Burgers equation with random forcing

Yuri Bakhtin

Courant Institute, NYU

August 2018

Burgers equation

$$
\begin{gathered}
u_{t}+u u_{x}=\nu u_{x x}+f, \quad(x, t) \in \mathbb{R} \times \mathbb{R} \\
\nu \geq 0: \text { viscosity }
\end{gathered}
$$

In this talk: space-time random f averaging to 0

- Invariant distributions
- Global stationary solutions
- One Force - One Solution Principle (1F1S)
- Infinite-volume limits for associated directed polymers $(\nu>0)$ and action minimizers $(\nu=0)$
- $\nu \downarrow 0$
- Compact/periodic case (1990's-2000's)
- Noncompact case (2010's)
- We will start with reminders about Burgers equation

Burgers equation: fluid dynamics interpretation

Evolution of velocity field u in \mathbb{R}^{1}

$$
u_{t}+u u_{x}=\nu u_{x x}+f, \quad(t, x) \in \mathbb{R} \times \mathbb{R}
$$

I.h.s. $=$ acceleration of particle at (t, x) :

$$
\begin{aligned}
& \dot{x}(t)=u(t, x(t)) \\
& \ddot{x}(t)=(\text { chain rule })=u_{t}+u_{x} \dot{x}=u_{t}+u u_{x}
\end{aligned}
$$

- $\nu=0$: particles do not interact until they bump into each other creating shock waves.
- $\nu>0$: smoothing of the velocity profile

Energy: pumped in by f, dissipated through friction

Burgers equation: via HJ equation

$$
\begin{gathered}
u_{t}+u u_{x}=\nu u_{x x}+f \\
u=U_{x}, f=F_{x}
\end{gathered}
$$

HJ with quadratic Hamiltonian; KPZ

$$
U_{t}+\frac{\left(U_{x}\right)^{2}}{2}=\nu U_{x x}+F, \quad(t, x) \in \mathbb{R} \times \mathbb{R}
$$

F : external potential. If space-time white noise, then KPZ

Cauchy problem for $\nu>0$

Hopf-Cole substitution (1950-1951), also Florin (1948)

$$
u=U_{x}=-2 \nu(\log v)_{x} \quad \Longrightarrow \quad v_{t}=\nu v_{x x}-\frac{F}{2 \nu} v
$$

Feynman-Kac formula

$$
v(t, x)=\mathbb{E}\left[e^{-\frac{1}{2 \nu} \int_{0}^{t} F\left(t-s, x+\sqrt{2 \nu} W_{s}\right) d s} v\left(0, x+\sqrt{2 \nu} W_{t}\right)\right]
$$

$$
U(t, x)=\inf _{\substack{\gamma:[0, t] \rightarrow \mathbb{R} \\ \gamma(t)=x}}\left\{U_{0}(\gamma(0))+\frac{1}{2} \int_{0}^{t} \dot{\gamma}^{2}(s) d s+\int_{0}^{t} F(s, \gamma(s)) d s\right\}
$$

$$
u(t, x)=\left\{\begin{array}{l}
U_{x}(t, x) \\
\dot{\gamma}(t)
\end{array}\right.
$$

Euler-Lagrange equation

$$
\ddot{\gamma}(t)=f(t, \gamma(t))
$$

$F=0 \Longrightarrow$ straight lines

Ergodic theory for random forcing, inviscid case

E,Khanin,Mazel,Sinai (Ann.Math. 2000)
Potential forcing on the circle \mathbb{T}^{1} :

$$
F(t, x)=\sum F_{j}(x) \dot{W}_{j}(t)
$$

Theorem

Ergodic components:

$$
\left\{u: \int_{\mathbb{T}^{1}} u=c\right\}
$$

One Force - One Solution Principle (1F1S) on each component.

One Force - One Solution (1F1S)

Initial conditions at time $-T$:
identical 0 or other. Take $-T$ to $-\infty$.

Slope stabilizes to some $u(t, x)$, global attracting solution

$$
\begin{gathered}
u(t, x)=\Phi(\text { forcing in the past }) \\
\operatorname{Law}(u(t, x))=\text { stationary disribution }
\end{gathered}
$$

Hyperbolicity: exponential closeness of minimizers in reversed time.

Solutions of HJB: Busemann functions

Bounds on velocity of minimizers

Invariant measures for Markov processes generated by random dynamical systems

Ledrappier-Young (1980's)

In general, any invariant measures of a Markov process
generated by a random dynamical system can be represented via sample measures

$$
\mu(\cdot)=\int_{\Omega} \mathrm{P}(d \omega) \mu_{\omega}(\cdot)
$$

where μ_{ω} depends only on $\left.\omega\right|_{(-\infty, 0]}$

1F1S
μ_{ω} are Dirac δ-measures for almost every ω.

Other results in compact setting

Compact setting

- Gomes, Iturriaga, Khanin, Padilla (2000's): On \mathbb{T}^{d}
- Bakhtin (2007): On [0, 1] with random boundary conditions
- Boritchev, Khanin (2013): Simplified proof of hyperbolicity
- Khanin, Zhang (2017): Hyperbolicity in \mathbb{T}^{d}
- Mixing rates based on hyperbolicity: Boritchev (2018) on \mathbb{T}^{1}; Iturriaga, Khanin, Zhang (recent) on \mathbb{T}^{d} :
- Hairer, Mattingly(2018) Strong Feller property for space-time white-noise KPZ
- Dirr, Souganidis (2005), Debussche and Vovelle (2015): extensions by "PDE methods"
- Chueshov, Scheutzow, Flandoli, Gess(2004,...) Synchronization by noise in monotone systems

Noncompact Setting

Quasi-compact setting

Hoang, Khanin (2003), Suidan (2005), Bakhtin (2013)

Truly noncompact setting

Two models where ergodic program goes through.

- Bakhtin, Cator, Khanin (JAMS 2014): space-time homogeneous Poissonian forcing
- Bakhtin (EJP, 2016): space-homogeneous i.i.d. kick forcing

Space-continuous kick forcing

Forcing applies only at times $n \in \mathbb{Z}$

$$
F(t, x)=\sum_{n \in \mathbb{Z}} F_{n, \omega}(x) \delta(t-n),
$$

$\left(F_{n}\right)_{n \in \mathbb{Z}}$: i.i.d., stationary, decorrelation, tails

$$
\text { Action }(\gamma)=U(\gamma(0))+\frac{1}{2} \sum_{k=m}^{n-1}\left(\gamma_{k+1}-\gamma_{k}\right)^{2}+\sum_{k=m}^{n-1} F_{k, \omega}\left(\gamma_{k}\right)
$$

Minimizers (geodesics) for FPP,LPP-type models; Busemann functions

- C.D.Howard, C.M.Newman (late 1990's)
- M.Wüthrich (2002)
- E.Cator, L.Pimentel (2010-2012)

Summary of results

Theorem

- For each $v \in \mathbb{R}$ there is a unique global solution $u_{v}(t, x)$ with average velocity v.
- $u_{v}(t, \cdot)$ is determined by the history of the forcing up to t (1F1S)
- u_{v} is a one-point pullback attractor for initial conditions with average velocity v.
- For any $t, \quad u_{v}(t, x)$ is a stationary mixing process in x.

Results in terms of one-sided minimizers

Theorem

Let $v \in \mathbb{R}$. Then, with probability one:

- For most (t, x) there is a unique one-sided minimizer with slope v. Finite minimizers converge to infinite ones.
- $\liminf _{m \rightarrow-\infty} \frac{\left|\gamma_{m}^{1}-\gamma_{m}^{2}\right|}{|m|^{-1}}=0$.
- Busemann functions and global solutions are uniquely defined by partial limits

Shape function for point-to-point minimizers

Best p2p action: $A^{m, n}(x, y)=\inf \left\{A^{m, n}(\gamma): \gamma_{m}=x, \gamma_{n}=y\right\}$
Subadditivity:
$A^{0, n}(0, v n) \leq A^{0, m}(0, v m)+A^{m, n}(v m, v n)$
so

$$
\lim _{t \rightarrow \infty} \frac{A^{0, n}(0, v n)}{n}=\alpha(v)
$$

Shape function α (effective Lagrangian)

$$
\alpha(v)=\alpha(0)+\frac{v^{2}}{2}
$$

(due to shear invariance)

Deviations from linear growth, straightness, existence

Theorem

For $u \in\left(c_{3} n^{1 / 2} \ln ^{2} n, c_{4} n^{3 / 2} \ln n\right]$,

$$
\mathrm{P}\left\{\left|A^{0, n}(0, v n)-\alpha(v) n\right|>u\right\} \leq c_{1} \exp \left\{-c_{2} \frac{u}{n^{1 / 2} \ln n}\right\}
$$

Prob $<c_{1} \exp \left(-c_{2} t^{1 / 2-2 \delta}\right)$

The rest of the program for zero viscosity/temperature

- Uniquenesss, with countably many exceptions (shocks) uses shear invariance
- Weak hyperbolicity (minimizers approach each other in reverse time) - a soft lack-of-space argument
- Global solutions as Busemann functions for partial limits
- 1F1S: uniqueness of solution, attraction.
- Potentials converge in LU;
- $x \mapsto x-u(x)$ is a monotone function with discontinuities; convergence at every continuity point.

Positive viscosity

$$
u_{t}+u u_{x}=\nu u_{x x}+f
$$

Compact case

Sinai (1991), Gomes, Iturriaga, Khanin, Padilla (2000’s)

Non-compact case: Kifer (1997)
$\mathbb{R}^{d}, d \geq 3$, small forcing, perturbation theory series (weak disorder)

$$
u_{t}+u u_{x}=\nu u_{x x}+\sum_{n \in \mathbb{Z}} f_{n}(x) \delta_{n}(t)
$$

Hopf-Cole: $u=-2 \nu(\ln v)_{x}=-2 \nu v_{x} / v$

$$
\begin{aligned}
v(1-, x) & =\int_{\mathbb{R}} \frac{e^{-\frac{(x-y)^{2}}{4 \nu}}}{\sqrt{4 \pi \nu}} e^{-\frac{F_{0, \omega}(y)}{2 \nu}} v(0-, y) d y \\
& =\int_{\mathbb{R}} \frac{e^{-\frac{(x-y)^{2}}{4 \nu}}}{\sqrt{4 \pi \nu}} e^{-\frac{F_{0, \omega}(y)}{2 \nu}-\frac{U(0-, y)}{2 \nu}} d y
\end{aligned}
$$

$$
\begin{aligned}
u(1-, x) & =\int_{\mathbb{R}}(x-y) \mu_{x}(d y) \\
\mu_{X}(d y) & =\frac{e^{-\frac{(x-y)^{2}}{4 \nu}-\frac{u(0, y)}{2 \nu}} d y}{Z_{X}}
\end{aligned}
$$

Feynman-Kac evolution operator

$$
\Psi_{\omega}^{0, n} v(y)=\int_{\mathbb{R}} Z_{\omega}^{0, n}(x, y) v(x) d x, \quad y \in \mathbb{R}
$$

Point-to-point partition function:

$$
Z_{\omega}^{0, n}\left(x_{0}, x_{n}\right)=\int_{\mathbb{R} \times \ldots \times \mathbb{R}} \ldots \int_{k=0}^{n-1}\left[\frac{e^{-\frac{\left(x_{k+1}-x_{k}\right)^{2}}{4 \nu}}}{\sqrt{4 \pi \nu}} e^{-\frac{F_{k, \omega}\left(x_{k}\right)}{2 \nu}}\right] d x_{1} \ldots d x_{n-1}
$$

[Similar to product of positive random matrices]

$$
\begin{aligned}
& \mu_{x_{0}, x_{n}, \omega}^{0, n}\left(d x_{1} \ldots d x_{n-1}\right)=\frac{k=0}{z_{\omega}^{0, n}\left(x_{0}, x_{n}\right)} d x_{1} \ldots d x_{n-1}
\end{aligned}
$$

Burgers Polymers. Thermodynamic limit

Theorem (Bakhtin, Li: CPAM, 2018)

Fix any $v \in \mathbb{R}$. With probability 1 ,

- If $\lim _{m \rightarrow-\infty} \frac{x_{m}}{m}=v$, then

$$
\lim _{m \rightarrow-\infty} \mu_{x_{n}, x, \omega}^{m, n}=\mu_{\omega}
$$

[Also point-to-line limits]

- μ_{ω} is a unique infinite volume polymer measure (DLR condition) with endpoint (n, x) and slope v :

$$
\mu_{\omega}\left\{\gamma: \lim _{m \rightarrow-\infty} \frac{\gamma_{m}}{m}=v\right\}=1
$$

- Asymptotic overlap of infinite volume polymer measures

Free energy per unit time

$$
\lim _{n \rightarrow \infty}\left(-2 \nu \frac{\ln Z^{0, n}(0, v n)}{n}\right) \stackrel{\text { a.s. }}{=} \alpha_{\nu}(v)=\alpha_{\nu}+\frac{v^{2}}{2}
$$

Shear invariance

Concentration inequality

A straightness estimate for polymers

Lemma

Let $\delta \in(0,1 / 4)$. There are $\alpha, \beta>0$: for large n,

$$
\mathbf{P}\left\{\omega: \mu_{0,0, \omega}^{0, n}\left\{\gamma: \max _{0 \leq k \leq n}\left|\gamma_{k}\right|>n^{1-\delta}\right\} \geq e^{-n^{\alpha}}\right\} \leq e^{-n^{\beta}} .
$$

First result on transversal exponent $\xi \leq 3 / 4$: Mejane (2004)

Stationary solutions for viscous Burgers

$S(d y):=$ distribution of the polymer location at time $n-1$

$$
u_{v}(n, x):=\int_{\mathbb{R}}(x-y) S(d y)
$$

Theorem

- u_{v} is a unique global solution with slope v.
- 1F1S: LU-convergence for u. In terms of the heat equation: the role of Busemann function is played by convergent ratios of partition functions.

Zero viscosity (zero-temperature) limit

Theorem (Bakhtin,Li: JSP, 2018)

As $\nu \rightarrow 0$,

- one-sided polymers converge to one-sided minimizers
- Global solutions of Burgers equation converge to inviscid global solutions [convergence at every continuity point of the monotone function $x \mapsto x-u(x)$]

Based on tightness.
Events of interest are of the form: $\{$ for all $\nu, \ldots \ldots\}$

In discrete settings, Busemann functions and stationary solutions for positive and zero temperature polymers were studied by Rassoul-Agha, Georgiou, Seppäläinen, Yilmaz

Open problems

- More general HJB equations and Lax-Oleinik semigroups.
- General HJB equations with positive viscosity: generalized directed polymers via stochastic control
- Continuous non-white forcing, no shear invariance
- Higher dimensions: which form of hyperbolicity?
- Quantitative results
- KPZ equation, KPZ universality. CLT for solutions of Burgers HJB
- Statistics of shocks and concentration of minimizers
- Stochastic Navier-Stokes in noncompact setting
[Bakhtin, Khanin: Nonlinearity, 2018]

