbb{R}^d)$ \mathcal{L} -periodic, $\int_{\mathbb{R}^d/\mathcal{L}} \mathrm{d}x \, \varphi(x) = 0$,

$$a = n^{-2} \max_{R \in SO(d)} \sum_{y \neq y' \in Y} \varphi(R(y - y')),$$

$$A = \lim_{n \to \infty} \mathbb{E}_{\theta}(a).$$

Long-range order transition: There exists $\mathcal{L}(\theta)$, θ_{crit} such that

$$A \begin{cases} = 0 & \text{if } \theta < \theta_{\text{crit}} \\ > 0 & \text{if } \theta > \theta_{\text{crit}} \end{cases}$$

Theorem. (Mermin-Wagner 1966): No long-range order if d < 3.

Main result

 $d=2 \ {
m curl}\, {m V} \in L^2(\Lambda) \; lpha$ -neutral if

- supp curl $V \subset \cup_i B_{\alpha}(x_i)$, $\int_{B_{\alpha}(x_i)} \operatorname{curl} V = 0$,
- $\bullet \min_{i\neq j} |x_i x_j| > 2\alpha + 1.$

Enforce neutrality:

$$H[Y] = \sum_{\Box \in \mathcal{T}} v(\Box) + \chi_{\alpha-\text{neutral}}.$$

Theorem (T.-Williams '17)

 $\rho=1. \ \textit{If } \sigma/\log\alpha \ \textit{sufficiently large, then } \lim_{\beta\to\infty} A_\beta=0.$

We expect that $\mathbb{E}(|D|) \sim \exp(\beta v_0) n$.

Aumann '15: $v_0 \sim -n \ (\Rightarrow D = \emptyset \text{ almost surely}).$

Aim: Remove neutrality assumption.

Grain boundaries

- Grain boundaries can be seen as walls of edge dislocations with the same sign.
- Excluded by neutrality assumption.
- Configurations with grains are orientationally **disordered**.

Orientational order in L^2

Recall order parameter:

$$A(\beta) = \lim_{|\Lambda| \to \infty} \mathbb{E}_{\beta} \left(|\Lambda|^{-1} \min_{R \in SO(2)} \|V - R\|_{L^2}^2 \right).$$

Structure of proof

Step 1 (deterministic)

$$\min_{R\in SO(d)} \|V-R\|_{L^2(\Lambda)}^2 \leq C \left(H[Y] - \min H\right).$$

NB: C is random with large maximum.

Step 2 (standard)

$$\lim_{\beta\to\infty}\lim_{n\to\infty}\frac{1}{n}\mathbb{E}_{\beta,n}(H_{\Lambda}-\min H_{\Lambda})=0.$$

Rigidity estimates

Theorem (Friesecke, Müller, Scardia, Zeppieri, Aumann) $V \in W^{1,p}(\Lambda), \Lambda \subset \mathbb{R}^2$ simply connected. Then

 $\min_{R \in SO(2)} \|V - R\|_{L^2} \le C \|\operatorname{dist}(V, SO(2))\|_{L^2} + C_p \|\operatorname{curl} V\|_{L^p},$

where

$$C_p(r\Lambda) = r^{2-\frac{2}{p}} C_p(\Lambda).$$

Need: p = 2 (energy scaling), $C_p = O(1)$ as $|\Lambda| \to \infty$ (Thermodynamic limit).

Theorem (T.-Williams'18)

If V is α -neutral and admissible, then $C_2(r \Lambda) = C_2(\Lambda) = \log \alpha$.

Proof of Step 1

lf

- $C \|\operatorname{dist}(F, SO(d))\|_{L^2(\Box)}^2 \leq W(F)$ (modelling assumption)
- $C \|\operatorname{dist}(V, SO(d))\|_{L^{2}(\Lambda)}^{2} + C \|\operatorname{curl} V\|_{L^{2}(\Lambda)}^{2} \ge \min_{R \in SO(2)} \|V R\|_{L^{2}(\Lambda)}^{2}$ (rigidity estimate)

then

$$H[Y] - \min H = \int_{\Lambda \setminus D} W(V) + \tau |D|$$

 $\geq C \|\operatorname{dist}(V, SO(d))\|_{L^2(\Lambda)}^2 + C \|\operatorname{curl} V\|_{L^2(\Lambda)}^2$

$$\geq \min_{R\in SO(2)} \|V-R\|_{L^2(\Lambda)}^2.$$

Examples d = 2, $|\Lambda| = n$

$$V(x) = \begin{cases} \text{Id} & \text{if } \operatorname{dist}(x, D) \ge 1, \\ & \text{interpolation} & \text{if } 0 < \operatorname{dist}(x, D) < 1, \\ & R & \text{else.} \end{cases}$$

 $|\partial D| \sim n^{\frac{1}{2}}$, $|D| \sim n$ (No orientational ordering).

MSZ sharp: $\|V - R\|_2 \sim n^{\frac{1}{2}}$, $\|\operatorname{dist}(V, SO(2))\|_2 \sim n^{\frac{1}{4}}$, $\|\operatorname{curl} V\|_1 \sim n^{\frac{1}{2}}$. Need: $|\partial D| = |D| = \varepsilon n$ MSZ: $\|V - R\|_2 = (\varepsilon n)^{\frac{1}{2}} \le \varepsilon n = \|\operatorname{curl} V\|_1$ too weak.

Dilute, paired dislocations, p = 2. $\|V - R\|_2$, $\|\operatorname{dist}(V, SO(2)\|_2 \sim \varepsilon^{\frac{1}{2}} n^{\frac{1}{2}}$, $\|\operatorname{curl} V\|_2 = \varepsilon^{\frac{1}{p}} n^{\frac{1}{p}}$, $C_2^{TW} = \log \alpha$ $(C_2^{Aumann} = n^{\frac{1}{2}} \text{ not sharp!}).$

Atomistic models with dislocations

Jointly with Alessandro Giuliani

Observation: α -neutrality constitutes an obstruction to disorder.

Are unconstrained samples α -neutral with high probability?

- Order is not a consequence of energy considerations
- Need proper statistical treatment

Models with edge dislocations: Ariza-Ortiz 2005

2-dimensional system: $x \in \mathcal{L} \subset \mathbb{R}^2$ are lattice points.

$$H_{\rm AO}(u,\sigma) = \sum_{e \in \mathsf{edges}} \frac{1}{2} [(\mathrm{d}u(e) - \sigma(e)) \cdot \mathrm{d}x(e)]^2 + \tau \sum_{f \in \mathsf{faces}} |\mathrm{d}\sigma(f)|,$$

where au is the core energy,

$$\begin{array}{rcl} \mbox{edge } e & = & (x, x'), \\ & \mbox{d} u(e) & = & u(x) - u(x'), \\ \mbox{displacement } u & : & \mbox{vertices} \to \mathbb{R}^2 \mbox{ (vectorial)}, \\ & \mbox{slip } \sigma & : & \mbox{edges} \to \mbox{vertices}, \\ & \mbox{d} \sigma & : & \mbox{faces} \to \mathcal{L}. \end{array}$$

Nonlinear model is also possible.

Illustration of the Ariza-Ortiz model

Undeformed and relaxed configuration for Ariza-Ortiz model. Slipped bonds are red.

Statistical mechanics

The probability factorizes because of linearity:

$$\mathbb{P}_{\beta}(u,\sigma) = \frac{1}{Z(\beta)} e^{-\beta H_{AO}(u,\sigma)}$$

=
$$\underbrace{\frac{1}{Z_{1}(\beta)} e^{-\beta H_{AO}(u-L_{1}\sigma,0)}}_{\text{elastic part}} \underbrace{\frac{1}{Z_{2}(\beta)} e^{-\beta H_{AO}(0,L_{2}d\sigma)}}_{\text{dislocation interactions}},$$

where L_1 and L_2 are linear operators and

$$Z_{1}(\beta) = \int_{\mathbb{R}^{2 \times \text{vertices}}} e^{-\beta H_{AO}(u,0)} du,$$

$$Z_{2}(\beta) = \sum_{q \in \mathcal{L}^{\text{faces}}} e^{-\beta H_{AO}(0,L_{2}q)}.$$

Order parameter: Angle-angle correlation

$$f(\beta) = \langle |L_2 \, \mathrm{d}\sigma|^2 \rangle \geq 0.$$

Perfect order: $f(\beta) = 0$. Elastic contributions can be computed explicitly (Gaussian integral).

Screw dislocations

Simpler version:

Villain model, vertices $X = \mathcal{L} \cap \Lambda$, local excitation $u(x) \in [0, 1]$.

$$Z = \int_{[0,1]^X} \mathrm{d}u \prod_{x \sim x'} \sum_{\sigma(x,x') \in \mathbb{Z}} \exp\left(-\frac{\beta}{2} \left(u(x) - u(x') - \sigma(x,x')\right)^2\right)$$
$$= \sum_{q \in \mathbb{Z}^X} \int_{\mathbb{R}^X} \mathrm{d}u \prod_{x' \sim x'} \exp\left(-\frac{\beta}{2} \left(u(x) - u(x') + \mathrm{d}^* \Delta^{-1} q\right)^2\right)$$
$$= \int_{\mathbb{R}^X} \mathrm{d}u \prod_{\text{edges } e} \exp\left(-\frac{\beta}{2} \left(\mathrm{d}u(e)\right)^2\right) \times \sum_{q \in \mathbb{Z}^X} \exp\left(\frac{\beta}{2} q \Delta^{-1} q\right)$$

Analysis of vortex-charge contribution: Fröhlich-Spencer 1981.

Does the model allow for disorder?

Read-Shockley law: $\gamma_s = \gamma_0 (A - \log \theta) \theta$ if $|\theta| \ll 1$.

Theorem

Let

$$E_{\rm gb}(m) = \lim_{M\to\infty} \frac{1}{M} \min_{u} H_{\rm AO}\left(u, \sum_{j=0}^{M-1} (\delta(x-jv) - \delta(x-mb-jv))b\right),$$

with *n* wall spacing, $b \in \mathcal{L}$ (Burgers vector) and $v \in \mathbb{R}^2$ (wall direction). If $v \cdot b = 0$,

$$E_{
m gb}(m) = rac{8\pi}{3} \log |v| + O\left(1 + e^{-m/|v|} \log |v|
ight), \quad m, |v| \gg 1.$$

Proof: Riemann sum in Fourier space. Previous results: Luckhaus-Lauteri 2017.

Relaxed grain boundary with free boundary conditions

Grain boundaries are not ordered and are expected to be unlikely!

Large dislocation core energy

$$f(\beta) = \langle |L_2 \, \mathrm{d}\sigma|^2 \rangle_q = \frac{1}{Z} \sum_q |L_2 q|^2 \Big[\prod_{f \in \mathsf{faces}} \lambda(q(f)) \Big] e^{-\frac{\beta}{2}(q, Gq)},$$

with G Green's function, activity

$$\lambda(q) = egin{cases} 1 & ext{if} \quad q=0, \ z & ext{if} \quad q\in\mathcal{L} ext{ and } |q|=1, \ 0 & ext{otherwise}, \end{cases}$$

 $z^{-1} =$ core energy. Aim: Expand $f(\beta)$ in z. Sine-Gordon transform:

$$e^{-\frac{\beta}{2}(q,Gq)} = \int \mathrm{d}\phi \ e^{-\frac{1}{2\beta}(\phi,G^{-1}\phi)}e^{i(\phi,q)}$$

provides a nice way to compute the expansion in z (exponent is small).

Future work: Renormalization group

Rewrite partition function using Sine-Gordon:

$$Z = \int \mathrm{d}\phi \ e^{-\frac{1}{2\beta}(\phi, \mathcal{G}^{-1}\phi)} \Big[\prod_{f} \left(1 + 2z \sum_{i=1}^{3} \cos(\phi(f) \cdot b_i) \right) \Big] \ .$$

First term:

$$\langle |L_2 \,\mathrm{d}\sigma|^2 \rangle_q = C_1 z^2 \mathrm{e}^{-C_2\beta} + O(z^4), \quad 0 < z \ll 1.$$

Fröhlich-Spencer: Renormalization group provides control of higher order terms in simpler setting.

Work in progress

Summary

- No periodicity but order at finite temperature
- Translational vs orientational order
- Only orientational order in 2 dim
- Orientational order for 2-dim models with screened dislocations
- First results for the Ariza-Ortiz model