Stochastic homogenization of viscous and non-viscous HJ equations with non-convex Hamiltonians

Andrea Davini

Università di Roma La Sapienza

joint work with E. Kosygina (Baruch College & CUNY)

LMS Durham Symposium, August 20th-24th, 2018

Introduction

$$\begin{cases} \partial_t u^{\varepsilon} - \varepsilon \operatorname{tr} \left(A\left(\frac{x}{\varepsilon}\right) D_x^2 u^{\varepsilon} \right) + H\left(\frac{x}{\varepsilon}, D_x u^{\varepsilon} \right) = 0 & \text{in } (0, +\infty) \times \mathbb{R}^d \\ u^{\varepsilon}(0, \cdot) = g \in \operatorname{UC}(\mathbb{R}^d) \end{cases}$$

$$\begin{cases} \partial_t u^{\varepsilon} - \varepsilon \operatorname{tr} \left(A\left(\frac{x}{\varepsilon}\right) D_x^2 u^{\varepsilon} \right) + H\left(\frac{x}{\varepsilon}, D_x u^{\varepsilon} \right) = 0 & \text{in } (0, +\infty) \times \mathbb{R}^d \\ u^{\varepsilon}(0, \cdot) = g \in \operatorname{UC}(\mathbb{R}^d) \end{cases}$$

Here $A(x) = (\sigma^T \sigma)(x)$ is a positive semi-definite matrix: (A1) $\|\sigma(x)\| \leq \Lambda_A$; (A2) $\|\sigma(x) - \sigma(y)\| \leq \Lambda_A |x - y|$;

$$\begin{cases} \partial_t u^{\varepsilon} - \varepsilon \operatorname{tr} \left(A\left(\frac{x}{\varepsilon}\right) D_x^2 u^{\varepsilon} \right) + H\left(\frac{x}{\varepsilon}, D_x u^{\varepsilon} \right) = 0 & \text{in } (0, +\infty) \times \mathbb{R}^d \\ u^{\varepsilon}(0, \cdot) = g \in \operatorname{UC}(\mathbb{R}^d) \end{cases}$$

Here $A(x) = (\sigma^T \sigma)(x)$ is a positive semi-definite matrix: (A1) $\|\sigma(x)\| \leq \Lambda_A$; (A2) $\|\sigma(x) - \sigma(y)\| \leq \Lambda_A |x - y|$;

while the Hamiltonian H(x, p) satisfies (H1) $H \in UC(\mathbb{R}^d \times B_R)$ for all R > 0; (H2) $\exists \alpha, \beta : \mathbb{R}_+ \to \mathbb{R}$ coercive such that

 $\alpha(|p|) \leqslant H(x,p) \leqslant \beta(|p|)$ for all $(x,p) \in \mathbb{R}^d \times \mathbb{R}^d$.

$$\begin{cases} \partial_t u^{\varepsilon} - \varepsilon \operatorname{tr} \left(A\left(\frac{x}{\varepsilon}\right) D_x^2 u^{\varepsilon} \right) + H\left(\frac{x}{\varepsilon}, D_x u^{\varepsilon} \right) = 0 & \text{in } (0, +\infty) \times \mathbb{R}^d \\ u^{\varepsilon}(0, \cdot) = g \in \operatorname{UC}(\mathbb{R}^d) \end{cases}$$

Here $A(x) = (\sigma^T \sigma)(x)$ is a positive semi-definite matrix: (A1) $\|\sigma(x)\| \leq \Lambda_A$; (A2) $\|\sigma(x) - \sigma(y)\| \leq \Lambda_A |x - y|$;

while the Hamiltonian H(x, p) satisfies (H1) $H \in UC(\mathbb{R}^d \times B_R)$ for all R > 0; (H2) $\exists \alpha, \beta : \mathbb{R}_+ \to \mathbb{R}$ coercive such that

 $\alpha(|p|) \leqslant H(x,p) \leqslant \beta(|p|)$ for all $(x,p) \in \mathbb{R}^d \times \mathbb{R}^d$.

$A \equiv 0$ non-viscous HJ equation

$$\begin{cases} \partial_t u^{\varepsilon} - \varepsilon \operatorname{tr} \left(A\left(\frac{x}{\varepsilon}\right) D_x^2 u^{\varepsilon} \right) + H\left(\frac{x}{\varepsilon}, D_x u^{\varepsilon}\right) = 0 \quad \text{in } (0, +\infty) \times \mathbb{R}^d \\ u^{\varepsilon}(0, \cdot) = g \in \operatorname{UC}(\mathbb{R}^d) \end{cases}$$

Here $A(x) = (\sigma^T \sigma)(x)$ is a positive semi-definite matrix: (A1) $\|\sigma(x)\| \leq \Lambda_A$; (A2) $\|\sigma(x) - \sigma(y)\| \leq \Lambda_A |x - y|$;

while the Hamiltonian H(x, p) satisfies (H1) $H \in UC(\mathbb{R}^d \times B_R)$ for all R > 0; (H2) $\exists \alpha, \beta : \mathbb{R}_+ \to \mathbb{R}$ coercive such that

 $\alpha(|p|) \leqslant H(x,p) \leqslant \beta(|p|)$ for all $(x,p) \in \mathbb{R}^d \times \mathbb{R}^d$.

 $A \equiv 0$ non-viscous HJ equation $A \not\equiv 0$ viscous HJ equation

For $A \equiv 0$, the Cauchy problem (HJ_{ε}) is well-posed in $UC([0, +\infty) \times \mathbb{R}^d)$ for H satisfying (H1)–(H2).

For $A \equiv 0$, the Cauchy problem (HJ_{ε}) is well-posed in $UC([0, +\infty) \times \mathbb{R}^d)$ for H satisfying (H1)–(H2).

For $A \neq 0$ satisfying (A1)–(A2) the Cauchy problem (HJ $_{\varepsilon}$) is well-posed in UC([0, $+\infty$) × \mathbb{R}^d) for H satisfying (for instance) the following set of assumptions, for some constants α_0 , $\beta_0 > 0$, $\gamma > 1$:

For $A \equiv 0$, the Cauchy problem (HJ_{ε}) is well-posed in $UC([0, +\infty) \times \mathbb{R}^d)$ for H satisfying (H1)–(H2).

For $A \neq 0$ satisfying (A1)–(A2) the Cauchy problem (HJ $_{\varepsilon}$) is well-posed in UC($[0, +\infty) \times \mathbb{R}^d$) for H satisfying (for instance) the following set of assumptions, for some constants α_0 , $\beta_0 > 0$, $\gamma > 1$:

(i) $\alpha_0 |p|^{\gamma} - 1/\alpha_0 \leqslant H(x,p) \leqslant \beta_0(|p|^{\gamma} + 1) \quad \forall x, p \in \mathbb{R}^d;$

(ii) $|H(x,p) - H(y,p)| \leq \beta_0(|p|^{\gamma}+1)|x-y| \quad \forall x,y,p \in \mathbb{R}^d;$

(iii) $|H(x,p)-H(x,q)| \leq \beta_0(|p|+|q|+1)^{\gamma-1}|p-q| \quad \forall x,p,q \in \mathbb{R}^d.$

For $A \equiv 0$, the Cauchy problem (HJ_{ε}) is well-posed in $UC([0, +\infty) \times \mathbb{R}^d)$ for H satisfying (H1)–(H2).

For $A \neq 0$ satisfying (A1)–(A2) the Cauchy problem (HJ $_{\varepsilon}$) is well-posed in UC($[0, +\infty) \times \mathbb{R}^d$) for H satisfying (for instance) the following set of assumptions, for some constants α_0 , $\beta_0 > 0$, $\gamma > 1$:

(i) $\alpha_0 |p|^{\gamma} - 1/\alpha_0 \leqslant H(x,p) \leqslant \beta_0(|p|^{\gamma} + 1) \quad \forall x, p \in \mathbb{R}^d;$

(ii) $|H(x,p) - H(y,p)| \leq \beta_0(|p|^{\gamma}+1)|x-y| \quad \forall x, y, p \in \mathbb{R}^d;$

(iii) $|H(x,p)-H(x,q)| \leq \beta_0 (|p|+|q|+1)^{\gamma-1} |p-q| \quad \forall x,p,q \in \mathbb{R}^d.$

We will denote by $\mathcal{H}(\alpha_0, \beta_0, \gamma)$ such a family of Hamiltonians.

For $A \equiv 0$, the Cauchy problem (HJ_{ε}) is well-posed in $UC([0, +\infty) \times \mathbb{R}^d)$ for H satisfying (H1)–(H2).

For $A \neq 0$ satisfying (A1)–(A2) the Cauchy problem (HJ $_{\varepsilon}$) is well-posed in UC($[0, +\infty) \times \mathbb{R}^d$) for H satisfying (for instance) the following set of assumptions, for some constants α_0 , $\beta_0 > 0$, $\gamma > 1$:

(i) $\alpha_0 |p|^{\gamma} - 1/\alpha_0 \leqslant H(x,p) \leqslant \beta_0(|p|^{\gamma} + 1) \quad \forall x, p \in \mathbb{R}^d;$

(ii) $|H(x,p) - H(y,p)| \leq \beta_0(|p|^{\gamma}+1)|x-y| \quad \forall x, y, p \in \mathbb{R}^d;$

(iii) $|H(x,p)-H(x,q)| \leq \beta_0 (|p|+|q|+1)^{\gamma-1} |p-q| \quad \forall x,p,q \in \mathbb{R}^d.$

We will denote by $\mathcal{H}(\alpha_0, \beta_0, \gamma)$ such a family of Hamiltonians.

• S. Armstrong, H.V. Tran, Math. Ann. (2015).

For $A \equiv 0$, the Cauchy problem (HJ_{ε}) is well-posed in $UC([0, +\infty) \times \mathbb{R}^d)$ for H satisfying (H1)–(H2).

For $A \neq 0$ satisfying (A1)–(A2) the Cauchy problem (HJ $_{\varepsilon}$) is well-posed in UC($[0, +\infty) \times \mathbb{R}^d$) for H satisfying (for instance) the following set of assumptions, for some constants α_0 , $\beta_0 > 0$, $\gamma > 1$:

- (i) $\alpha_0 |p|^{\gamma} 1/\alpha_0 \leq H(x, p) \leq \beta_0(|p|^{\gamma} + 1) \quad \forall x, p \in \mathbb{R}^d;$
- (ii) $|H(x,p) H(y,p)| \leq \beta_0(|p|^{\gamma}+1)|x-y| \quad \forall x,y,p \in \mathbb{R}^d;$
- (iii) $|H(x,p)-H(x,q)| \leq \beta_0 (|p|+|q|+1)^{\gamma-1} |p-q| \quad \forall x, p, q \in \mathbb{R}^d.$

We will denote by $\mathcal{H}(\alpha_0, \beta_0, \gamma)$ such a family of Hamiltonians.

- S. Armstrong, H.V. Tran, *Math. Ann.* (2015).
- A. Davini, Commun. Contemp. Math. (2017).

Homogenization of HJ equations

Assume that the following Cauchy problem is well posed:

 $\begin{cases} \partial_t u^{\varepsilon} - \varepsilon \operatorname{tr} \left(A\left(\frac{x}{\varepsilon}\right) D_x^2 u^{\varepsilon} \right) + H\left(\frac{x}{\varepsilon}, D_x u^{\varepsilon}\right) = 0 \quad \text{in } (0, +\infty) \times \mathbb{R}^d \\ u^{\varepsilon}(0, \cdot) = g \in \operatorname{UC}(\mathbb{R}^d) \end{cases} \tag{HJ}_{\varepsilon}$

Homogenization of HJ equations

Assume that the following Cauchy problem is well posed:

$$\begin{cases} \partial_t u^{\varepsilon} - \varepsilon \operatorname{tr} \left(A\left(\frac{x}{\varepsilon}\right) D_x^2 u^{\varepsilon} \right) + H\left(\frac{x}{\varepsilon}, D_x u^{\varepsilon}\right) = 0 & \text{in } (0, +\infty) \times \mathbb{R}^d \\ u^{\varepsilon}(0, \cdot) = g \in \operatorname{UC}(\mathbb{R}^d) \end{cases}$$
(HJ_{\varepsilon})

We say that (HJ_{ε}) homogenizes if there exists a continuous $\overline{H}: \mathbb{R}^d \to \mathbb{R}$ such that for every $g \in \mathrm{UC}(\mathbb{R}^d)$

$$u^{arepsilon}(t,x)
ightarrow_{ ext{loc}} \overline{u}(t,x) \quad ext{in } [0,+\infty) imes \mathbb{R}^d \qquad ext{as } arepsilon o 0^+$$

where \overline{u} solves

$$\begin{cases} \partial_t \overline{u} + \overline{H}(D_x \overline{u}) = 0 & \text{in } (0, +\infty) \times \mathbb{R}^d \\ \overline{u}(0, \cdot) = g \in \mathrm{UC}(\mathbb{R}^d) \end{cases}$$
(HJ)

• Environment: probability space $(\Omega, \mathcal{F}, \mathbb{P})$, \mathbb{R}^d acts on Ω by shifts $\tau_x : \Omega \to \Omega$, $x \in \mathbb{R}^d$, which preserve \mathbb{P} . More precisely:

(i)
$$(x, \omega) \rightarrow \tau_x \omega$$
 is jointly measurable;

(ii)
$$\tau_0 = \operatorname{id}; \ \tau_{x+y} = \tau_x \circ \tau_y;$$

(iii)
$$\forall E \in \mathcal{F} \quad \mathbb{P}(\tau_{x}E) = \mathbb{P}(E).$$

Environment: probability space (Ω, F, P), R^d acts on Ω by shifts τ_x : Ω → Ω, x ∈ R^d, which preserve P. More precisely:

(i)
$$(x,\omega) \rightarrow \tau_x \omega$$
 is jointly measurable;

(ii)
$$\tau_0 = \operatorname{id}; \ \tau_{x+y} = \tau_x \circ \tau_y;$$

(iii) $\forall E \in \mathcal{F} \quad \mathbb{P}(\tau_{x}E) = \mathbb{P}(E).$

We assume that the action is ergodic, i.e.

 $\forall x \in \mathbb{R}^d$ $f(\tau_x \omega) = f(\omega)$ a.s. in $\Omega \Rightarrow f = const.$ a.s. in Ω .

for every measurable $f : \Omega \to \mathbb{R}$.

Environment: probability space (Ω, F, P), R^d acts on Ω by shifts τ_x : Ω → Ω, x ∈ R^d, which preserve P. More precisely:

(i)
$$(x,\omega) \rightarrow \tau_x \omega$$
 is jointly measurable;

(ii)
$$\tau_0 = \operatorname{id}; \ \tau_{x+y} = \tau_x \circ \tau_y;$$

(iii) $\forall E \in \mathcal{F} \quad \mathbb{P}(\tau_{x}E) = \mathbb{P}(E).$

We assume that the action is ergodic, i.e.

 $\forall x \in \mathbb{R}^d$ $f(\tau_x \omega) = f(\omega)$ a.s. in $\Omega \Rightarrow f = const.$ a.s. in Ω .

for every measurable $f : \Omega \to \mathbb{R}$.

• Coefficients:

 $A(x+y,\omega) = A(y,\tau_x\omega), \quad H(x+y,p,\omega) = H(y,p,\tau_x\omega).$

Environment: probability space (Ω, F, P), R^d acts on Ω by shifts τ_x : Ω → Ω, x ∈ R^d, which preserve P. More precisely:

(i)
$$(x,\omega) \rightarrow \tau_x \omega$$
 is jointly measurable;

(ii)
$$\tau_0 = \operatorname{id}; \ \tau_{x+y} = \tau_x \circ \tau_y;$$

(iii) $\forall E \in \mathcal{F} \quad \mathbb{P}(\tau_{x}E) = \mathbb{P}(E).$

We assume that the action is ergodic, i.e.

 $\forall x \in \mathbb{R}^d$ $f(\tau_x \omega) = f(\omega)$ a.s. in $\Omega \Rightarrow f = const.$ a.s. in Ω .

for every measurable $f : \Omega \to \mathbb{R}$.

• Coefficients:

 $A(x+y,\omega) = A(y,\tau_x\omega), \quad H(x+y,p,\omega) = H(y,p,\tau_x\omega).$

We assume that A and H satisfy (A1)–(A2) and (H1)–(H2) respectively with bounds independent of ω .

Homogenization of HJ equations in random media

Assume that the following Cauchy problem is well posed for every $\omega \in \Omega$:

 $\begin{cases} \partial_t u^{\varepsilon} - \varepsilon \operatorname{tr} \left(A\left(\frac{x}{\varepsilon}, \omega\right) D_x^2 u^{\varepsilon} \right) + H\left(\frac{x}{\varepsilon}, D_x u^{\varepsilon}, \omega\right) = 0 & \text{in } (0, +\infty) \times \mathbb{R}^d \\ u^{\varepsilon}(0, \cdot, \omega) = g \in \operatorname{UC}(\mathbb{R}^d) & \text{for every } \omega. \end{cases}$ (HJ^{\varepsilon})

Homogenization of HJ equations in random media

Assume that the following Cauchy problem is well posed for every $\omega \in \Omega$:

 $\begin{cases} \partial_t u^{\varepsilon} - \varepsilon \operatorname{tr} \left(A\left(\frac{x}{\varepsilon}, \omega\right) D_x^2 u^{\varepsilon} \right) + H\left(\frac{x}{\varepsilon}, D_x u^{\varepsilon}, \omega\right) = 0 & \text{in } (0, +\infty) \times \mathbb{R}^d \\ u^{\varepsilon}(0, \cdot, \omega) = g \in \operatorname{UC}(\mathbb{R}^d) & \text{for every } \omega. \end{cases}$ (HJ^{\varepsilon})

We say that $(HJ_{\varepsilon}^{\omega})$ homogenizes if there exists a continuous $\overline{H} : \mathbb{R}^d \to \mathbb{R}$ such that for every $g \in UC(\mathbb{R}^d)$

$$u^{\varepsilon}(t,x,\omega) \rightrightarrows_{\mathrm{loc}} \overline{u}(t,x) \quad \mathrm{in} \ [0,+\infty) \times \mathbb{R}^d \quad \mathrm{as} \ \varepsilon \to 0^+ \qquad \mathrm{a.s.} \ \mathrm{in} \ \Omega$$

where \overline{u} solves

$$\begin{cases} \partial_t \overline{u} + \overline{H}(D_x \overline{u}) = 0 & \text{in } (0, +\infty) \times \mathbb{R}^d \\ \overline{u}(0, \cdot) = g \in \mathrm{UC}(\mathbb{R}^d) \end{cases}$$
(HJ)

Our main homogenization result

We have proved homogenization for viscous/nonviscous HJ equations for d = 1 in the stationary ergodic setting for a class of non-convex Hamiltonians.

Our main homogenization result

We have proved homogenization for viscous/nonviscous HJ equations for d = 1 in the stationary ergodic setting for a class of non-convex Hamiltonians. The precise result will be presented later.

Homogenization in random media: literature

H convex

• P.E. Souganidis, Asymptot. Anal. (1999), F. Rezakhanlou and J.E. Tarver, ARMA (2000): $A \equiv 0$. Homogenization in random media: literature

H convex

- P.E. Souganidis, Asymptot. Anal. (1999),
 F. Rezakhanlou and J.E. Tarver, ARMA (2000): A = 0.
- P.-L. Lions, P.E. Souganidis, *Comm. PDE* (2005),
 E. Kosygina, F. Rezakhanlou, and S.R.S. Varadhan, *CPAM* (2006): A ≠ 0.

• A. Davini, A. Siconolfi, *Math. Ann.* (2009) level-set convex *H*, *d* = 1.

- A. Davini, A. Siconolfi, *Math. Ann.* (2009) level-set convex H, d = 1.
- S. Armstrong, P.E. Souganidis, *Int. Math. Res. Not.* (2013) level-set convex $H, d \ge 1$.

- A. Davini, A. Siconolfi, *Math. Ann.* (2009) level-set convex H, d = 1.
- S. Armstrong, P.E. Souganidis, *Int. Math. Res. Not.* (2013) level-set convex $H, d \ge 1$.
- S. Armstrong, H.V. Tran, Y. Yu, *Calc. Var. PDE* (2015) a class containing $H(x, p, \omega) = (|p|^2 - 1)^2 - V(x, \omega), d \ge 1$.

- A. Davini, A. Siconolfi, *Math. Ann.* (2009) level-set convex H, d = 1.
- S. Armstrong, P.E. Souganidis, *Int. Math. Res. Not.* (2013) level-set convex $H, d \ge 1$.
- S. Armstrong, H.V. Tran, Y. Yu, *Calc. Var. PDE* (2015) a class containing $H(x, p, \omega) = (|p|^2 - 1)^2 - V(x, \omega), d \ge 1$.
- S. Armstrong, H.V. Tran, Y. Yu, J. Diff. Eq. (2016), H. Gao, Calc. Var. PDE (2016)
 d = 1, quite general H.

- A. Davini, A. Siconolfi, *Math. Ann.* (2009) level-set convex H, d = 1.
- S. Armstrong, P.E. Souganidis, *Int. Math. Res. Not.* (2013) level-set convex $H, d \ge 1$.
- S. Armstrong, H.V. Tran, Y. Yu, *Calc. Var. PDE* (2015) a class containing $H(x, p, \omega) = (|p|^2 - 1)^2 - V(x, \omega), d \ge 1$.
- S. Armstrong, H.V. Tran, Y. Yu, J. Diff. Eq. (2016), H. Gao, Calc. Var. PDE (2016)
 d = 1, quite general H.
- B. Ziliotto, Comm. Pure Appl. Math. 70 (2017) counterexample for d = 2, "standard" non-convex H.

- A. Davini, A. Siconolfi, *Math. Ann.* (2009) level-set convex H, d = 1.
- S. Armstrong, P.E. Souganidis, *Int. Math. Res. Not.* (2013) level-set convex $H, d \ge 1$.
- S. Armstrong, H.V. Tran, Y. Yu, *Calc. Var. PDE* (2015) a class containing $H(x, p, \omega) = (|p|^2 - 1)^2 - V(x, \omega), d \ge 1$.
- S. Armstrong, H.V. Tran, Y. Yu, J. Diff. Eq. (2016), H. Gao, Calc. Var. PDE (2016)
 d = 1, quite general H.
- B. Ziliotto, Comm. Pure Appl. Math. 70 (2017) counterexample for d = 2, "standard" non-convex H.
- W.M. Feldman, P.E. Souganidis, J. Math. Pures Appl. (2017)

S. Armstrong, P. Cardaliaguet, J. Eur. Math. Soc. 20 (2018) $H \in C^1(\mathbb{R}^d \times \mathbb{R}^d)$ such that

 $\exists \alpha \geq 1: \ H(x, tp, \omega) = t^{\alpha} H(x, p, \omega) \qquad \forall t \geq 0.$

Environments with finite range of dependence.

• S. Armstrong, P. Cardaliaguet, J. Eur. Math. Soc. 20 (2018) $H \in C^1(\mathbb{R}^d \times \mathbb{R}^d)$ such that

 $\exists \alpha \geq 1: \ H(x, tp, \omega) = t^{\alpha} H(x, p, \omega) \qquad \forall t \geq 0.$

Environments with finite range of dependence.

A. Davini, E. Kosygina, *Calc. Var. Partial Differential Equations*, 56 (2017)
 d = 1, a class of non-convex Hamiltonians including

 $H(x, p, \omega) = |p|^2 - b(x, \omega)|p|$ with $0 < \frac{1}{\beta} \leq b(\cdot, \cdot) \leq \beta$.

• S. Armstrong, P. Cardaliaguet, J. Eur. Math. Soc. 20 (2018) $H \in C^1(\mathbb{R}^d \times \mathbb{R}^d)$ such that

 $\exists \alpha \geq 1: \ H(x, tp, \omega) = t^{\alpha} H(x, p, \omega) \qquad \forall t \geq 0.$

Environments with finite range of dependence.

A. Davini, E. Kosygina, *Calc. Var. Partial Differential Equations*, 56 (2017)
 d = 1, a class of non-convex Hamiltonians including

 $H(x,p,\omega) = |p|^2 - b(x,\omega)|p|$ with $0 < \frac{1}{\beta} \leq b(\cdot,\cdot) \leq \beta$.

E. Kosygina, A. Yilmaz, O. Zeitouni, ArXiv e-print (2018+) $d = 1 e H(x, p, \omega) = |p|^2 - b|p| + V(x, \omega).$
Our results

Let d = 1 and $b : \mathbb{R} \times \Omega \to \mathbb{R}$ stationary such that:

• $a \leqslant b(\cdot, \cdot) \leqslant 1/a$ for some $a \in (0, 1)$;

• $b(\cdot, \omega)$ is Lip in \mathbb{R} uniformly in ω .

Let d = 1 and $b : \mathbb{R} \times \Omega \to \mathbb{R}$ stationary such that: $a \leq b(\cdot, \cdot) \leq 1/a$ for some $a \in (0, 1)$; $b(\cdot, \omega)$ is Lip in \mathbb{R} uniformly in ω . Let $H(x, p, \omega) := \frac{1}{2}p^2 - b(x, \omega)|p|$.

Let d = 1 and $b : \mathbb{R} \times \Omega \to \mathbb{R}$ stationary such that: $a \leq b(\cdot, \cdot) \leq 1/a$ for some $a \in (0, 1)$; $b(\cdot, \omega)$ is Lip in \mathbb{R} uniformly in ω . Let $H(x, p, \omega) := \frac{1}{2}p^2 - b(x, \omega)|p|$. Then

 $H(x,p,\omega) := \min\{H_+(x,p,\omega), H_-(x,p,\omega)\} = \begin{cases} H_+(x,p,\omega) & \text{if } p \ge 0\\ H_-(x,p,\omega) & \text{if } p \le 0. \end{cases}$

with $H_{\pm}(x,p,\omega) := \frac{1}{2}p^2 \mp b(x,\omega)p$.

Let d = 1 and $b : \mathbb{R} \times \Omega \to \mathbb{R}$ stationary such that: $a \leq b(\cdot, \cdot) \leq 1/a$ for some $a \in (0, 1)$; $b(\cdot, \omega)$ is Lip in \mathbb{R} uniformly in ω . Let $H(x, p, \omega) := \frac{1}{2}p^2 - b(x, \omega)|p|$. Then

$$H(x,p,\omega) := \min\{H_+(x,p,\omega), H_-(x,p,\omega)\} = \begin{cases} H_+(x,p,\omega) & \text{if } p \ge 0\\ H_-(x,p,\omega) & \text{if } p \le 0. \end{cases}$$

with $H_{\pm}(x, p, \omega) := \frac{1}{2} p^2 \mp b(x, \omega) p$. Consider

$$\partial_t u_{\theta}^{\varepsilon} - \frac{\varepsilon}{2} \partial_x^2 u_{\theta}^{\varepsilon} + H\left(\frac{x}{\varepsilon}, \partial_x u_{\theta}^{\varepsilon}, \omega\right) = 0; \quad u_{\theta}^{\varepsilon}\big|_{t=0} = \theta x.$$

Let d = 1 and $b : \mathbb{R} \times \Omega \to \mathbb{R}$ stationary such that: $a \leq b(\cdot, \cdot) \leq 1/a$ for some $a \in (0, 1)$; $b(\cdot, \omega)$ is Lip in \mathbb{R} uniformly in ω . Let $H(x, p, \omega) := \frac{1}{2}p^2 - b(x, \omega)|p|$. Then

$$H(x,p,\omega) := \min\{H_+(x,p,\omega), H_-(x,p,\omega)\} = \begin{cases} H_+(x,p,\omega) & \text{if } p \ge 0\\ H_-(x,p,\omega) & \text{if } p \le 0. \end{cases}$$

with $H_{\pm}(x, p, \omega) := \frac{1}{2} p^2 \mp b(x, \omega) p$. Consider

$$\partial_t u_{\theta}^{\varepsilon} - \frac{\varepsilon}{2} \partial_x^2 u_{\theta}^{\varepsilon} + H\left(\frac{x}{\varepsilon}, \partial_x u_{\theta}^{\varepsilon}, \omega\right) = 0; \quad u_{\theta}^{\varepsilon}\big|_{t=0} = \theta x.$$

We are interested in the limit of $u_{\theta}^{\varepsilon}(t,x) = \varepsilon u_{\theta}(\frac{t}{\varepsilon},\frac{x}{\varepsilon})$ as $\varepsilon \to 0^+$.

Solution by Hopf-Cole + control representation Note that $v^{\varepsilon}_{\theta} := e^{-u^{\varepsilon}_{\theta}}$ solves

$$\partial_t v_{\theta}^{\varepsilon} - \frac{\varepsilon}{2} \partial_x^2 v_{\theta}^{\varepsilon} + b(x, \omega) |\partial_x v_{\theta}^{\varepsilon}| = 0, \quad v_{\theta}^{\varepsilon}|_{t=0} = e^{-\theta x}.$$

Solution by Hopf-Cole + control representation Note that $v^{\varepsilon}_{\theta} := e^{-u^{\varepsilon}_{\theta}}$ solves

$$\partial_t v_{\theta}^{\varepsilon} - \frac{\varepsilon}{2} \partial_x^2 v_{\theta}^{\varepsilon} + b(x, \omega) |\partial_x v_{\theta}^{\varepsilon}| = 0, \quad v_{\theta}^{\varepsilon}|_{t=0} = e^{-\theta x}.$$

The control representation formula gives

$$v_{ heta}^{arepsilon}(t,x,\omega) = \inf_{\|c\|_{\infty} \leqslant 1} \mathbb{E}[\mathrm{e}^{- heta X(t)}],$$

where

$$\begin{cases} dX(s) = b(X(s), \omega)c(s, X(s), \omega) \, \mathrm{d}s + \sqrt{\varepsilon} \, \mathrm{d}W(s) \\ X(0) = x \end{cases}$$

Solution by Hopf-Cole + control representation Note that $v_{\theta}^{\varepsilon} := e^{-u_{\theta}^{\varepsilon}}$ solves

$$\partial_t v_{\theta}^{\varepsilon} - \frac{\varepsilon}{2} \partial_x^2 v_{\theta}^{\varepsilon} + b(x, \omega) |\partial_x v_{\theta}^{\varepsilon}| = 0, \quad v_{\theta}^{\varepsilon}|_{t=0} = e^{-\theta x}.$$

The control representation formula gives

$$v_{ heta}^{arepsilon}(t,x,\omega) = \inf_{\|c\|_{\infty} \leqslant 1} \mathbb{E}[\mathrm{e}^{- heta X(t)}],$$

where

$$\begin{cases} dX(s) = b(X(s), \omega)c(s, X(s), \omega) \, ds + \sqrt{\varepsilon} \, dW(s) \\ X(0) = x \end{cases}$$

By 1d comparison, for $\theta > 0$ ($\theta < 0$) the inf is attained for $c \equiv 1$ (resp., $c \equiv -1$).

Solution by Hopf-Cole + control representation Note that $v_{\theta}^{\varepsilon} := e^{-u_{\theta}^{\varepsilon}}$ solves

$$\partial_t v_{\theta}^{\varepsilon} - \frac{\varepsilon}{2} \partial_x^2 v_{\theta}^{\varepsilon} + b(x, \omega) |\partial_x v_{\theta}^{\varepsilon}| = 0, \quad v_{\theta}^{\varepsilon}|_{t=0} = e^{-\theta x}.$$

The control representation formula gives

$$v_{ heta}^{arepsilon}(t,x,\omega) = \inf_{\|c\|_{\infty} \leqslant 1} \mathbb{E}[\mathrm{e}^{- heta X(t)}],$$

where

$$\begin{cases} dX(s) = b(X(s), \omega)c(s, X(s), \omega) \, \mathrm{d}s + \sqrt{\varepsilon} \, \mathrm{d}W(s) \\ X(0) = x \end{cases}$$

By 1d comparison, for $\theta > 0$ ($\theta < 0$) the inf is attained for $c \equiv 1$ (resp., $c \equiv -1$). Thus, v_{θ}^{ε} also solves

$$\partial_t v^{\varepsilon}_{ heta} - rac{arepsilon}{2} \partial^2_x v^{arepsilon}_{ heta} \mp b(x,\omega) \partial_x v^{arepsilon}_{ heta} = 0, \quad v^{arepsilon}_{ heta} \Big|_{t=0} = \mathrm{e}^{- heta x},$$

where "-" corresponds to $\theta \ge 0$ and "+" to $\theta \le 0$.

Correspondingly, u_{θ}^{ε} solves

$$\partial_t u_{\theta}^{\varepsilon} - \frac{\varepsilon}{2} \partial_x^2 u_{\theta}^{\varepsilon} + \mathcal{H}_{\pm}(x, \partial_x u_{\theta}^{\varepsilon}, \omega) = 0, \quad u_{\theta}^{\varepsilon}\big|_{t=0} = \theta x,$$

where "+" corresponds to $\theta \ge 0$ and "-" to $\theta \le 0$.

Correspondingly, $u_{ heta}^{arepsilon}$ solves

$$\partial_t u_{\theta}^{\varepsilon} - \frac{\varepsilon}{2} \partial_x^2 u_{\theta}^{\varepsilon} + H_{\pm}(x, \partial_x u_{\theta}^{\varepsilon}, \omega) = 0, \quad u_{\theta}^{\varepsilon} \big|_{t=0} = \theta x,$$

where "+" corresponds to $\theta \ge 0$ and "-" to $\theta \le 0$.By homogenization for convex H, with probability 1

$$u^arepsilon_ heta(t,x,\omega)
ightarrow _{ ext{loc}} \overline{u}_ heta(t,x) = heta x - t \overline{H}(heta) \quad ext{as } arepsilon o 0,$$

where

$$\overline{H}(\theta) = \begin{cases} \overline{H}_{+}(\theta) & \text{if } \theta \ge 0\\ \overline{H}_{-}(\theta) & \text{if } \theta \le 0 \end{cases} = \min\{\overline{H}_{+}(\theta), \overline{H}_{-}(\theta)\}.$$

Correspondingly, u_{θ}^{ε} solves

$$\partial_t u_{\theta}^{\varepsilon} - \frac{\varepsilon}{2} \partial_x^2 u_{\theta}^{\varepsilon} + H_{\pm}(x, \partial_x u_{\theta}^{\varepsilon}, \omega) = 0, \quad u_{\theta}^{\varepsilon} \big|_{t=0} = \theta x,$$

where "+" corresponds to $\theta \ge 0$ and "-" to $\theta \le 0$.By homogenization for convex H, with probability 1

$$u^arepsilon_ heta(t,x,\omega)
ightarrow _{ ext{loc}} \overline{u}_ heta(t,x) = heta x - t \overline{H}(heta) \quad ext{as } arepsilon o 0,$$

where

$$\overline{H}(\theta) = \begin{cases} \overline{H}_{+}(\theta) & \text{if } \theta \ge 0\\ \overline{H}_{-}(\theta) & \text{if } \theta \le 0 \end{cases} = \min\{\overline{H}_{+}(\theta), \overline{H}_{-}(\theta)\}.$$

Moreover, since $b(\cdot, \cdot) \ge a$, we have

$$H(x,p,\omega)\leqslant rac{1}{2}\,p^2-a|p|\ \Rightarrow\ \overline{H}(heta)\leqslant rac{1}{2}\,p^2-a|p|.$$

Correspondingly, $u_{ heta}^{arepsilon}$ solves

$$\partial_t u_{\theta}^{\varepsilon} - \frac{\varepsilon}{2} \partial_x^2 u_{\theta}^{\varepsilon} + H_{\pm}(x, \partial_x u_{\theta}^{\varepsilon}, \omega) = 0, \quad u_{\theta}^{\varepsilon} \big|_{t=0} = \theta x,$$

where "+" corresponds to $\theta \ge 0$ and "-" to $\theta \le 0$.By homogenization for convex H, with probability 1

$$u^arepsilon_ heta(t,x,\omega)
ightarrow _{ ext{loc}} \overline{u}_ heta(t,x) = heta x - t \overline{H}(heta) \quad ext{as } arepsilon o 0,$$

where

$$\overline{H}(\theta) = \begin{cases} \overline{H}_{+}(\theta) & \text{if } \theta \ge 0\\ \overline{H}_{-}(\theta) & \text{if } \theta \le 0 \end{cases} = \min\{\overline{H}_{+}(\theta), \overline{H}_{-}(\theta)\}.$$

Moreover, since $b(\cdot, \cdot) \ge a$, we have

$$H(x,p,\omega)\leqslant rac{1}{2}\,p^2-a|p|\ \Rightarrow\ \overline{H}(heta)\leqslant rac{1}{2}\,p^2-a|p|.$$

Thus $\overline{H}(\pm a) < 0$.

Correspondingly, $u_{ heta}^{arepsilon}$ solves

$$\partial_t u_{\theta}^{\varepsilon} - \frac{\varepsilon}{2} \partial_x^2 u_{\theta}^{\varepsilon} + H_{\pm}(x, \partial_x u_{\theta}^{\varepsilon}, \omega) = 0, \quad u_{\theta}^{\varepsilon} \big|_{t=0} = \theta x,$$

where "+" corresponds to $\theta \ge 0$ and "-" to $\theta \le 0$.By homogenization for convex H, with probability 1

$$u^arepsilon_ heta(t,x,\omega)
ightarrow _{ ext{loc}} \overline{u}_ heta(t,x) = heta x - t \overline{H}(heta) \quad ext{as } arepsilon o 0,$$

where

$$\overline{H}(\theta) = \begin{cases} \overline{H}_{+}(\theta) & \text{if } \theta \ge 0\\ \overline{H}_{-}(\theta) & \text{if } \theta \le 0 \end{cases} = \min\{\overline{H}_{+}(\theta), \overline{H}_{-}(\theta)\}.$$

Moreover, since $b(\cdot, \cdot) \ge a$, we have

$$H(x,p,\omega)\leqslant rac{1}{2}\,p^2-a|p|\ \Rightarrow\ \overline{H}(heta)\leqslant rac{1}{2}\,p^2-a|p|.$$

Thus $\overline{H}(\pm a) < 0$. Since $\overline{H}(0) = 0$, we infer that \overline{H} is not convex.

Critique.

The argument above

• works only for linear (in fact, monotone) initial data;

Critique.

The argument above

- works only for linear (in fact, monotone) initial data;
- relies on Hopf-Cole transformation;

Critique.

The argument above

- works only for linear (in fact, monotone) initial data;
- relies on Hopf-Cole transformation;
- depends on the control representation formula for u_{θ}^{ε} ;

Critique.

The argument above

- works only for linear (in fact, monotone) initial data;
- relies on Hopf-Cole transformation;
- depends on the control representation formula for u_{θ}^{ε} ;
- is valid only for d = 1.

Critique.

The argument above

- works only for linear (in fact, monotone) initial data;
- relies on Hopf-Cole transformation;
- depends on the control representation formula for u_{θ}^{ε} ;
- is valid only for d = 1.

Remedies.

• We show that homogenization for linear initial data implies homogenization for general UC initial data.

Critique.

The argument above

- works only for linear (in fact, monotone) initial data;
- relies on Hopf-Cole transformation;
- depends on the control representation formula for u_{θ}^{ε} ;
- is valid only for d = 1.

- We show that homogenization for linear initial data implies homogenization for general UC initial data.
- Such a result is refined (and simplified) in the stationary ergodic setting.

Critique.

The argument above

- works only for linear (in fact, monotone) initial data;
- relies on Hopf-Cole transformation;
- depends on the control representation formula for u_{θ}^{ε} ;
- is valid only for d = 1.

- We show that homogenization for linear initial data implies homogenization for general UC initial data.
- Such a result is refined (and simplified) in the stationary ergodic setting.
- For d = 1, we provide a class of examples of nonconvex Hamiltonians satisfying $H(x, 0, \omega) \equiv 0$ for which the corresponding viscous/nonviscous HJ equation homogenizes.

Critique.

The argument above

- works only for linear (in fact, monotone) initial data;
- relies on Hopf-Cole transformation;
- depends on the control representation formula for u_{θ}^{ε} ;
- is valid only for d = 1.

- We show that homogenization for linear initial data implies homogenization for general UC initial data.
- Such a result is refined (and simplified) in the stationary ergodic setting.
- For d = 1, we provide a class of examples of nonconvex Hamiltonians satisfying $H(x, 0, \omega) \equiv 0$ for which the corresponding viscous/nonviscous HJ equation homogenizes. Our arguments do not use Hopf-Cole transformation or representation formulas, but rely on the fact that d = 1.

Critique.

The argument above

- works only for linear (in fact, monotone) initial data;
- relies on Hopf-Cole transformation;
- depends on the control representation formula for u_{θ}^{ε} ;
- is valid only for d = 1.

- We show that homogenization for linear initial data implies homogenization for general UC initial data.
- Such a result is refined (and simplified) in the stationary ergodic setting.
- For d = 1, we provide a class of examples of nonconvex Hamiltonians satisfying $H(x, 0, \omega) \equiv 0$ for which the corresponding viscous/nonviscous HJ equation homogenizes. Our arguments do not use Hopf-Cole transformation or representation formulas, but rely on the fact that d = 1. The result is new in the viscous case.

For fixed $\theta \in \mathbb{R}^d$, let us consider as initial datum $g(x) = \theta \cdot x$.

For fixed $\theta \in \mathbb{R}^d$, let us consider as initial datum $g(x) = \theta \cdot x$. The solution u_{θ}^{ε} of

$$\partial_t u^{\varepsilon} - \varepsilon \operatorname{tr} \left(A\left(\frac{x}{\varepsilon}\right) D_x^2 u^{\varepsilon} \right) + H\left(\frac{x}{\varepsilon}, D_x u^{\varepsilon}\right) = 0 \quad \text{in } (0, +\infty) \times \mathbb{R}^d$$

with initial datum $u^{\varepsilon}(0, x) = \theta \cdot x$ satisfies $u^{\varepsilon}_{\theta}(t, x) = \varepsilon u_{\theta}\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}\right)$, where u_{θ} stands for u^{1}_{θ} .

For fixed $\theta \in \mathbb{R}^d$, let us consider as initial datum $g(x) = \theta \cdot x$. The solution u_{θ}^{ε} of

$$\partial_t u^{\varepsilon} - \varepsilon \operatorname{tr}\left(A\left(\frac{x}{\varepsilon}\right) D_x^2 u^{\varepsilon}\right) + H\left(\frac{x}{\varepsilon}, D_x u^{\varepsilon}\right) = 0 \quad \text{in } (0, +\infty) \times \mathbb{R}^d$$

with initial datum $u^{\varepsilon}(0, x) = \theta \cdot x$ satisfies $u^{\varepsilon}_{\theta}(t, x) = \varepsilon u_{\theta}\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}\right)$, where u_{θ} stands for u^{1}_{θ} .

The solution \overline{u}_{θ} of

$$\partial_t \overline{u} + \overline{H}(D_x \overline{u}) = 0, \quad \overline{u}(0, x) = \theta \cdot x$$

is of the form $\overline{u}_{\theta}(t,x) := \theta \cdot x - t\overline{H}(\theta).$

For fixed $\theta \in \mathbb{R}^d$, let us consider as initial datum $g(x) = \theta \cdot x$. The solution u_{θ}^{ε} of

$$\partial_t u^{\varepsilon} - \varepsilon \operatorname{tr} \left(A\left(\frac{x}{\varepsilon}\right) D_x^2 u^{\varepsilon} \right) + H\left(\frac{x}{\varepsilon}, D_x u^{\varepsilon}\right) = 0 \quad \text{in } (0, +\infty) \times \mathbb{R}^d$$

with initial datum $u^{\varepsilon}(0, x) = \theta \cdot x$ satisfies $u^{\varepsilon}_{\theta}(t, x) = \varepsilon u_{\theta}\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}\right)$, where u_{θ} stands for u^{1}_{θ} .

The solution \overline{u}_{θ} of

$$\partial_t \overline{u} + \overline{H}(D_x \overline{u}) = 0, \quad \overline{u}(0, x) = \theta \cdot x$$

is of the form $\overline{u}_{\theta}(t,x) := \theta \cdot x - t\overline{H}(\theta).$

If (HJ_{ε}) homogenizes, then, in particular,

$$-\overline{H}(heta) = \lim_{arepsilon o 0^+} u^arepsilon_ heta(1,0) = \lim_{arepsilon o 0^+} arepsilon u_ heta(1/arepsilon,0).$$

Theorem 1 (AD, E. Kosygina (2017)). Let A and H satisfy (A1)–(A2) and (H1)–(H2) respectively. Assume that the Cauchy problem for (HJ_1) is well-posed

Theorem 1 (AD, E. Kosygina (2017)). Let A and H satisfy (A1)–(A2) and (H1)–(H2) respectively. Assume that the Cauchy problem for (HJ_1) is well-posed and one of the following two conditions holds:

(H3) $\exists m(\cdot): |H(x,p_1) - H(x,p_2)| \leq m(|p_1 - p_2|) \forall x, p_1, p_2 \in \mathbb{R}^d;$

Theorem 1 (AD, E. Kosygina (2017)). Let A and H satisfy (A1)–(A2) and (H1)–(H2) respectively. Assume that the Cauchy problem for (HJ_1) is well-posed and one of the following two conditions holds:

(H3) $\exists m(\cdot): |H(x,p_1) - H(x,p_2)| \leq m(|p_1 - p_2|) \forall x, p_1, p_2 \in \mathbb{R}^d;$

(L) $\forall \theta \ \exists \kappa : \ |u_{\theta}(t,x) - u_{\theta}(t,y)| \leqslant \kappa |x-y| \ \forall \ x,y \in \mathbb{R}^{d}, \ t \geq 0.$

Theorem 1 (AD, E. Kosygina (2017)). Let A and H satisfy (A1)-(A2) and (H1)-(H2) respectively. Assume that the Cauchy problem for (HJ₁) is well-posed and one of the following two conditions holds: (H3) $\exists m(\cdot)$: $|H(x, p_1) - H(x, p_2)| \leq m(|p_1 - p_2|) \forall x, p_1, p_2 \in \mathbb{R}^d$; (L) $\forall \theta \exists \kappa : |u_{\theta}(t, x) - u_{\theta}(t, y)| \leq \kappa |x - y| \forall x, y \in \mathbb{R}^d, t \geq 0$. Finally, suppose that there exists a continuous (and superlinear) $\overline{H} : \mathbb{R}^d \to \mathbb{R}$ such that

 $\forall \theta \in \mathbb{R}^d \quad u_{\theta}^{\varepsilon}(t,x) \rightrightarrows_{\text{loc}} \theta \cdot x - t \overline{H}(\theta) \quad \text{as} \ \varepsilon \to 0^+.$

Theorem 1 (AD, E. Kosygina (2017)). Let A and H satisfy (A1)-(A2) and (H1)-(H2) respectively. Assume that the Cauchy problem for (HJ₁) is well-posed and one of the following two conditions holds: (H3) $\exists m(\cdot)$: $|H(x, p_1) - H(x, p_2)| \leq m(|p_1 - p_2|) \forall x, p_1, p_2 \in \mathbb{R}^d$; (L) $\forall \theta \exists \kappa : |u_\theta(t, x) - u_\theta(t, y)| \leq \kappa |x - y| \forall x, y \in \mathbb{R}^d, t \geq 0$. Finally, suppose that there exists a continuous (and superlinear) $\overline{H} : \mathbb{R}^d \to \mathbb{R}$ such that

 $\forall \theta \in \mathbb{R}^d \quad u_{\theta}^{\varepsilon}(t,x) \rightrightarrows_{\text{loc}} \theta \cdot x - t \overline{H}(\theta) \quad \text{as} \ \varepsilon \to 0^+.$

Then (HJ_{ε}) homogenizes.

Theorem 1 (AD, E. Kosygina (2017)). Let A and H satisfy (A1)-(A2) and (H1)-(H2) respectively. Assume that the Cauchy problem for (HJ₁) is well-posed and one of the following two conditions holds: (H3) $\exists m(\cdot)$: $|H(x, p_1) - H(x, p_2)| \leq m(|p_1 - p_2|) \forall x, p_1, p_2 \in \mathbb{R}^d$; (L) $\forall \theta \exists \kappa : |u_\theta(t, x) - u_\theta(t, y)| \leq \kappa |x - y| \forall x, y \in \mathbb{R}^d, t \geq 0$. Finally, suppose that there exists a continuous (and superlinear) $\overline{H} : \mathbb{R}^d \to \mathbb{R}$ such that

$$\forall \theta \in \mathbb{R}^d \quad u_{\theta}^{\varepsilon}(t,x) \rightrightarrows_{\mathsf{loc}} \theta \cdot x - t \overline{H}(\theta) \quad \mathsf{as} \ \varepsilon \to 0^+.$$

Then (HJ_{ε}) homogenizes.

Remark. If (H3) holds or (L) holds with $\kappa = \kappa(\theta)$ locally bounded in θ , then \overline{H} is continuous.

Previous results in this direction

• P.-L. Lions, G. Papanicolaou, S. Varadhan, unpublished preprint (1987): periodic setting and $A \equiv 0$.
Previous results in this direction

• P.-L. Lions, G. Papanicolaou, S. Varadhan, unpublished preprint (1987): periodic setting and $A \equiv 0$.

The outlined idea of the proof uses characterization results for strongly continuous semi-groups on $\mathrm{UC}([0, +\infty) \times \mathbb{R}^d)$ and uniform (in ε) finite speed of propagation for the semigroup generated by the Cauchy problem (HJ $_{\varepsilon}$).

Previous results in this direction

• P.-L. Lions, G. Papanicolaou, S. Varadhan, unpublished preprint (1987): periodic setting and $A \equiv 0$.

The outlined idea of the proof uses characterization results for strongly continuous semi-groups on $\mathrm{UC}([0, +\infty) \times \mathbb{R}^d)$ and uniform (in ε) finite speed of propagation for the semigroup generated by the Cauchy problem (HJ $_{\varepsilon}$).

• O. Alvarez, M. Bardi, Arch. Ration. Mech. Anal. (2003): periodic setting, fully nonlinear degenerate parabolic PDEs.

Previous results in this direction

• P.-L. Lions, G. Papanicolaou, S. Varadhan, unpublished preprint (1987): periodic setting and $A \equiv 0$.

The outlined idea of the proof uses characterization results for strongly continuous semi-groups on $\mathrm{UC}([0, +\infty) \times \mathbb{R}^d)$ and uniform (in ε) finite speed of propagation for the semigroup generated by the Cauchy problem (HJ $_{\varepsilon}$).

• O. Alvarez, M. Bardi, Arch. Ration. Mech. Anal. (2003): periodic setting, fully nonlinear degenerate parabolic PDEs.

The authors introduce a notion of ergodicity that is shown to be a sufficient condition for homogenization.

Comparison with Alvarez and Bardi, ARMA (2003)

For our class of problems: let

 $F(x, p, X) := -\operatorname{tr}(A(x)X) + H(x, p)$ be \mathbb{Z}^d -periodic in x.

Comparison with Alvarez and Bardi, ARMA (2003) For our class of problems: let

 $F(x, p, X) := -\operatorname{tr}(A(x)X) + H(x, p)$ be \mathbb{Z}^d -periodic in x.

The function F is said to be ergodic at $\theta \in \mathbb{R}^d$ if the periodic solution w_θ of

 $\begin{cases} w_t - \operatorname{tr} \left(A(x) D_x^2 w \right) + H(x, \theta + D_x w) = 0 & \text{in } (0, +\infty) \times \mathbb{R}^d \\ w(0, \cdot) = 0 & \text{on } \mathbb{R}^d \end{cases}$

satisfies

$$rac{w_ heta(t,x)}{t} o c(heta) \;\;\;$$
 as $t o +\infty$ uniformly in $x.$

Comparison with Alvarez and Bardi, ARMA (2003) For our class of problems: let

 $F(x, p, X) := -\operatorname{tr}(A(x)X) + H(x, p)$ be \mathbb{Z}^d -periodic in x.

The function F is said to be ergodic at $\theta \in \mathbb{R}^d$ if the periodic solution w_θ of

 $\begin{cases} w_t - \operatorname{tr} \left(A(x) D_x^2 w \right) + H(x, \theta + D_x w) = 0 & \text{in } (0, +\infty) \times \mathbb{R}^d \\ w(0, \cdot) = 0 & \text{on } \mathbb{R}^d \end{cases}$

satisfies

$$rac{w_ heta(t,x)}{t} o c(heta) \;\;\;$$
 as $t o +\infty$ uniformly in $x.$

Theorem 2 (Alvarez-Bardi, 2003). If *F* is ergodic at each $\theta \in \mathbb{R}^d$, then (HJ_{ε}) homogenizes with $\overline{H}(\theta) := -c(\theta)$.

Comparison with Alvarez and Bardi, ARMA (2003)

 $F(x, p, X) := -\operatorname{tr}(A(x)X) + H(x, p)$ be \mathbb{Z}^d -periodic in x. The function F is said to be ergodic at $\theta \in \mathbb{R}^d$ if the periodic solution w_{θ} of

$$\begin{cases} w_t - \operatorname{tr} \left(A(x) D_x^2 w \right) + H(x, \theta + D_x w) = 0 & \text{in } (0, +\infty) \times \mathbb{R}^d \\ w(0, \cdot) = 0 & \text{on } \mathbb{R}^d \end{cases}$$

satisfies

$$rac{w_ heta(t,x)}{t} o c(heta) \;\;$$
 as $t o +\infty$ uniformly in x .

To see a connection with our results, note that

 $u^{\varepsilon}_{ heta}(t,x) = \langle heta, x
angle + arepsilon w_{ heta}(t/arepsilon, x/arepsilon).$

Comparison with Alvarez and Bardi, ARMA (2003)

 $F(x, p, X) := -\operatorname{tr}(A(x)X) + H(x, p)$ be \mathbb{Z}^d -periodic in x. The function F is said to be ergodic at $\theta \in \mathbb{R}^d$ if the periodic solution w_{θ} of

$$\begin{cases} w_t - \operatorname{tr} \left(A(x) D_x^2 w \right) + H(x, \theta + D_x w) = 0 & \text{in } (0, +\infty) \times \mathbb{R}^d \\ w(0, \cdot) = 0 & \text{on } \mathbb{R}^d \end{cases}$$

satisfies

$$rac{w_ heta(t,x)}{t} o c(heta) \;\;\;$$
 as $t o +\infty$ uniformly in $x.$

To see a connection with our results, note that

$$u^{\varepsilon}_{\theta}(t,x) = \langle \theta, x \rangle + \varepsilon w_{\theta}(t/\varepsilon, x/\varepsilon).$$

The ergodicity is equivalent to the statement that, for every fixed t > 0,

 $\lim_{\varepsilon \to 0+} u_{\theta}^{\varepsilon}(t, x) = \langle \theta, x \rangle - t \,\overline{H}(\theta) \quad \text{uniformly in } x \in \mathbb{R}^d.$

Lemma 3 (AD, E. Kosygina (2017)). Assume that, for a fixed $\theta \in \mathbb{R}^d$,

 $\lim_{\varepsilon \to 0+} u_{\theta}^{\varepsilon}(1,0,\omega) = -\overline{H}(\theta) \qquad \text{a.s. in } \Omega.$

Then

 $u^{\varepsilon}_{ heta}(t,x,\omega) \rightrightarrows_{\text{loc}} heta \cdot x - t\overline{H}(heta) \quad \text{in } [0,+\infty) imes \mathbb{R}^d \qquad \text{a.s. in } \Omega.$

Let us put ourself in a stationary ergodic setting with d = 1.

Let us put ourself in a stationary ergodic setting with d = 1. Let A satisfy (A1)–(A2), and $H_{\pm}(\cdot, \cdot, \omega) \in \mathcal{H}(\alpha_0, \beta_0, \gamma)$, where bounds and parameters are independent of ω .

Let us put ourself in a stationary ergodic setting with d = 1.

Let A satisfy (A1)–(A2), and $H_{\pm}(\cdot, \cdot, \omega) \in \mathcal{H}(\alpha_0, \beta_0, \gamma)$, where bounds and parameters are independent of ω .

Assume, in addition, that $(HJ_{\varepsilon}^{\omega})$ with Hamiltonians H_{\pm} homogenizes,

Let us put ourself in a stationary ergodic setting with d = 1.

Let A satisfy (A1)–(A2), and $H_{\pm}(\cdot, \cdot, \omega) \in \mathcal{H}(\alpha_0, \beta_0, \gamma)$, where bounds and parameters are independent of ω .

Assume, in addition, that $(HJ_{\varepsilon}^{\omega})$ with Hamiltonians H_{\pm} homogenizes,

 $H_{\pm}(x,0,\omega) \equiv 0 \quad \forall x \in \mathbb{R} \text{ and } \omega \in \Omega.$

Let us put ourself in a stationary ergodic setting with d = 1.

Let A satisfy (A1)–(A2), and $H_{\pm}(\cdot, \cdot, \omega) \in \mathcal{H}(\alpha_0, \beta_0, \gamma)$, where bounds and parameters are independent of ω .

Assume, in addition, that $(HJ_{\varepsilon}^{\omega})$ with Hamiltonians H_{\pm} homogenizes,

 $H_{\pm}(x,0,\omega) \equiv 0 \quad \forall x \in \mathbb{R} \text{ and } \omega \in \Omega.$

Set

$$H(x,p,\omega) := \begin{cases} H_+(x,p,\omega) & \text{if } p \ge 0\\ H_-(x,p,\omega) & \text{if } p \le 0. \end{cases}$$

Let us put ourself in a stationary ergodic setting with d = 1.

Let A satisfy (A1)–(A2), and $H_{\pm}(\cdot, \cdot, \omega) \in \mathcal{H}(\alpha_0, \beta_0, \gamma)$, where bounds and parameters are independent of ω .

Assume, in addition, that $(HJ_{\varepsilon}^{\omega})$ with Hamiltonians H_{\pm} homogenizes,

$$H_{\pm}(x,0,\omega) \equiv 0 \quad \forall x \in \mathbb{R} \text{ and } \omega \in \Omega.$$

Set

$$H(x,p,\omega) := egin{cases} H_+(x,p,\omega) & ext{if } p \geqslant 0 \ H_-(x,p,\omega) & ext{if } p \leqslant 0. \end{cases}$$

Remark. The condition $H_{\pm}(\cdot, 0, \cdot) \equiv 0$ can be relaxed in favor of $H_{\pm}(\cdot, p_0, \cdot) \equiv h_0$ for some $p_0, h_0 \in \mathbb{R}$.

Let us put ourself in a stationary ergodic setting with d = 1.

Let A satisfy (A1)–(A2), and $H_{\pm}(\cdot, \cdot, \omega) \in \mathcal{H}(\alpha_0, \beta_0, \gamma)$, where bounds and parameters are independent of ω .

Assume, in addition, that $(HJ_{\varepsilon}^{\omega})$ with Hamiltonians H_{\pm} homogenizes,

$$H_{\pm}(x,0,\omega) \equiv 0 \quad \forall x \in \mathbb{R} \text{ and } \omega \in \Omega.$$

Set

$$H(x,p,\omega) := egin{cases} H_+(x,p,\omega) & ext{if } p \geqslant 0 \ H_-(x,p,\omega) & ext{if } p \leqslant 0. \end{cases}$$

Remark. The condition $H_{\pm}(\cdot, 0, \cdot) \equiv 0$ can be relaxed in favor of $H_{\pm}(\cdot, p_0, \cdot) \equiv h_0$ for some $p_0, h_0 \in \mathbb{R}$.

Remark. The homogenization requirement for H_{\pm} is met if, for example,

• H_{\pm} are convex in p;

Let us put ourself in a stationary ergodic setting with d = 1.

Let A satisfy (A1)–(A2), and $H_{\pm}(\cdot, \cdot, \omega) \in \mathcal{H}(\alpha_0, \beta_0, \gamma)$, where bounds and parameters are independent of ω .

Assume, in addition, that $(HJ_{\varepsilon}^{\omega})$ with Hamiltonians H_{\pm} homogenizes,

$$H_{\pm}(x,0,\omega) \equiv 0 \quad \forall x \in \mathbb{R} \text{ and } \omega \in \Omega.$$

Set

$$H(x,p,\omega) := egin{cases} H_+(x,p,\omega) & ext{if } p \geqslant 0 \ H_-(x,p,\omega) & ext{if } p \leqslant 0. \end{cases}$$

Remark. The condition $H_{\pm}(\cdot, 0, \cdot) \equiv 0$ can be relaxed in favor of $H_{\pm}(\cdot, p_0, \cdot) \equiv h_0$ for some $p_0, h_0 \in \mathbb{R}$.

Remark. The homogenization requirement for H_{\pm} is met if, for example,

- H_{\pm} are convex in p;
- $A \equiv 0$ and H_{\pm} are level set convex;

Let us put ourself in a stationary ergodic setting with d = 1.

Let A satisfy (A1)–(A2), and $H_{\pm}(\cdot, \cdot, \omega) \in \mathcal{H}(\alpha_0, \beta_0, \gamma)$, where bounds and parameters are independent of ω .

Assume, in addition, that $(HJ_{\varepsilon}^{\omega})$ with Hamiltonians H_{\pm} homogenizes,

$$H_{\pm}(x,0,\omega) \equiv 0 \quad \forall x \in \mathbb{R} \text{ and } \omega \in \Omega.$$

Set

$$H(x,p,\omega) := egin{cases} H_+(x,p,\omega) & ext{if } p \geqslant 0 \ H_-(x,p,\omega) & ext{if } p \leqslant 0. \end{cases}$$

Remark. The condition $H_{\pm}(\cdot, 0, \cdot) \equiv 0$ can be relaxed in favor of $H_{\pm}(\cdot, p_0, \cdot) \equiv h_0$ for some $p_0, h_0 \in \mathbb{R}$.

Remark. The homogenization requirement for H_{\pm} is met if, for example,

- H_{\pm} are convex in p;
- $A \equiv 0$ and H_{\pm} are level set convex;
- H_{\pm} are of the form for which we already obtained homogenization.

Theorem 4 (AD, E. Kosygina (2017)). Let d = 1 and A, H as above.

Theorem 4 (AD, E. Kosygina (2017)). Let d = 1 and A, H as above. Then $(HJ_{\varepsilon}^{\omega})$ homogenizes, with

$$\overline{H}(heta) = egin{cases} \overline{H}_+(heta) & ext{if } heta \geqslant 0, \ \overline{H}_-(heta) & ext{if } heta \leqslant 0, \end{cases}$$

where \overline{H}_+ and \overline{H}_- are the effective Hamiltonians obtained by homogenizing (HJ $_{\varepsilon}^{\omega}$) with H_+ and H_- in place of H.

Theorem 4 (AD, E. Kosygina (2017)). Let d = 1 and A, H as above. Then $(HJ_{\varepsilon}^{\omega})$ homogenizes, with

$$\overline{H}(heta) = egin{cases} \overline{H}_+(heta) & ext{if } heta \geqslant 0, \ \overline{H}_-(heta) & ext{if } heta \leqslant 0, \end{cases}$$

where \overline{H}_+ and \overline{H}_- are the effective Hamiltonians obtained by homogenizing $(HJ_{\varepsilon}^{\omega})$ with H_+ and H_- in place of H.

Remark. The effective Hamiltonian \overline{H} is not convex in general.

The solution u_{θ}^{ε} of

$$u_t^{\varepsilon} - \varepsilon A\left(\frac{x}{\varepsilon}\right) u_{xx}^{\varepsilon} + H\left(\frac{x}{\varepsilon}, u_x^{\varepsilon}, \omega\right) = 0 \quad \text{in } (0, +\infty) \times \mathbb{R},$$

with initial datum $u^{\varepsilon}_{\theta}(0,x) = \theta x$

The solution u_{θ}^{ε} of

$$u_t^{\varepsilon} - \varepsilon A\left(\frac{x}{\varepsilon}\right) u_{xx}^{\varepsilon} + H\left(\frac{x}{\varepsilon}, u_x^{\varepsilon}, \omega\right) = 0 \quad \text{in } (0, +\infty) \times \mathbb{R},$$

with initial datum $u_{\theta}^{\varepsilon}(0,x) = \theta x$ is such that $u_{\theta}^{\varepsilon}(t,\cdot,\omega)$ has the same type of monotonicity of its initial datum, for every t > 0 and ω .

The solution u_{θ}^{ε} of

$$u_t^{\varepsilon} - \varepsilon A\left(\frac{x}{\varepsilon}\right) u_{xx}^{\varepsilon} + H\left(\frac{x}{\varepsilon}, u_x^{\varepsilon}, \omega\right) = 0 \quad \text{in } (0, +\infty) \times \mathbb{R},$$

with initial datum $u_{\theta}^{\varepsilon}(0,x) = \theta x$ is such that $u_{\theta}^{\varepsilon}(t,\cdot,\omega)$ has the same type of monotonicity of its initial datum, for every t > 0 and ω . For instance, $u_{\theta}^{\varepsilon}(t,\cdot,\omega)$ is nondecreasing if $\theta \ge 0$,

The solution u_{θ}^{ε} of

$$u_t^{\varepsilon} - \varepsilon A\left(\frac{x}{\varepsilon}\right) u_{xx}^{\varepsilon} + H\left(\frac{x}{\varepsilon}, u_x^{\varepsilon}, \omega\right) = 0 \quad \text{in } (0, +\infty) \times \mathbb{R},$$

with initial datum $u_{\theta}^{\varepsilon}(0,x) = \theta x$ is such that $u_{\theta}^{\varepsilon}(t,\cdot,\omega)$ has the same type of monotonicity of its initial datum, for every t > 0 and ω . For instance, $u_{\theta}^{\varepsilon}(t,\cdot,\omega)$ is nondecreasing if $\theta \ge 0$, in particular it is also a solution of

$$u_t^{\varepsilon} - \varepsilon A\left(rac{x}{arepsilon}
ight) u_{xx}^{arepsilon} + H_+\left(rac{x}{arepsilon}, u_x^{arepsilon}, \omega
ight) = 0 \quad ext{in } (0, +\infty) imes \mathbb{R}.$$

The solution u_{θ}^{ε} of

$$u_t^{\varepsilon} - \varepsilon A\left(\frac{x}{\varepsilon}\right) u_{xx}^{\varepsilon} + H\left(\frac{x}{\varepsilon}, u_x^{\varepsilon}, \omega\right) = 0 \quad \text{in } (0, +\infty) \times \mathbb{R},$$

with initial datum $u_{\theta}^{\varepsilon}(0,x) = \theta x$ is such that $u_{\theta}^{\varepsilon}(t,\cdot,\omega)$ has the same type of monotonicity of its initial datum, for every t > 0 and ω . For instance, $u_{\theta}^{\varepsilon}(t,\cdot,\omega)$ is nondecreasing if $\theta \ge 0$, in particular it is also a solution of

$$u_t^{\varepsilon} - \varepsilon A\left(\frac{x}{\varepsilon}\right) u_{xx}^{\varepsilon} + H_+\left(\frac{x}{\varepsilon}, u_x^{\varepsilon}, \omega\right) = 0 \quad \text{in } (0, +\infty) \times \mathbb{R}.$$

Since this equation homogenizes, we get

$$\exists \ \overline{H}(\theta) := -\lim_{\varepsilon \to 0^+} u_{\theta}^{\varepsilon}(1,0,\omega) = \overline{H}_+(\theta) \qquad \text{a.s. in } \Omega.$$

The solution u_{θ}^{ε} of

$$u_t^{\varepsilon} - \varepsilon A\left(\frac{x}{\varepsilon}\right) u_{xx}^{\varepsilon} + H\left(\frac{x}{\varepsilon}, u_x^{\varepsilon}, \omega\right) = 0 \quad \text{in } (0, +\infty) \times \mathbb{R},$$

with initial datum $u_{\theta}^{\varepsilon}(0,x) = \theta x$ is such that $u_{\theta}^{\varepsilon}(t,\cdot,\omega)$ has the same type of monotonicity of its initial datum, for every t > 0 and ω . For instance, $u_{\theta}^{\varepsilon}(t,\cdot,\omega)$ is nondecreasing if $\theta \ge 0$, in particular it is also a solution of

$$u_t^{\varepsilon} - \varepsilon A\left(\frac{x}{\varepsilon}\right) u_{xx}^{\varepsilon} + H_+\left(\frac{x}{\varepsilon}, u_x^{\varepsilon}, \omega\right) = 0 \quad \text{in } (0, +\infty) \times \mathbb{R}.$$

Since this equation homogenizes, we get

$$\exists \ \overline{H}(\theta) := -\lim_{\varepsilon \to 0^+} u_{\theta}^{\varepsilon}(1,0,\omega) = \overline{H}_+(\theta) \qquad \text{a.s. in } \Omega.$$

The argument for $\theta \leq 0$ is similar.

Monotonicity of $u^{arepsilon}_{ heta}(t,\cdot)$

Monotonicity of $u_{\theta}^{\varepsilon}(t, \cdot)$ Due to $u_{\theta}^{\varepsilon}(t, x) = \varepsilon u_{\theta}(\frac{t}{\varepsilon}, \frac{x}{\varepsilon})$, it is enough to prove it for $\varepsilon = 1$.

Monotonicity of $u^{\varepsilon}_{\theta}(t, \cdot)$

Due to $u_{\theta}^{\varepsilon}(t,x) = \varepsilon u_{\theta}\left(\frac{t}{\varepsilon},\frac{x}{\varepsilon}\right)$, it is enough to prove it for $\varepsilon = 1$. Assume that u_{θ} is a solution of

$$\begin{cases} (u_{\theta})_t - (u_{\theta})_{xx} + H(x, (u_{\theta})_x) = 0 & \text{in } (0, +\infty) \times \mathbb{R}, \\ u_{\theta}(0, x) = \theta x & \text{in } \mathbb{R}, \end{cases}$$

with H smooth.

Due to $u_{\theta}^{\varepsilon}(t, x) = \varepsilon u_{\theta}(\frac{t}{\varepsilon}, \frac{x}{\varepsilon})$, it is enough to prove it for $\varepsilon = 1$. Assume that u_{θ} is a solution of

$$\begin{cases} (u_{\theta})_t - (u_{\theta})_{xx} + H(x, (u_{\theta})_x) = 0 & \text{in } (0, +\infty) \times \mathbb{R}, \\ u_{\theta}(0, x) = \theta x & \text{in } \mathbb{R}, \end{cases}$$

with H smooth. By deriving the equation w.r.t. x, we get that $v := (u_{\theta})_x$ is a solution of

$$\begin{cases} v_t - v_{xx} + \partial_x H(x, v) + \partial_p H(x, v) v_x = 0 & \text{in } (0, +\infty) \times \mathbb{R}, \\ v(0, x) = \theta & \text{in } \mathbb{R}. \end{cases}$$

Due to $u_{\theta}^{\varepsilon}(t, x) = \varepsilon u_{\theta}(\frac{t}{\varepsilon}, \frac{x}{\varepsilon})$, it is enough to prove it for $\varepsilon = 1$. Assume that u_{θ} is a solution of

$$\begin{cases} (u_{\theta})_t - (u_{\theta})_{xx} + H(x, (u_{\theta})_x) = 0 & \text{in } (0, +\infty) \times \mathbb{R}, \\ u_{\theta}(0, x) = \theta x & \text{in } \mathbb{R}, \end{cases}$$

with H smooth. By deriving the equation w.r.t. x, we get that $v := (u_{\theta})_x$ is a solution of

$$\begin{cases} v_t - v_{xx} + \partial_x H(x, v) + \partial_p H(x, v) v_x = 0 & \text{in } (0, +\infty) \times \mathbb{R}, \\ v(0, x) = \theta & \text{in } \mathbb{R}. \end{cases}$$

Since $\partial_x H(x,0) = 0$, $v \equiv 0$ if $\theta = 0$.

Due to $u_{\theta}^{\varepsilon}(t,x) = \varepsilon u_{\theta}\left(\frac{t}{\varepsilon},\frac{x}{\varepsilon}\right)$, it is enough to prove it for $\varepsilon = 1$. Assume that u_{θ} is a solution of

$$\begin{cases} (u_{\theta})_t - (u_{\theta})_{xx} + H(x, (u_{\theta})_x) = 0 & \text{in } (0, +\infty) \times \mathbb{R}, \\ u_{\theta}(0, x) = \theta x & \text{in } \mathbb{R}, \end{cases}$$

with H smooth. By deriving the equation w.r.t. x, we get that $v := (u_{\theta})_x$ is a solution of

$$\begin{cases} v_t - v_{xx} + \partial_x H(x, v) + \partial_p H(x, v) v_x = 0 & \text{in } (0, +\infty) \times \mathbb{R}, \\ v(0, x) = \theta & \text{in } \mathbb{R}. \end{cases}$$

Since $\partial_x H(x,0) = 0$, $v \equiv 0$ if $\theta = 0$. By comparison, we conclude that

 $(u_{ heta})_{\times} = v \geqslant 0$ if heta > 0,

Due to $u_{\theta}^{\varepsilon}(t,x) = \varepsilon u_{\theta}\left(\frac{t}{\varepsilon},\frac{x}{\varepsilon}\right)$, it is enough to prove it for $\varepsilon = 1$. Assume that u_{θ} is a solution of

$$\begin{cases} (u_{\theta})_t - (u_{\theta})_{xx} + H(x, (u_{\theta})_x) = 0 & \text{in } (0, +\infty) \times \mathbb{R}, \\ u_{\theta}(0, x) = \theta x & \text{in } \mathbb{R}, \end{cases}$$

with H smooth. By deriving the equation w.r.t. x, we get that $v := (u_{\theta})_x$ is a solution of

$$\begin{cases} v_t - v_{xx} + \partial_x H(x, v) + \partial_p H(x, v) v_x = 0 & \text{in } (0, +\infty) \times \mathbb{R}, \\ v(0, x) = \theta & \text{in } \mathbb{R}. \end{cases}$$

Since $\partial_x H(x,0) = 0$, $v \equiv 0$ if $\theta = 0$. By comparison, we conclude that

 $(u_{\theta})_{\times} = v \ge 0$ if $\theta > 0$, $(u_{\theta})_{\times} = v \leqslant 0$ if $\theta < 0$,

Due to $u_{\theta}^{\varepsilon}(t,x) = \varepsilon u_{\theta}\left(\frac{t}{\varepsilon},\frac{x}{\varepsilon}\right)$, it is enough to prove it for $\varepsilon = 1$. Assume that u_{θ} is a solution of

$$\begin{cases} (u_{\theta})_t - (u_{\theta})_{xx} + H(x, (u_{\theta})_x) = 0 & \text{in } (0, +\infty) \times \mathbb{R}, \\ u_{\theta}(0, x) = \theta x & \text{in } \mathbb{R}, \end{cases}$$

with H smooth. By deriving the equation w.r.t. x, we get that $v := (u_{\theta})_x$ is a solution of

$$\begin{cases} v_t - v_{xx} + \partial_x H(x, v) + \partial_p H(x, v) v_x = 0 & \text{in } (0, +\infty) \times \mathbb{R}, \\ v(0, x) = \theta & \text{in } \mathbb{R}. \end{cases}$$

Since $\partial_x H(x,0) = 0$, $v \equiv 0$ if $\theta = 0$. By comparison, we conclude that

 $(u_{ heta})_{x} = v \geqslant 0$ if $\theta > 0$, $(u_{ heta})_{x} = v \leqslant 0$ if $\theta < 0$,

yielding the asserted monotonicity of $u^{\varepsilon}_{\theta}(t, \cdot)$.

A class of 1-dimensional examples

We give a definition first.
We give a definition first.

Definition 5. Let $H: \Omega \to C(\mathbb{R}^d \times \mathbb{R}^d)$ be a measurable random field. We shall say that $H(x, p, \omega)$ is pinned at p_0 if there is a constant $h_0 \in \mathbb{R}$ such that $H(\cdot, p_0, \cdot) \equiv h_0$ on $\mathbb{R} \times \Omega$.

We give a definition first.

Definition 5. Let $H: \Omega \to C(\mathbb{R}^d \times \mathbb{R}^d)$ be a measurable random field. We shall say that $H(x, p, \omega)$ is pinned at p_0 if there is a constant $h_0 \in \mathbb{R}$ such that $H(\cdot, p_0, \cdot) \equiv h_0$ on $\mathbb{R} \times \Omega$.

Theorem 6 (AD, E. Kosygina (2017)). Let d = 1 and A be as above.

We give a definition first.

Definition 5. Let $H: \Omega \to C(\mathbb{R}^d \times \mathbb{R}^d)$ be a measurable random field. We shall say that $H(x, p, \omega)$ is pinned at p_0 if there is a constant $h_0 \in \mathbb{R}$ such that $H(\cdot, p_0, \cdot) \equiv h_0$ on $\mathbb{R} \times \Omega$.

Theorem 6 (AD, E. Kosygina (2017)). Let d = 1 and A be as above. Let $H : \Omega \to C(\mathbb{R} \times \mathbb{R})$ be a stationary random field satisfying $H(\cdot, \cdot, \omega) \in \mathcal{H}(\gamma, \alpha_0, \beta_0)$ for every ω .

We give a definition first.

Definition 5. Let $H: \Omega \to C(\mathbb{R}^d \times \mathbb{R}^d)$ be a measurable random field. We shall say that $H(x, p, \omega)$ is pinned at p_0 if there is a constant $h_0 \in \mathbb{R}$ such that $H(\cdot, p_0, \cdot) \equiv h_0$ on $\mathbb{R} \times \Omega$.

Theorem 6 (AD, E. Kosygina (2017)). Let d = 1 and A be as above. Let $H : \Omega \to C(\mathbb{R} \times \mathbb{R})$ be a stationary random field satisfying $H(\cdot, \cdot, \omega) \in \mathcal{H}(\gamma, \alpha_0, \beta_0)$ for every ω . Let us furthermore assume that

(i) *H* is pinned at $p_1 < p_2 < \cdots < p_n$;

We give a definition first.

Definition 5. Let $H: \Omega \to C(\mathbb{R}^d \times \mathbb{R}^d)$ be a measurable random field. We shall say that $H(x, p, \omega)$ is pinned at p_0 if there is a constant $h_0 \in \mathbb{R}$ such that $H(\cdot, p_0, \cdot) \equiv h_0$ on $\mathbb{R} \times \Omega$.

Theorem 6 (AD, E. Kosygina (2017)). Let d = 1 and A be as above. Let $H : \Omega \to C(\mathbb{R} \times \mathbb{R})$ be a stationary random field satisfying $H(\cdot, \cdot, \omega) \in \mathcal{H}(\gamma, \alpha_0, \beta_0)$ for every ω . Let us furthermore assume that

(i) *H* is pinned at $p_1 < p_2 < \cdots < p_n$;

(ii) H(x, ⋅, ω) is convex (or level-set convex if A ≡ 0) on each of the intervals (-∞, p₁), (p₁, p₂), ..., (p_n, +∞), for every (x, ω) ∈ ℝ × Ω.

We give a definition first.

Definition 5. Let $H: \Omega \to C(\mathbb{R}^d \times \mathbb{R}^d)$ be a measurable random field. We shall say that $H(x, p, \omega)$ is pinned at p_0 if there is a constant $h_0 \in \mathbb{R}$ such that $H(\cdot, p_0, \cdot) \equiv h_0$ on $\mathbb{R} \times \Omega$.

Theorem 6 (AD, E. Kosygina (2017)). Let d = 1 and A be as above. Let $H : \Omega \to C(\mathbb{R} \times \mathbb{R})$ be a stationary random field satisfying $H(\cdot, \cdot, \omega) \in \mathcal{H}(\gamma, \alpha_0, \beta_0)$ for every ω . Let us furthermore assume that

(i) *H* is pinned at $p_1 < p_2 < \cdots < p_n$;

(ii) H(x, ⋅, ω) is convex (or level-set convex if A ≡ 0) on each of the intervals (-∞, p₁), (p₁, p₂), ..., (p_n, +∞), for every (x, ω) ∈ ℝ × Ω.

Then $(HJ_{\varepsilon}^{\omega})$ homogenizes.

Sketch of the proof

The Hamiltonian H can be written in the following form:

$$H(x, p, \omega) := \begin{cases} H_1(x, p, \omega) & \text{if } p \leq p_1 \\ H_2(x, p, \omega) & \text{if } p_1 \leq p \leq p_2 \\ \dots & \dots \\ H_{n+1}(x, p, \omega) & \text{if } p \geq p_n \end{cases}$$

where H_1, \ldots, H_{n+1} are stationary Hamiltonians belonging to $\mathcal{H}(\gamma, \alpha_0, \beta_0)$ for every ω and such that

• H_1, \ldots, H_{n+1} are convex if $A \not\equiv 0$ or level-set convex if $A \equiv 0$.

Sketch of the proof

The Hamiltonian H can be written in the following form:

$$H(x, p, \omega) := \begin{cases} H_1(x, p, \omega) & \text{if } p \leq p_1 \\ H_2(x, p, \omega) & \text{if } p_1 \leq p \leq p_2 \\ \dots & \dots \\ H_{n+1}(x, p, \omega) & \text{if } p \geq p_n \end{cases}$$

where H_1, \ldots, H_{n+1} are stationary Hamiltonians belonging to $\mathcal{H}(\gamma, \alpha_0, \beta_0)$ for every ω and such that

 H_1, \ldots, H_{n+1} are convex if $A \not\equiv 0$ or level-set convex if $A \equiv 0$. Then $(HJ^{\omega}_{\varepsilon})$ homogenizes, with

$$\overline{H}(heta) = egin{cases} \overline{H}_1(heta) & ext{if } heta \leqslant p_1 \ \overline{H}_2(heta) & ext{if } p_1 \leqslant heta \leqslant p_2 \ \dots & \dots \ \overline{H}_{n+1}(heta) & ext{if } heta \geqslant p_n \end{cases}$$

where $\overline{H}_1, \dots, \overline{H}_{n+1}$ are the effective Hamiltonians obtained by homogenizing $(HJ_{\varepsilon}^{\omega})$ with H_1, \dots, H_{n+1} in place of H.

Thank you

for your attention!