# Stochastic homogenization of viscous and non-viscous HJ equations with non-convex Hamiltonians 

## Andrea Davini

Università di Roma La Sapienza
joint work with E. Kosygina (Baruch College \& CUNY)

LMS Durham Symposium, August 20th-24th, 2018

Introduction

## Viscous and non-viscous HJ equations

$$
\left\{\begin{array}{l}
\partial_{t} u^{\varepsilon}-\varepsilon \operatorname{tr}\left(A\left(\frac{x}{\varepsilon}\right) D_{x}^{2} u^{\varepsilon}\right)+H\left(\frac{x}{\varepsilon}, D_{x} u^{\varepsilon}\right)=0 \text { in }(0,+\infty) \times \mathbb{R}^{d} \\
u^{\varepsilon}(0, \cdot)=g \in U C\left(\mathbb{R}^{d}\right)
\end{array}\right.
$$

## Viscous and non-viscous HJ equations

$$
\left\{\begin{array}{l}
\partial_{t} u^{\varepsilon}-\varepsilon \operatorname{tr}\left(A\left(\frac{x}{\varepsilon}\right) D_{x}^{2} u^{\varepsilon}\right)+H\left(\frac{x}{\varepsilon}, D_{x} u^{\varepsilon}\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{R}^{d} \\
u^{\varepsilon}(0, \cdot)=g \in U C\left(\mathbb{R}^{d}\right)
\end{array}\right.
$$

Here $A(x)=\left(\sigma^{\top} \sigma\right)(x)$ is a positive semi-definite matrix:
(A1) $\|\sigma(x)\| \leqslant \Lambda_{A}$;
(A2) $\|\sigma(x)-\sigma(y)\| \leqslant \Lambda_{A}|x-y|$;

## Viscous and non-viscous HJ equations

$$
\left\{\begin{array}{l}
\partial_{t} u^{\varepsilon}-\varepsilon \operatorname{tr}\left(A\left(\frac{x}{\varepsilon}\right) D_{x}^{2} u^{\varepsilon}\right)+H\left(\frac{x}{\varepsilon}, D_{x} u^{\varepsilon}\right)=0 \text { in }(0,+\infty) \times \mathbb{R}^{d} \\
u^{\varepsilon}(0, \cdot)=g \in U C\left(\mathbb{R}^{d}\right)
\end{array}\right.
$$

Here $A(x)=\left(\sigma^{T} \sigma\right)(x)$ is a positive semi-definite matrix:
(A1) $\|\sigma(x)\| \leqslant \Lambda_{A}$;
(A2) $\|\sigma(x)-\sigma(y)\| \leqslant \Lambda_{A}|x-y|$;
while the Hamiltonian $H(x, p)$ satisfies
(H1) $H \in \mathrm{UC}\left(\mathbb{R}^{d} \times B_{R}\right)$ for all $R>0$;
$(\mathrm{H} 2) \exists \alpha, \beta: \mathbb{R}_{+} \rightarrow \mathbb{R}$ coercive such that

$$
\alpha(|p|) \leqslant H(x, p) \leqslant \beta(|p|) \quad \text { for all }(x, p) \in \mathbb{R}^{d} \times \mathbb{R}^{d}
$$

## Viscous and non-viscous HJ equations

$$
\left\{\begin{array}{l}
\partial_{t} u^{\varepsilon}-\varepsilon \operatorname{tr}\left(A\left(\frac{x}{\varepsilon}\right) D_{x}^{2} u^{\varepsilon}\right)+H\left(\frac{x}{\varepsilon}, D_{x} u^{\varepsilon}\right)=0 \text { in }(0,+\infty) \times \mathbb{R}^{d} \\
u^{\varepsilon}(0, \cdot)=g \in U C\left(\mathbb{R}^{d}\right)
\end{array}\right.
$$

Here $A(x)=\left(\sigma^{T} \sigma\right)(x)$ is a positive semi-definite matrix:
(A1) $\|\sigma(x)\| \leqslant \Lambda_{A}$;
(A2) $\|\sigma(x)-\sigma(y)\| \leqslant \Lambda_{A}|x-y|$;
while the Hamiltonian $H(x, p)$ satisfies
(H1) $H \in \mathrm{UC}\left(\mathbb{R}^{d} \times B_{R}\right)$ for all $R>0$;
(H2) $\exists \alpha, \beta: \mathbb{R}_{+} \rightarrow \mathbb{R}$ coercive such that

$$
\alpha(|p|) \leqslant H(x, p) \leqslant \beta(|p|) \quad \text { for all }(x, p) \in \mathbb{R}^{d} \times \mathbb{R}^{d}
$$

$A \equiv 0$ non-viscous HJ equation

## Viscous and non-viscous HJ equations

$$
\left\{\begin{array}{l}
\partial_{t} u^{\varepsilon}-\varepsilon \operatorname{tr}\left(A\left(\frac{x}{\varepsilon}\right) D_{x}^{2} u^{\varepsilon}\right)+H\left(\frac{x}{\varepsilon}, D_{x} u^{\varepsilon}\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{R}^{d} \\
u^{\varepsilon}(0, \cdot)=g \in U C\left(\mathbb{R}^{d}\right)
\end{array}\right.
$$

Here $A(x)=\left(\sigma^{T} \sigma\right)(x)$ is a positive semi-definite matrix:
(A1) $\|\sigma(x)\| \leqslant \Lambda_{A}$;
(A2) $\|\sigma(x)-\sigma(y)\| \leqslant \Lambda_{A}|x-y|$;
while the Hamiltonian $H(x, p)$ satisfies
(H1) $H \in \mathrm{UC}\left(\mathbb{R}^{d} \times B_{R}\right)$ for all $R>0$;
(H2) $\exists \alpha, \beta: \mathbb{R}_{+} \rightarrow \mathbb{R}$ coercive such that

$$
\alpha(|p|) \leqslant H(x, p) \leqslant \beta(|p|) \quad \text { for all }(x, p) \in \mathbb{R}^{d} \times \mathbb{R}^{d}
$$

$A \equiv 0$ non-viscous HJ equation $\quad A \not \equiv 0$ viscous HJ equation

Well-posedness of the HJ Cauchy problem

## Well-posedness of the HJ Cauchy problem

For $A \equiv 0$, the Cauchy problem $\left(H J_{\varepsilon}\right)$ is well-posed in $\mathrm{UC}\left([0,+\infty) \times \mathbb{R}^{d}\right)$ for $H$ satisfying (H1)-(H2).

## Well-posedness of the HJ Cauchy problem

For $A \equiv 0$, the Cauchy problem $\left(H J_{\varepsilon}\right)$ is well-posed in $\mathrm{UC}\left([0,+\infty) \times \mathbb{R}^{d}\right)$ for $H$ satisfying $(\mathrm{H} 1)-(\mathrm{H} 2)$.

For $A \neq 0$ satisfying (A1)-(A2) the Cauchy problem $\left(H J_{\varepsilon}\right)$ is well-posed in $\mathrm{UC}\left([0,+\infty) \times \mathbb{R}^{d}\right)$ for $H$ satisfying (for instance) the following set of assumptions, for some constants $\alpha_{0}, \beta_{0}>0$, $\gamma>1$ :

## Well-posedness of the HJ Cauchy problem

For $A \equiv 0$, the Cauchy problem $\left(H J_{\varepsilon}\right)$ is well-posed in $\mathrm{UC}\left([0,+\infty) \times \mathbb{R}^{d}\right)$ for $H$ satisfying $(\mathrm{H} 1)-(\mathrm{H} 2)$.

For $A \neq 0$ satisfying (A1)-(A2) the Cauchy problem $\left(H J_{\varepsilon}\right)$ is well-posed in $\mathrm{UC}\left([0,+\infty) \times \mathbb{R}^{d}\right)$ for $H$ satisfying (for instance) the following set of assumptions, for some constants $\alpha_{0}, \beta_{0}>0$, $\gamma>1$ :
(i) $\alpha_{0}|p|^{\gamma}-1 / \alpha_{0} \leqslant H(x, p) \leqslant \beta_{0}\left(|p|^{\gamma}+1\right) \quad \forall x, p \in \mathbb{R}^{d}$;
(ii) $|H(x, p)-H(y, p)| \leqslant \beta_{0}\left(|p|^{\gamma}+1\right)|x-y| \quad \forall x, y, p \in \mathbb{R}^{d}$;
(iii) $|H(x, p)-H(x, q)| \leqslant \beta_{0}(|p|+|q|+1)^{\gamma-1}|p-q| \quad \forall x, p, q \in \mathbb{R}^{d}$.

## Well-posedness of the HJ Cauchy problem

For $A \equiv 0$, the Cauchy problem $\left(H J_{\varepsilon}\right)$ is well-posed in
$\mathrm{UC}\left([0,+\infty) \times \mathbb{R}^{d}\right)$ for $H$ satisfying $(\mathrm{H} 1)-(\mathrm{H} 2)$.
For $A \neq 0$ satisfying (A1)-(A2) the Cauchy problem $\left(H J_{\varepsilon}\right)$ is well-posed in $\mathrm{UC}\left([0,+\infty) \times \mathbb{R}^{d}\right)$ for $H$ satisfying (for instance) the following set of assumptions, for some constants $\alpha_{0}, \beta_{0}>0$, $\gamma>1$ :
(i) $\alpha_{0}|p|^{\gamma}-1 / \alpha_{0} \leqslant H(x, p) \leqslant \beta_{0}\left(|p|^{\gamma}+1\right) \quad \forall x, p \in \mathbb{R}^{d}$;
(ii) $|H(x, p)-H(y, p)| \leqslant \beta_{0}\left(|p|^{\gamma}+1\right)|x-y| \quad \forall x, y, p \in \mathbb{R}^{d}$;
(iii) $|H(x, p)-H(x, q)| \leqslant \beta_{0}(|p|+|q|+1)^{\gamma-1}|p-q| \quad \forall x, p, q \in \mathbb{R}^{d}$.

We will denote by $\mathcal{H}\left(\alpha_{0}, \beta_{0}, \gamma\right)$ such a family of Hamiltonians.

## Well-posedness of the HJ Cauchy problem

For $A \equiv 0$, the Cauchy problem $\left(H J_{\varepsilon}\right)$ is well-posed in
$\mathrm{UC}\left([0,+\infty) \times \mathbb{R}^{d}\right)$ for $H$ satisfying $(\mathrm{H} 1)-(\mathrm{H} 2)$.
For $A \neq 0$ satisfying (A1)-(A2) the Cauchy problem $\left(H J_{\varepsilon}\right)$ is well-posed in $\mathrm{UC}\left([0,+\infty) \times \mathbb{R}^{d}\right)$ for $H$ satisfying (for instance) the following set of assumptions, for some constants $\alpha_{0}, \beta_{0}>0$, $\gamma>1$ :
(i) $\alpha_{0}|p|^{\gamma}-1 / \alpha_{0} \leqslant H(x, p) \leqslant \beta_{0}\left(|p|^{\gamma}+1\right) \quad \forall x, p \in \mathbb{R}^{d}$;
(ii) $|H(x, p)-H(y, p)| \leqslant \beta_{0}\left(|p|^{\gamma}+1\right)|x-y| \quad \forall x, y, p \in \mathbb{R}^{d}$;
(iii) $|H(x, p)-H(x, q)| \leqslant \beta_{0}(|p|+|q|+1)^{\gamma-1}|p-q| \quad \forall x, p, q \in \mathbb{R}^{d}$.

We will denote by $\mathcal{H}\left(\alpha_{0}, \beta_{0}, \gamma\right)$ such a family of Hamiltonians.

- S. Armstrong, H.V. Tran, Math. Ann. (2015).


## Well-posedness of the HJ Cauchy problem

For $A \equiv 0$, the Cauchy problem $\left(H J_{\varepsilon}\right)$ is well-posed in
$\mathrm{UC}\left([0,+\infty) \times \mathbb{R}^{d}\right)$ for $H$ satisfying (H1)-(H2).
For $A \neq 0$ satisfying (A1)-(A2) the Cauchy problem $\left(H J_{\varepsilon}\right)$ is well-posed in $\mathrm{UC}\left([0,+\infty) \times \mathbb{R}^{d}\right)$ for $H$ satisfying (for instance) the following set of assumptions, for some constants $\alpha_{0}, \beta_{0}>0$, $\gamma>1$ :
(i) $\alpha_{0}|p|^{\gamma}-1 / \alpha_{0} \leqslant H(x, p) \leqslant \beta_{0}\left(|p|^{\gamma}+1\right) \quad \forall x, p \in \mathbb{R}^{d}$;
(ii) $|H(x, p)-H(y, p)| \leqslant \beta_{0}\left(|p|^{\gamma}+1\right)|x-y| \quad \forall x, y, p \in \mathbb{R}^{d}$;
(iii) $|H(x, p)-H(x, q)| \leqslant \beta_{0}(|p|+|q|+1)^{\gamma-1}|p-q| \quad \forall x, p, q \in \mathbb{R}^{d}$.

We will denote by $\mathcal{H}\left(\alpha_{0}, \beta_{0}, \gamma\right)$ such a family of Hamiltonians.

- S. Armstrong, H.V. Tran, Math. Ann. (2015).
- A. Davini, Commun. Contemp. Math. (2017).


## Homogenization of HJ equations

Assume that the following Cauchy problem is well posed:

$$
\left\{\begin{array}{l}
\partial_{t} u^{\varepsilon}-\varepsilon \operatorname{tr}\left(A\left(\frac{x}{\varepsilon}\right) D_{x}^{2} u^{\varepsilon}\right)+H\left(\frac{x}{\varepsilon}, D_{x} u^{\varepsilon}\right)=0 \text { in }(0,+\infty) \times \mathbb{R}^{d} \\
u^{\varepsilon}(0, \cdot)=g \in U C\left(\mathbb{R}^{d}\right)
\end{array}\right.
$$

## Homogenization of HJ equations

Assume that the following Cauchy problem is well posed:

$$
\left\{\begin{array}{l}
\partial_{t} u^{\varepsilon}-\varepsilon \operatorname{tr}\left(A\left(\frac{x}{\varepsilon}\right) D_{x}^{2} u^{\varepsilon}\right)+H\left(\frac{x}{\varepsilon}, D_{x} u^{\varepsilon}\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{R}^{d} \\
u^{\varepsilon}(0, \cdot)=g \in \mathrm{UC}\left(\mathbb{R}^{d}\right)
\end{array}\right.
$$

We say that $\left(H J_{\varepsilon}\right)$ homogenizes if there exists a continuous $\bar{H}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that for every $g \in U C\left(\mathbb{R}^{d}\right)$

$$
u^{\varepsilon}(t, x) \rightrightarrows \operatorname{loc} \bar{u}(t, x) \quad \text { in }[0,+\infty) \times \mathbb{R}^{d} \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

where $\bar{u}$ solves

$$
\left\{\begin{array}{l}
\partial_{t} \bar{u}+\bar{H}\left(D_{x} \bar{u}\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{R}^{d}  \tag{HJ}\\
\bar{u}(0, \cdot)=g \in \mathrm{UC}\left(\mathbb{R}^{d}\right)
\end{array}\right.
$$

## Stationary ergodic setting

- Environment: probability space $(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{R}^{d}$ acts on $\Omega$ by shifts $\tau_{x}: \Omega \rightarrow \Omega, x \in \mathbb{R}^{d}$, which preserve $\mathbb{P}$. More precisely:
(i) $(x, \omega) \rightarrow \tau_{x} \omega$ is jointly measurable;
(ii) $\tau_{0}=\mathrm{id} ; \tau_{x+y}=\tau_{x} \circ \tau_{y}$;
(iii) $\forall E \in \mathcal{F} \quad \mathbb{P}\left(\tau_{x} E\right)=\mathbb{P}(E)$.


## Stationary ergodic setting

- Environment: probability space $(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{R}^{d}$ acts on $\Omega$ by shifts $\tau_{x}: \Omega \rightarrow \Omega, x \in \mathbb{R}^{d}$, which preserve $\mathbb{P}$. More precisely:
(i) $(x, \omega) \rightarrow \tau_{x} \omega$ is jointly measurable;
(ii) $\tau_{0}=\mathrm{id} ; \tau_{x+y}=\tau_{x} \circ \tau_{y}$;
(iii) $\forall E \in \mathcal{F} \quad \mathbb{P}\left(\tau_{x} E\right)=\mathbb{P}(E)$.

We assume that the action is ergodic, i.e.

$$
\forall x \in \mathbb{R}^{d} \quad f\left(\tau_{x} \omega\right)=f(\omega) \quad \text { a.s. in } \Omega \Rightarrow f=\text { const. a.s. in } \Omega \text {. }
$$

for every measurable $f: \Omega \rightarrow \mathbb{R}$.

## Stationary ergodic setting

- Environment: probability space $(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{R}^{d}$ acts on $\Omega$ by shifts $\tau_{x}: \Omega \rightarrow \Omega, x \in \mathbb{R}^{d}$, which preserve $\mathbb{P}$. More precisely:
(i) $(x, \omega) \rightarrow \tau_{x} \omega$ is jointly measurable;
(ii) $\tau_{0}=\mathrm{id} ; \tau_{x+y}=\tau_{x} \circ \tau_{y}$;
(iii) $\forall E \in \mathcal{F} \quad \mathbb{P}\left(\tau_{x} E\right)=\mathbb{P}(E)$.

We assume that the action is ergodic, i.e.

$$
\forall x \in \mathbb{R}^{d} \quad f\left(\tau_{x} \omega\right)=f(\omega) \quad \text { a.s. in } \Omega \Rightarrow f=\text { const. a.s. in } \Omega \text {. }
$$

for every measurable $f: \Omega \rightarrow \mathbb{R}$.

- Coefficients:

$$
A(x+y, \omega)=A\left(y, \tau_{x} \omega\right), \quad H(x+y, p, \omega)=H\left(y, p, \tau_{x} \omega\right)
$$

## Stationary ergodic setting

- Environment: probability space $(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{R}^{d}$ acts on $\Omega$ by shifts $\tau_{x}: \Omega \rightarrow \Omega, x \in \mathbb{R}^{d}$, which preserve $\mathbb{P}$. More precisely:
(i) $(x, \omega) \rightarrow \tau_{x} \omega$ is jointly measurable;
(ii) $\tau_{0}=\mathrm{id} ; \tau_{x+y}=\tau_{x} \circ \tau_{y}$;
(iii) $\forall E \in \mathcal{F} \quad \mathbb{P}\left(\tau_{x} E\right)=\mathbb{P}(E)$.

We assume that the action is ergodic, i.e.
$\forall x \in \mathbb{R}^{d} \quad f\left(\tau_{x} \omega\right)=f(\omega)$ a.s. in $\Omega \Rightarrow f=$ const. a.s. in $\Omega$.
for every measurable $f: \Omega \rightarrow \mathbb{R}$.

- Coefficients:

$$
A(x+y, \omega)=A\left(y, \tau_{x} \omega\right), \quad H(x+y, p, \omega)=H\left(y, p, \tau_{x} \omega\right)
$$

We assume that $A$ and $H$ satisfy (A1)-(A2) and (H1)-(H2) respectively with bounds independent of $\omega$.

## Homogenization of HJ equations in random media

Assume that the following Cauchy problem is well posed for every $\omega \in \Omega$ :

$$
\begin{cases}\partial_{t} u^{\varepsilon}-\varepsilon \operatorname{tr}\left(A\left(\frac{x}{\varepsilon}, \omega\right) D_{x}^{2} u^{\varepsilon}\right)+H\left(\frac{x}{\varepsilon}, D_{x} u^{\varepsilon}, \omega\right)=0 & \text { in }(0,+\infty) \times \mathbb{R}^{d} \\ u^{\varepsilon}(0, \cdot, \omega)=g \in U C\left(\mathbb{R}^{d}\right) & \text { for every } \omega .\end{cases}
$$

## Homogenization of HJ equations in random media

Assume that the following Cauchy problem is well posed for every $\omega \in \Omega$ :

$$
\begin{cases}\partial_{t} u^{\varepsilon}-\varepsilon \operatorname{tr}\left(A\left(\frac{x}{\varepsilon}, \omega\right) D_{x}^{2} u^{\varepsilon}\right)+H\left(\frac{x}{\varepsilon}, D_{x} u^{\varepsilon}, \omega\right)=0 & \text { in }(0,+\infty) \times \mathbb{R}^{d} \\ u^{\varepsilon}(0, \cdot, \omega)=g \in \operatorname{UC}\left(\mathbb{R}^{d}\right) & \text { for every } \omega\end{cases}
$$

We say that ( $H J_{\varepsilon}^{\omega}$ ) homogenizes if there exists a continuous $\bar{H}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that for every $g \in U C\left(\mathbb{R}^{d}\right)$

$$
u^{\varepsilon}(t, x, \omega) \rightrightarrows \operatorname{loc} \bar{u}(t, x) \quad \text { in }[0,+\infty) \times \mathbb{R}^{d} \quad \text { as } \varepsilon \rightarrow 0^{+} \quad \text { a.s. in } \Omega,
$$

where $\bar{u}$ solves

$$
\left\{\begin{array}{l}
\partial_{t} \bar{u}+\bar{H}\left(D_{x} \bar{u}\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{R}^{d}  \tag{HJ}\\
\bar{u}(0, \cdot)=g \in \mathrm{UC}\left(\mathbb{R}^{d}\right)
\end{array}\right.
$$

## Our main homogenization result

We have proved homogenization for viscous/nonviscous HJ equations for $d=1$ in the stationary ergodic setting for a class of non-convex Hamiltonians.

## Our main homogenization result

We have proved homogenization for viscous/nonviscous HJ equations for $d=1$ in the stationary ergodic setting for a class of non-convex Hamiltonians. The precise result will be presented later.

## Homogenization in random media: literature

## H convex

- P.E. Souganidis, Asymptot. Anal. (1999),
F. Rezakhanlou and J.E. Tarver, ARMA (2000): $A \equiv 0$.


## Homogenization in random media: literature

## H convex

- P.E. Souganidis, Asymptot. Anal. (1999), F. Rezakhanlou and J.E. Tarver, ARMA (2000): $A \equiv 0$.
- P.-L. Lions, P.E. Souganidis, Comm. PDE (2005), E. Kosygina, F. Rezakhanlou, and S.R.S. Varadhan, CPAM (2006): $A \not \equiv 0$.


## Literature: $A \equiv 0$ and non-convex $H$

## Literature: $A \equiv 0$ and non-convex $H$

- A. Davini, A. Siconolfi, Math. Ann. (2009) level-set convex $H, d=1$.


## Literature: $A \equiv 0$ and non-convex $H$

- A. Davini, A. Siconolfi, Math. Ann. (2009) level-set convex $H, d=1$.
- S. Armstrong, P.E. Souganidis, Int. Math. Res. Not. (2013) level-set convex $H, d \geqslant 1$.


## Literature: $A \equiv 0$ and non-convex $H$

- A. Davini, A. Siconolfi, Math. Ann. (2009) level-set convex $H, d=1$.
- S. Armstrong, P.E. Souganidis, Int. Math. Res. Not. (2013) level-set convex $H, d \geqslant 1$.
- S. Armstrong, H.V. Tran, Y. Yu, Calc. Var. PDE (2015) a class containing $H(x, p, \omega)=\left(|p|^{2}-1\right)^{2}-V(x, \omega), d \geqslant 1$.


## Literature: $A \equiv 0$ and non-convex $H$

- A. Davini, A. Siconolfi, Math. Ann. (2009) level-set convex $H, d=1$.
- S. Armstrong, P.E. Souganidis, Int. Math. Res. Not. (2013) level-set convex $H, d \geqslant 1$.
- S. Armstrong, H.V. Tran, Y. Yu, Calc. Var. PDE (2015) a class containing $H(x, p, \omega)=\left(|p|^{2}-1\right)^{2}-V(x, \omega), d \geqslant 1$.
- S. Armstrong, H.V. Tran, Y. Yu, J. Diff. Eq. (2016), H. Gao, Calc. Var. PDE (2016) $d=1$, quite general $H$.


## Literature: $A \equiv 0$ and non-convex $H$

- A. Davini, A. Siconolfi, Math. Ann. (2009) level-set convex $H, d=1$.
- S. Armstrong, P.E. Souganidis, Int. Math. Res. Not. (2013) level-set convex $H, d \geqslant 1$.
- S. Armstrong, H.V. Tran, Y. Yu, Calc. Var. PDE (2015) a class containing $H(x, p, \omega)=\left(|p|^{2}-1\right)^{2}-V(x, \omega), d \geqslant 1$.
- S. Armstrong, H.V. Tran, Y. Yu, J. Diff. Eq. (2016), H. Gao, Calc. Var. PDE (2016) $d=1$, quite general $H$.
- B. Ziliotto, Comm. Pure Appl. Math. 70 (2017) counterexample for $d=2$, "standard" non-convex $H$.


## Literature: $A \equiv 0$ and non-convex $H$

- A. Davini, A. Siconolfi, Math. Ann. (2009) level-set convex $H, d=1$.
- S. Armstrong, P.E. Souganidis, Int. Math. Res. Not. (2013) level-set convex $H, d \geqslant 1$.
- S. Armstrong, H.V. Tran, Y. Yu, Calc. Var. PDE (2015) a class containing $H(x, p, \omega)=\left(|p|^{2}-1\right)^{2}-V(x, \omega), d \geqslant 1$.
- S. Armstrong, H.V. Tran, Y. Yu, J. Diff. Eq. (2016), H. Gao, Calc. Var. PDE (2016) $d=1$, quite general $H$.
- B. Ziliotto, Comm. Pure Appl. Math. 70 (2017) counterexample for $d=2$, "standard" non-convex $H$.
- W.M. Feldman, P.E. Souganidis, J. Math. Pures Appl. (2017)


## Literature: $A \not \equiv 0$ and non-convex $H$

- S. Armstrong, P. Cardaliaguet, J. Eur. Math. Soc. 20 (2018) $H \in C^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ such that

$$
\exists \alpha \geqslant 1: H(x, t p, \omega)=t^{\alpha} H(x, p, \omega) \quad \forall t \geqslant 0 .
$$

Environments with finite range of dependence.

## Literature: $A \not \equiv 0$ and non-convex $H$

- S. Armstrong, P. Cardaliaguet, J. Eur. Math. Soc. 20 (2018) $H \in C^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ such that

$$
\exists \alpha \geqslant 1: H(x, t p, \omega)=t^{\alpha} H(x, p, \omega) \quad \forall t \geqslant 0 .
$$

Environments with finite range of dependence.

- A. Davini, E. Kosygina, Calc. Var. Partial Differential Equations, 56 (2017) $d=1$, a class of non-convex Hamiltonians including

$$
H(x, p, \omega)=|p|^{2}-b(x, \omega)|p| \quad \text { with } 0<\frac{1}{\beta} \leqslant b(\cdot, \cdot) \leqslant \beta \text {. }
$$

## Literature: $A \not \equiv 0$ and non-convex $H$

- S. Armstrong, P. Cardaliaguet, J. Eur. Math. Soc. 20 (2018) $H \in C^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ such that

$$
\exists \alpha \geqslant 1: H(x, t p, \omega)=t^{\alpha} H(x, p, \omega) \quad \forall t \geqslant 0
$$

Environments with finite range of dependence.

- A. Davini, E. Kosygina, Calc. Var. Partial Differential Equations, 56 (2017) $d=1$, a class of non-convex Hamiltonians including

$$
H(x, p, \omega)=|p|^{2}-b(x, \omega)|p| \quad \text { with } 0<\frac{1}{\beta} \leqslant b(\cdot, \cdot) \leqslant \beta \text {. }
$$

- E. Kosygina, A. Yilmaz, O. Zeitouni, ArXiv e-print (2018+) $d=1$ e $H(x, p, \omega)=|p|^{2}-b|p|+V(x, \omega)$.

Our results

## Motivating example

Let $d=1$ and $b: \mathbb{R} \times \Omega \rightarrow \mathbb{R}$ stationary such that:

- $a \leqslant b(\cdot, \cdot) \leqslant 1 / a$ for some $a \in(0,1)$;
- $b(\cdot, \omega)$ is Lip in $\mathbb{R}$ uniformly in $\omega$.


## Motivating example

Let $d=1$ and $b: \mathbb{R} \times \Omega \rightarrow \mathbb{R}$ stationary such that:

- $a \leqslant b(\cdot, \cdot) \leqslant 1 / a$ for some $a \in(0,1)$;
- $b(\cdot, \omega)$ is Lip in $\mathbb{R}$ uniformly in $\omega$.

Let $H(x, p, \omega):=\frac{1}{2} p^{2}-b(x, \omega)|p|$.

Motivating example

Let $d=1$ and $b: \mathbb{R} \times \Omega \rightarrow \mathbb{R}$ stationary such that:

- $a \leqslant b(\cdot, \cdot) \leqslant 1 / a$ for some $a \in(0,1)$;
- $b(\cdot, \omega)$ is Lip in $\mathbb{R}$ uniformly in $\omega$.

Let $H(x, p, \omega):=\frac{1}{2} p^{2}-b(x, \omega)|p|$. Then

$$
H(x, p, \omega):=\min \left\{H_{+}(x, p, \omega), H_{-}(x, p, \omega)\right\}= \begin{cases}H_{+}(x, p, \omega) & \text { if } p \geqslant 0 \\ H_{-}(x, p, \omega) & \text { if } p \leqslant 0\end{cases}
$$

with $H_{ \pm}(x, p, \omega):=\frac{1}{2} p^{2} \mp b(x, \omega) p$.

## Motivating example

Let $d=1$ and $b: \mathbb{R} \times \Omega \rightarrow \mathbb{R}$ stationary such that:

- $a \leqslant b(\cdot, \cdot) \leqslant 1 / a$ for some $a \in(0,1)$;
- $b(\cdot, \omega)$ is Lip in $\mathbb{R}$ uniformly in $\omega$.

Let $H(x, p, \omega):=\frac{1}{2} p^{2}-b(x, \omega)|p|$. Then
$H(x, p, \omega):=\min \left\{H_{+}(x, p, \omega), H_{-}(x, p, \omega)\right\}= \begin{cases}H_{+}(x, p, \omega) & \text { if } p \geqslant 0 \\ H_{-}(x, p, \omega) & \text { if } p \leqslant 0 .\end{cases}$
with $H_{ \pm}(x, p, \omega):=\frac{1}{2} p^{2} \mp b(x, \omega) p$. Consider

$$
\partial_{t} u_{\theta}^{\varepsilon}-\frac{\varepsilon}{2} \partial_{x}^{2} u_{\theta}^{\varepsilon}+H\left(\frac{x}{\varepsilon}, \partial_{x} u_{\theta}^{\varepsilon}, \omega\right)=0 ;\left.\quad u_{\theta}^{\varepsilon}\right|_{t=0}=\theta x .
$$

## Motivating example

Let $d=1$ and $b: \mathbb{R} \times \Omega \rightarrow \mathbb{R}$ stationary such that:

- $a \leqslant b(\cdot, \cdot) \leqslant 1 / a$ for some $a \in(0,1)$;
- $b(\cdot, \omega)$ is Lip in $\mathbb{R}$ uniformly in $\omega$.

Let $H(x, p, \omega):=\frac{1}{2} p^{2}-b(x, \omega)|p|$. Then
$H(x, p, \omega):=\min \left\{H_{+}(x, p, \omega), H_{-}(x, p, \omega)\right\}= \begin{cases}H_{+}(x, p, \omega) & \text { if } p \geqslant 0 \\ H_{-}(x, p, \omega) & \text { if } p \leqslant 0 .\end{cases}$
with $H_{ \pm}(x, p, \omega):=\frac{1}{2} p^{2} \mp b(x, \omega) p$. Consider

$$
\partial_{t} u_{\theta}^{\varepsilon}-\frac{\varepsilon}{2} \partial_{x}^{2} u_{\theta}^{\varepsilon}+H\left(\frac{x}{\varepsilon}, \partial_{x} u_{\theta}^{\varepsilon}, \omega\right)=0 ;\left.\quad u_{\theta}^{\varepsilon}\right|_{t=0}=\theta x .
$$

We are interested in the limit of $u_{\theta}^{\varepsilon}(t, x)=\varepsilon u_{\theta}\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}\right)$ as $\varepsilon \rightarrow 0^{+}$.

## Solution by Hopf-Cole + control representation

Note that $v_{\theta}^{\varepsilon}:=e^{-u_{\theta}^{\varepsilon}}$ solves

$$
\partial_{t} v_{\theta}^{\varepsilon}-\frac{\varepsilon}{2} \partial_{x}^{2} v_{\theta}^{\varepsilon}+b(x, \omega)\left|\partial_{x} v_{\theta}^{\varepsilon}\right|=0,\left.\quad v_{\theta}^{\varepsilon}\right|_{t=0}=e^{-\theta x}
$$

## Solution by Hopf-Cole + control representation

Note that $v_{\theta}^{\varepsilon}:=e^{-u_{\theta}^{\varepsilon}}$ solves

$$
\partial_{t} v_{\theta}^{\varepsilon}-\frac{\varepsilon}{2} \partial_{x}^{2} v_{\theta}^{\varepsilon}+b(x, \omega)\left|\partial_{x} v_{\theta}^{\varepsilon}\right|=0,\left.\quad v_{\theta}^{\varepsilon}\right|_{t=0}=e^{-\theta x}
$$

The control representation formula gives

$$
v_{\theta}^{\varepsilon}(t, x, \omega)=\inf _{\|c\|_{\infty} \leqslant 1} \mathbb{E}\left[\mathrm{e}^{-\theta X(t)}\right]
$$

where

$$
\left\{\begin{array}{l}
d X(s)=b(X(s), \omega) c(s, X(s), \omega) \mathrm{d} s+\sqrt{\varepsilon} \mathrm{d} W(s) \\
X(0)=X
\end{array}\right.
$$

## Solution by Hopf-Cole + control representation

Note that $v_{\theta}^{\varepsilon}:=e^{-u_{\theta}^{\varepsilon}}$ solves

$$
\partial_{t} v_{\theta}^{\varepsilon}-\frac{\varepsilon}{2} \partial_{x}^{2} v_{\theta}^{\varepsilon}+b(x, \omega)\left|\partial_{x} v_{\theta}^{\varepsilon}\right|=0,\left.\quad v_{\theta}^{\varepsilon}\right|_{t=0}=e^{-\theta x}
$$

The control representation formula gives

$$
v_{\theta}^{\varepsilon}(t, x, \omega)=\inf _{\|c\|_{\infty} \leqslant 1} \mathbb{E}\left[\mathrm{e}^{-\theta X(t)}\right]
$$

where

$$
\left\{\begin{array}{l}
d X(s)=b(X(s), \omega) c(s, X(s), \omega) \mathrm{d} s+\sqrt{\varepsilon} \mathrm{d} W(s) \\
X(0)=X
\end{array}\right.
$$

By 1d comparison, for $\theta>0(\theta<0)$ the inf is attained for $c \equiv 1$ (resp., $c \equiv-1$ ).

## Solution by Hopf-Cole + control representation

 Note that $v_{\theta}^{\varepsilon}:=e^{-u_{\theta}^{\varepsilon}}$ solves$$
\partial_{t} v_{\theta}^{\varepsilon}-\frac{\varepsilon}{2} \partial_{x}^{2} v_{\theta}^{\varepsilon}+b(x, \omega)\left|\partial_{x} v_{\theta}^{\varepsilon}\right|=0,\left.\quad v_{\theta}^{\varepsilon}\right|_{t=0}=e^{-\theta x}
$$

The control representation formula gives

$$
v_{\theta}^{\varepsilon}(t, x, \omega)=\inf _{\|c\|_{\infty} \leqslant 1} \mathbb{E}\left[e^{-\theta X(t)}\right]
$$

where

$$
\left\{\begin{array}{l}
d X(s)=b(X(s), \omega) c(s, X(s), \omega) \mathrm{d} s+\sqrt{\varepsilon} \mathrm{d} W(s) \\
X(0)=x
\end{array}\right.
$$

By 1d comparison, for $\theta>0(\theta<0)$ the inf is attained for $c \equiv 1$ (resp., $c \equiv-1$ ). Thus, $v_{\theta}^{\varepsilon}$ also solves

$$
\partial_{t} v_{\theta}^{\varepsilon}-\frac{\varepsilon}{2} \partial_{x}^{2} v_{\theta}^{\varepsilon} \mp b(x, \omega) \partial_{x} v_{\theta}^{\varepsilon}=0,\left.\quad v_{\theta}^{\varepsilon}\right|_{t=0}=\mathrm{e}^{-\theta x},
$$

where " - " corresponds to $\theta \geqslant 0$ and " + " to $\theta \leqslant 0$.

## Homogenization result

Correspondingly, $u_{\theta}^{\varepsilon}$ solves

$$
\partial_{t} u_{\theta}^{\varepsilon}-\frac{\varepsilon}{2} \partial_{x}^{2} u_{\theta}^{\varepsilon}+H_{ \pm}\left(x, \partial_{x} u_{\theta}^{\varepsilon}, \omega\right)=0,\left.\quad u_{\theta}^{\varepsilon}\right|_{t=0}=\theta x,
$$

where " + " corresponds to $\theta \geqslant 0$ and " - " to $\theta \leqslant 0$.

## Homogenization result

Correspondingly, $u_{\theta}^{\varepsilon}$ solves

$$
\partial_{t} u_{\theta}^{\varepsilon}-\frac{\varepsilon}{2} \partial_{x}^{2} u_{\theta}^{\varepsilon}+H_{ \pm}\left(x, \partial_{x} u_{\theta}^{\varepsilon}, \omega\right)=0,\left.\quad u_{\theta}^{\varepsilon}\right|_{t=0}=\theta x
$$

where " + " corresponds to $\theta \geqslant 0$ and "-" to $\theta \leqslant 0$. By homogenization for convex $H$, with probability 1

$$
u_{\theta}^{\varepsilon}(t, x, \omega) \rightrightarrows_{\operatorname{loc}} \bar{u}_{\theta}(t, x)=\theta x-t \bar{H}(\theta) \quad \text { as } \varepsilon \rightarrow 0
$$

where

$$
\bar{H}(\theta)=\left\{\begin{array}{ll}
\bar{H}_{+}(\theta) & \text { if } \theta \geqslant 0 \\
\bar{H}_{-}(\theta) & \text { if } \theta \leqslant 0
\end{array} \quad=\min \left\{\bar{H}_{+}(\theta), \bar{H}_{-}(\theta)\right\} .\right.
$$

## Homogenization result

Correspondingly, $u_{\theta}^{\varepsilon}$ solves

$$
\partial_{t} u_{\theta}^{\varepsilon}-\frac{\varepsilon}{2} \partial_{x}^{2} u_{\theta}^{\varepsilon}+H_{ \pm}\left(x, \partial_{x} u_{\theta}^{\varepsilon}, \omega\right)=0,\left.\quad u_{\theta}^{\varepsilon}\right|_{t=0}=\theta x
$$

where " + " corresponds to $\theta \geqslant 0$ and " - " to $\theta \leqslant 0$. By homogenization for convex $H$, with probability 1

$$
u_{\theta}^{\varepsilon}(t, x, \omega) \rightrightarrows_{\operatorname{loc}} \bar{u}_{\theta}(t, x)=\theta x-t \bar{H}(\theta) \quad \text { as } \varepsilon \rightarrow 0
$$

where

$$
\bar{H}(\theta)=\left\{\begin{array}{ll}
\bar{H}_{+}(\theta) & \text { if } \theta \geqslant 0 \\
\bar{H}_{-}(\theta) & \text { if } \theta \leqslant 0
\end{array} \quad=\min \left\{\bar{H}_{+}(\theta), \bar{H}_{-}(\theta)\right\} .\right.
$$

Moreover, since $b(\cdot, \cdot) \geqslant a$, we have

$$
H(x, p, \omega) \leqslant \frac{1}{2} p^{2}-a|p| \Rightarrow H(\theta) \leqslant \frac{1}{2} p^{2}-a|p| .
$$

## Homogenization result

Correspondingly, $u_{\theta}^{\varepsilon}$ solves

$$
\partial_{t} u_{\theta}^{\varepsilon}-\frac{\varepsilon}{2} \partial_{x}^{2} u_{\theta}^{\varepsilon}+H_{ \pm}\left(x, \partial_{x} u_{\theta}^{\varepsilon}, \omega\right)=0,\left.\quad u_{\theta}^{\varepsilon}\right|_{t=0}=\theta x
$$

where " + " corresponds to $\theta \geqslant 0$ and " - " to $\theta \leqslant 0$. By homogenization for convex $H$, with probability 1

$$
u_{\theta}^{\varepsilon}(t, x, \omega) \rightrightarrows_{\operatorname{loc}} \bar{u}_{\theta}(t, x)=\theta x-t \bar{H}(\theta) \quad \text { as } \varepsilon \rightarrow 0
$$

where

$$
\bar{H}(\theta)=\left\{\begin{array}{ll}
\bar{H}_{+}(\theta) & \text { if } \theta \geqslant 0 \\
\bar{H}_{-}(\theta) & \text { if } \theta \leqslant 0
\end{array} \quad=\min \left\{\bar{H}_{+}(\theta), \bar{H}_{-}(\theta)\right\} .\right.
$$

Moreover, since $b(\cdot, \cdot) \geqslant a$, we have

$$
H(x, p, \omega) \leqslant \frac{1}{2} p^{2}-a|p| \Rightarrow H(\theta) \leqslant \frac{1}{2} p^{2}-a|p| .
$$

Thus $\bar{H}( \pm a)<0$.

## Homogenization result

Correspondingly, $u_{\theta}^{\varepsilon}$ solves

$$
\partial_{t} u_{\theta}^{\varepsilon}-\frac{\varepsilon}{2} \partial_{x}^{2} u_{\theta}^{\varepsilon}+H_{ \pm}\left(x, \partial_{x} u_{\theta}^{\varepsilon}, \omega\right)=0,\left.\quad u_{\theta}^{\varepsilon}\right|_{t=0}=\theta x
$$

where " + " corresponds to $\theta \geqslant 0$ and " - " to $\theta \leqslant 0$. By homogenization for convex $H$, with probability 1

$$
u_{\theta}^{\varepsilon}(t, x, \omega) \rightrightarrows_{\operatorname{loc}} \bar{u}_{\theta}(t, x)=\theta x-t \bar{H}(\theta) \quad \text { as } \varepsilon \rightarrow 0
$$

where

$$
\bar{H}(\theta)=\left\{\begin{array}{ll}
\bar{H}_{+}(\theta) & \text { if } \theta \geqslant 0 \\
\bar{H}_{-}(\theta) & \text { if } \theta \leqslant 0
\end{array} \quad=\min \left\{\bar{H}_{+}(\theta), \bar{H}_{-}(\theta)\right\} .\right.
$$

Moreover, since $b(\cdot, \cdot) \geqslant a$, we have

$$
H(x, p, \omega) \leqslant \frac{1}{2} p^{2}-a|p| \Rightarrow H(\theta) \leqslant \frac{1}{2} p^{2}-a|p| .
$$

Thus $\bar{H}( \pm a)<0$. Since $\bar{H}(0)=0$, we infer that $\bar{H}$ is not convex.

## Critique and some remedies

Critique.
The argument above

- works only for linear (in fact, monotone) initial data;


## Critique and some remedies

Critique.
The argument above

- works only for linear (in fact, monotone) initial data;
- relies on Hopf-Cole transformation;


## Critique and some remedies

Critique.
The argument above

- works only for linear (in fact, monotone) initial data;
- relies on Hopf-Cole transformation;
- depends on the control representation formula for $u_{\theta}^{\varepsilon}$;


## Critique and some remedies

Critique.
The argument above

- works only for linear (in fact, monotone) initial data;
- relies on Hopf-Cole transformation;
- depends on the control representation formula for $u_{\theta}^{\varepsilon}$;
- is valid only for $d=1$.


## Critique and some remedies

Critique.
The argument above

- works only for linear (in fact, monotone) initial data;
- relies on Hopf-Cole transformation;
- depends on the control representation formula for $u_{\theta}^{\varepsilon}$;
- is valid only for $d=1$.

Remedies.

- We show that homogenization for linear initial data implies homogenization for general UC initial data.


## Critique and some remedies

Critique.
The argument above

- works only for linear (in fact, monotone) initial data;
- relies on Hopf-Cole transformation;
- depends on the control representation formula for $u_{\theta}^{\varepsilon}$;
- is valid only for $d=1$.

Remedies.

- We show that homogenization for linear initial data implies homogenization for general UC initial data.
- Such a result is refined (and simplified) in the stationary ergodic setting.


## Critique and some remedies

Critique.
The argument above

- works only for linear (in fact, monotone) initial data;
- relies on Hopf-Cole transformation;
- depends on the control representation formula for $u_{\theta}^{\varepsilon}$;
- is valid only for $d=1$.

Remedies.

- We show that homogenization for linear initial data implies homogenization for general UC initial data.
- Such a result is refined (and simplified) in the stationary ergodic setting.
- For $d=1$, we provide a class of examples of nonconvex Hamiltonians satisfying $H(x, 0, \omega) \equiv 0$ for which the corresponding viscous/nonviscous HJ equation homogenizes.


## Critique and some remedies

Critique.
The argument above

- works only for linear (in fact, monotone) initial data;
- relies on Hopf-Cole transformation;
- depends on the control representation formula for $u_{\theta}^{\varepsilon}$;
- is valid only for $d=1$.

Remedies.

- We show that homogenization for linear initial data implies homogenization for general UC initial data.
- Such a result is refined (and simplified) in the stationary ergodic setting.
- For $d=1$, we provide a class of examples of nonconvex Hamiltonians satisfying $H(x, 0, \omega) \equiv 0$ for which the corresponding viscous/nonviscous HJ equation homogenizes.
Our arguments do not use Hopf-Cole transformation or representation formulas, but rely on the fact that $d=1$.


## Critique and some remedies

Critique.
The argument above

- works only for linear (in fact, monotone) initial data;
- relies on Hopf-Cole transformation;
- depends on the control representation formula for $u_{\theta}^{\varepsilon}$;
- is valid only for $d=1$.

Remedies.

- We show that homogenization for linear initial data implies homogenization for general UC initial data.
- Such a result is refined (and simplified) in the stationary ergodic setting.
- For $d=1$, we provide a class of examples of nonconvex Hamiltonians satisfying $H(x, 0, \omega) \equiv 0$ for which the corresponding viscous/nonviscous HJ equation homogenizes.
Our arguments do not use Hopf-Cole transformation or representation formulas, but rely on the fact that $d=1$.
The result is new in the viscous case.


## Linear initial data

For fixed $\theta \in \mathbb{R}^{d}$, let us consider as initial datum $g(x)=\theta \cdot x$.

## Linear initial data

For fixed $\theta \in \mathbb{R}^{d}$, let us consider as initial datum $g(x)=\theta \cdot x$.
The solution $u_{\theta}^{\varepsilon}$ of

$$
\partial_{t} u^{\varepsilon}-\varepsilon \operatorname{tr}\left(A\left(\frac{x}{\varepsilon}\right) D_{x}^{2} u^{\varepsilon}\right)+H\left(\frac{x}{\varepsilon}, D_{x} u^{\varepsilon}\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{R}^{d}
$$

with initial datum $u^{\varepsilon}(0, x)=\theta \cdot x$ satisfies $u_{\theta}^{\varepsilon}(t, x)=\varepsilon u_{\theta}\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}\right)$, where $u_{\theta}$ stands for $u_{\theta}^{1}$.

## Linear initial data

For fixed $\theta \in \mathbb{R}^{d}$, let us consider as initial datum $g(x)=\theta \cdot x$.
The solution $u_{\theta}^{\varepsilon}$ of

$$
\partial_{t} u^{\varepsilon}-\varepsilon \operatorname{tr}\left(A\left(\frac{x}{\varepsilon}\right) D_{x}^{2} u^{\varepsilon}\right)+H\left(\frac{x}{\varepsilon}, D_{x} u^{\varepsilon}\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{R}^{d}
$$

with initial datum $u^{\varepsilon}(0, x)=\theta \cdot x$ satisfies $u_{\theta}^{\varepsilon}(t, x)=\varepsilon u_{\theta}\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}\right)$, where $u_{\theta}$ stands for $u_{\theta}^{1}$.
The solution $\bar{u}_{\theta}$ of

$$
\partial_{t} \bar{u}+\bar{H}\left(D_{x} \bar{u}\right)=0, \quad \bar{u}(0, x)=\theta \cdot x
$$

is of the form $\quad \bar{u}_{\theta}(t, x):=\theta \cdot x-t \bar{H}(\theta)$.

## Linear initial data

For fixed $\theta \in \mathbb{R}^{d}$, let us consider as initial datum $g(x)=\theta \cdot x$.
The solution $u_{\theta}^{\varepsilon}$ of

$$
\partial_{t} u^{\varepsilon}-\varepsilon \operatorname{tr}\left(A\left(\frac{x}{\varepsilon}\right) D_{x}^{2} u^{\varepsilon}\right)+H\left(\frac{x}{\varepsilon}, D_{x} u^{\varepsilon}\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{R}^{d}
$$

with initial datum $u^{\varepsilon}(0, x)=\theta \cdot x$ satisfies $u_{\theta}^{\varepsilon}(t, x)=\varepsilon u_{\theta}\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}\right)$, where $u_{\theta}$ stands for $u_{\theta}^{1}$.
The solution $\bar{u}_{\theta}$ of

$$
\partial_{t} \bar{u}+\bar{H}\left(D_{x} \bar{u}\right)=0, \quad \bar{u}(0, x)=\theta \cdot x
$$

is of the form $\quad \bar{u}_{\theta}(t, x):=\theta \cdot x-t \bar{H}(\theta)$.
If $\left(H J_{\varepsilon}\right)$ homogenizes, then, in particular,

$$
-\bar{H}(\theta)=\lim _{\varepsilon \rightarrow 0^{+}} u_{\theta}^{\varepsilon}(1,0)=\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon u_{\theta}(1 / \varepsilon, 0)
$$

From linear to general initial data

## From linear to general initial data

Theorem 1 (AD, E. Kosygina (2017)). Let $A$ and $H$ satisfy $(\mathrm{A} 1)-(\mathrm{A} 2)$ and $(\mathrm{H} 1)-(\mathrm{H} 2)$ respectively. Assume that the Cauchy problem for $\left(\mathrm{HJ}_{1}\right)$ is well-posed

## From linear to general initial data

Theorem 1 (AD, E. Kosygina (2017)). Let $A$ and $H$ satisfy (A1)-(A2) and (H1)-(H2) respectively. Assume that the Cauchy problem for $\left(\mathrm{HJ}_{1}\right)$ is well-posed and one of the following two conditions holds:
(H3) $\exists m(\cdot):\left|H\left(x, p_{1}\right)-H\left(x, p_{2}\right)\right| \leqslant m\left(\left|p_{1}-p_{2}\right|\right) \forall x, p_{1}, p_{2} \in \mathbb{R}^{d} ;$

## From linear to general initial data

Theorem 1 (AD, E. Kosygina (2017)). Let $A$ and $H$ satisfy (A1)-(A2) and (H1)-(H2) respectively. Assume that the Cauchy problem for $\left(\mathrm{HJ}_{1}\right)$ is well-posed and one of the following two conditions holds:
(H3) $\exists m(\cdot):\left|H\left(x, p_{1}\right)-H\left(x, p_{2}\right)\right| \leqslant m\left(\left|p_{1}-p_{2}\right|\right) \forall x, p_{1}, p_{2} \in \mathbb{R}^{d}$;
(L) $\forall \theta \exists \kappa:\left|u_{\theta}(t, x)-u_{\theta}(t, y)\right| \leqslant \kappa|x-y| \forall x, y \in \mathbb{R}^{d}, t \geqslant 0$.

## From linear to general initial data

Theorem 1 (AD, E. Kosygina (2017)). Let $A$ and $H$ satisfy (A1)-(A2) and (H1)-(H2) respectively. Assume that the Cauchy problem for $\left(\mathrm{HJ}_{1}\right)$ is well-posed and one of the following two conditions holds:
(H3) $\exists m(\cdot):\left|H\left(x, p_{1}\right)-H\left(x, p_{2}\right)\right| \leqslant m\left(\left|p_{1}-p_{2}\right|\right) \forall x, p_{1}, p_{2} \in \mathbb{R}^{d}$;
(L) $\forall \theta \exists \kappa:\left|u_{\theta}(t, x)-u_{\theta}(t, y)\right| \leqslant \kappa|x-y| \forall x, y \in \mathbb{R}^{d}, t \geqslant 0$.

Finally, suppose that there exists a continuous (and superlinear) $\bar{H}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that

$$
\forall \theta \in \mathbb{R}^{d} \quad u_{\theta}^{\varepsilon}(t, x) \not \rightrightarrows_{\text {loc }} \theta \cdot x-t \bar{H}(\theta) \quad \text { as } \varepsilon \rightarrow 0^{+} .
$$

## From linear to general initial data

Theorem 1 (AD, E. Kosygina (2017)). Let $A$ and $H$ satisfy (A1)-(A2) and (H1)-(H2) respectively. Assume that the Cauchy problem for $\left(\mathrm{HJ}_{1}\right)$ is well-posed and one of the following two conditions holds:
(H3) $\exists m(\cdot):\left|H\left(x, p_{1}\right)-H\left(x, p_{2}\right)\right| \leqslant m\left(\left|p_{1}-p_{2}\right|\right) \forall x, p_{1}, p_{2} \in \mathbb{R}^{d}$;
(L) $\forall \theta \exists \kappa:\left|u_{\theta}(t, x)-u_{\theta}(t, y)\right| \leqslant \kappa|x-y| \forall x, y \in \mathbb{R}^{d}, t \geqslant 0$.

Finally, suppose that there exists a continuous (and superlinear) $\bar{H}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that

$$
\forall \theta \in \mathbb{R}^{d} \quad u_{\theta}^{\varepsilon}(t, x) \rightrightarrows \operatorname{loc} \theta \cdot x-t \bar{H}(\theta) \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

Then $\left(\mathrm{HJ}_{\varepsilon}\right)$ homogenizes.

## From linear to general initial data

Theorem 1 (AD, E. Kosygina (2017)). Let $A$ and $H$ satisfy (A1)-(A2) and (H1)-(H2) respectively. Assume that the Cauchy problem for $\left(\mathrm{HJ}_{1}\right)$ is well-posed and one of the following two conditions holds:
(H3) $\exists m(\cdot):\left|H\left(x, p_{1}\right)-H\left(x, p_{2}\right)\right| \leqslant m\left(\left|p_{1}-p_{2}\right|\right) \forall x, p_{1}, p_{2} \in \mathbb{R}^{d}$;
(L) $\forall \theta \exists \kappa:\left|u_{\theta}(t, x)-u_{\theta}(t, y)\right| \leqslant \kappa|x-y| \forall x, y \in \mathbb{R}^{d}, t \geqslant 0$.

Finally, suppose that there exists a continuous (and superlinear) $\bar{H}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that

$$
\forall \theta \in \mathbb{R}^{d} \quad u_{\theta}^{\varepsilon}(t, x) \not \rightrightarrows_{\text {loc }} \theta \cdot x-t \bar{H}(\theta) \quad \text { as } \varepsilon \rightarrow 0^{+} .
$$

Then $\left(\mathrm{HJ}_{\varepsilon}\right)$ homogenizes.
Remark. If $(\mathrm{H} 3)$ holds or $(\mathrm{L})$ holds with $\kappa=\kappa(\theta)$ locally bounded in $\theta$, then $\bar{H}$ is continuous.

## Previous results in this direction

- P.-L. Lions, G. Papanicolaou, S. Varadhan, unpublished preprint (1987): periodic setting and $A \equiv 0$.


## Previous results in this direction

- P.-L. Lions, G. Papanicolaou, S. Varadhan, unpublished preprint (1987): periodic setting and $A \equiv 0$.

The outlined idea of the proof uses characterization results for strongly continuous semi-groups on $\mathrm{UC}\left([0,+\infty) \times \mathbb{R}^{d}\right)$ and uniform (in $\varepsilon$ ) finite speed of propagation for the semigroup generated by the Cauchy problem $\left(\mathrm{HJ}_{\varepsilon}\right)$.

## Previous results in this direction

- P.-L. Lions, G. Papanicolaou, S. Varadhan, unpublished preprint (1987): periodic setting and $A \equiv 0$.

The outlined idea of the proof uses characterization results for strongly continuous semi-groups on $\mathrm{UC}\left([0,+\infty) \times \mathbb{R}^{d}\right)$ and uniform (in $\varepsilon$ ) finite speed of propagation for the semigroup generated by the Cauchy problem $\left(\mathrm{HJ}_{\varepsilon}\right)$.

- O. Alvarez, M. Bardi, Arch. Ration. Mech. Anal. (2003): periodic setting, fully nonlinear degenerate parabolic PDEs.


## Previous results in this direction

- P.-L. Lions, G. Papanicolaou, S. Varadhan, unpublished preprint (1987): periodic setting and $A \equiv 0$.

The outlined idea of the proof uses characterization results for strongly continuous semi-groups on $\mathrm{UC}\left([0,+\infty) \times \mathbb{R}^{d}\right)$ and uniform (in $\varepsilon$ ) finite speed of propagation for the semigroup generated by the Cauchy problem $\left(\mathrm{HJ}_{\varepsilon}\right)$.

- O. Alvarez, M. Bardi, Arch. Ration. Mech. Anal. (2003): periodic setting, fully nonlinear degenerate parabolic PDEs.

The authors introduce a notion of ergodicity that is shown to be a sufficient condition for homogenization.

## Comparison with Alvarez and Bardi, ARMA (2003)

For our class of problems: let

$$
F(x, p, X):=-\operatorname{tr}(A(x) X)+H(x, p) \quad \text { be } \mathbb{Z}^{d} \text {-periodic in } x \text {. }
$$

## Comparison with Alvarez and Bardi, ARMA (2003)

For our class of problems: let

$$
F(x, p, X):=-\operatorname{tr}(A(x) X)+H(x, p) \quad \text { be } \mathbb{Z}^{d} \text {-periodic in } x \text {. }
$$

The function $F$ is said to be ergodic at $\theta \in \mathbb{R}^{d}$ if the periodic solution $w_{\theta}$ of

$$
\begin{cases}w_{t}-\operatorname{tr}\left(A(x) D_{x}^{2} w\right)+H\left(x, \theta+D_{x} w\right)=0 & \text { in }(0,+\infty) \times \mathbb{R}^{d} \\ w(0, \cdot)=0 & \text { on } \mathbb{R}^{d}\end{cases}
$$

satisfies

$$
\frac{w_{\theta}(t, x)}{t} \rightarrow c(\theta) \text { as } t \rightarrow+\infty \text { uniformly in } x .
$$

## Comparison with Alvarez and Bardi, ARMA (2003)

For our class of problems: let

$$
F(x, p, X):=-\operatorname{tr}(A(x) X)+H(x, p) \quad \text { be } \mathbb{Z}^{d} \text {-periodic in } x \text {. }
$$

The function $F$ is said to be ergodic at $\theta \in \mathbb{R}^{d}$ if the periodic solution $w_{\theta}$ of

$$
\begin{cases}w_{t}-\operatorname{tr}\left(A(x) D_{x}^{2} w\right)+H\left(x, \theta+D_{x} w\right)=0 & \text { in }(0,+\infty) \times \mathbb{R}^{d} \\ w(0, \cdot)=0 & \text { on } \mathbb{R}^{d}\end{cases}
$$

satisfies

$$
\frac{w_{\theta}(t, x)}{t} \rightarrow c(\theta) \text { as } t \rightarrow+\infty \text { uniformly in } x .
$$

Theorem 2 (Alvarez-Bardi, 2003). If $F$ is ergodic at each $\theta \in \mathbb{R}^{d}$, then $\left(H J_{\varepsilon}\right)$ homogenizes with $\bar{H}(\theta):=-c(\theta)$.

## Comparison with Alvarez and Bardi, ARMA (2003)

$$
F(x, p, X):=-\operatorname{tr}(A(x) X)+H(x, p) \quad \text { be } \mathbb{Z}^{d} \text {-periodic in } x .
$$

The function $F$ is said to be ergodic at $\theta \in \mathbb{R}^{d}$ if the periodic solution $w_{\theta}$ of

$$
\begin{cases}w_{t}-\operatorname{tr}\left(A(x) D_{x}^{2} w\right)+H\left(x, \theta+D_{x} w\right)=0 & \text { in }(0,+\infty) \times \mathbb{R}^{d} \\ w(0, \cdot)=0 & \text { on } \mathbb{R}^{d}\end{cases}
$$

satisfies

$$
\frac{w_{\theta}(t, x)}{t} \rightarrow c(\theta) \text { as } t \rightarrow+\infty \text { uniformly in } x .
$$

To see a connection with our results, note that

$$
u_{\theta}^{\varepsilon}(t, x)=\langle\theta, x\rangle+\varepsilon w_{\theta}(t / \varepsilon, x / \varepsilon) .
$$

## Comparison with Alvarez and Bardi, ARMA (2003)

$$
F(x, p, X):=-\operatorname{tr}(A(x) X)+H(x, p) \quad \text { be } \mathbb{Z}^{d} \text {-periodic in } x .
$$

The function $F$ is said to be ergodic at $\theta \in \mathbb{R}^{d}$ if the periodic solution $w_{\theta}$ of

$$
\begin{cases}w_{t}-\operatorname{tr}\left(A(x) D_{x}^{2} w\right)+H\left(x, \theta+D_{x} w\right)=0 & \text { in }(0,+\infty) \times \mathbb{R}^{d} \\ w(0, \cdot)=0 & \text { on } \mathbb{R}^{d}\end{cases}
$$

satisfies

$$
\frac{w_{\theta}(t, x)}{t} \rightarrow c(\theta) \text { as } t \rightarrow+\infty \text { uniformly in } x .
$$

To see a connection with our results, note that

$$
u_{\theta}^{\varepsilon}(t, x)=\langle\theta, x\rangle+\varepsilon w_{\theta}(t / \varepsilon, x / \varepsilon) .
$$

The ergodicity is equivalent to the statement that, for every fixed $t>0$,

$$
\lim _{\varepsilon \rightarrow 0+} u_{\theta}^{\varepsilon}(t, x)=\langle\theta, x\rangle-t \bar{H}(\theta) \quad \text { uniformly in } x \in \mathbb{R}^{d} \text {. }
$$

## Stationary ergodic refinement

Lemma 3 (AD, E. Kosygina (2017)). Assume that, for a fixed $\theta \in \mathbb{R}^{d}$,

$$
\lim _{\varepsilon \rightarrow 0+} u_{\theta}^{\varepsilon}(1,0, \omega)=-\bar{H}(\theta) \quad \text { a.s. in } \Omega \text {. }
$$

Then

$$
u_{\theta}^{\varepsilon}(t, x, \omega) \not \rightrightarrows_{\text {loc }} \theta \cdot x-t \bar{H}(\theta) \quad \text { in }[0,+\infty) \times \mathbb{R}^{d} \quad \text { a.s. in } \Omega .
$$

## 1d homogenization in random media

Let us put ourself in a stationary ergodic setting with $d=1$.

## 1d homogenization in random media

Let us put ourself in a stationary ergodic setting with $d=1$. Let $A$ satisfy (A1)-(A2), and $H_{ \pm}(\cdot, \cdot, \omega) \in \mathcal{H}\left(\alpha_{0}, \beta_{0}, \gamma\right)$, where bounds and parameters are independent of $\omega$.

## 1d homogenization in random media

Let us put ourself in a stationary ergodic setting with $d=1$.
Let $A$ satisfy (A1)-(A2), and $H_{ \pm}(\cdot, \cdot, \omega) \in \mathcal{H}\left(\alpha_{0}, \beta_{0}, \gamma\right)$, where bounds and parameters are independent of $\omega$.
Assume, in addition, that $\left(H J_{\varepsilon}^{\omega}\right)$ with Hamiltonians $H_{ \pm}$homogenizes,

## 1d homogenization in random media

Let us put ourself in a stationary ergodic setting with $d=1$.
Let $A$ satisfy (A1)-(A2), and $H_{ \pm}(\cdot, \cdot, \omega) \in \mathcal{H}\left(\alpha_{0}, \beta_{0}, \gamma\right)$, where bounds and parameters are independent of $\omega$.
Assume, in addition, that $\left(\mathrm{HJ}_{\varepsilon}^{\omega}\right)$ with Hamiltonians $H_{ \pm}$homogenizes,

$$
H_{ \pm}(x, 0, \omega) \equiv 0 \quad \forall x \in \mathbb{R} \text { and } \omega \in \Omega .
$$

## 1d homogenization in random media

Let us put ourself in a stationary ergodic setting with $d=1$.
Let $A$ satisfy (A1)-(A2), and $H_{ \pm}(\cdot, \cdot, \omega) \in \mathcal{H}\left(\alpha_{0}, \beta_{0}, \gamma\right)$, where bounds and parameters are independent of $\omega$.
Assume, in addition, that $\left(H J_{\varepsilon}^{\omega}\right)$ with Hamiltonians $H_{ \pm}$homogenizes,

$$
H_{ \pm}(x, 0, \omega) \equiv 0 \quad \forall x \in \mathbb{R} \text { and } \omega \in \Omega .
$$

Set

$$
H(x, p, \omega):= \begin{cases}H_{+}(x, p, \omega) & \text { if } p \geqslant 0 \\ H_{-}(x, p, \omega) & \text { if } p \leqslant 0\end{cases}
$$

## 1d homogenization in random media

Let us put ourself in a stationary ergodic setting with $d=1$.
Let $A$ satisfy (A1)-(A2), and $H_{ \pm}(\cdot, \cdot, \omega) \in \mathcal{H}\left(\alpha_{0}, \beta_{0}, \gamma\right)$, where bounds and parameters are independent of $\omega$. Assume, in addition, that $\left(\mathrm{HJ}_{\varepsilon}^{\omega}\right)$ with Hamiltonians $H_{ \pm}$homogenizes,

$$
H_{ \pm}(x, 0, \omega) \equiv 0 \quad \forall x \in \mathbb{R} \text { and } \omega \in \Omega .
$$

Set

$$
H(x, p, \omega):= \begin{cases}H_{+}(x, p, \omega) & \text { if } p \geqslant 0 \\ H_{-}(x, p, \omega) & \text { if } p \leqslant 0\end{cases}
$$

Remark. The condition $H_{ \pm}(\cdot, 0, \cdot) \equiv 0$ can be relaxed in favor of $H_{ \pm}\left(\cdot, p_{0}, \cdot\right) \equiv h_{0}$ for some $p_{0}, h_{0} \in \mathbb{R}$.

## 1d homogenization in random media

Let us put ourself in a stationary ergodic setting with $d=1$.
Let $A$ satisfy (A1)-(A2), and $H_{ \pm}(\cdot, \cdot, \omega) \in \mathcal{H}\left(\alpha_{0}, \beta_{0}, \gamma\right)$, where bounds and parameters are independent of $\omega$. Assume, in addition, that $\left(\mathrm{HJ}_{\varepsilon}^{\omega}\right)$ with Hamiltonians $H_{ \pm}$homogenizes,

$$
H_{ \pm}(x, 0, \omega) \equiv 0 \quad \forall x \in \mathbb{R} \text { and } \omega \in \Omega .
$$

Set

$$
H(x, p, \omega):= \begin{cases}H_{+}(x, p, \omega) & \text { if } p \geqslant 0 \\ H_{-}(x, p, \omega) & \text { if } p \leqslant 0\end{cases}
$$

Remark. The condition $H_{ \pm}(\cdot, 0, \cdot) \equiv 0$ can be relaxed in favor of $H_{ \pm}\left(\cdot, p_{0}, \cdot\right) \equiv h_{0}$ for some $p_{0}, h_{0} \in \mathbb{R}$.

Remark. The homogenization requirement for $H_{ \pm}$is met if, for example,

- $H_{ \pm}$are convex in $p$;


## 1d homogenization in random media

Let us put ourself in a stationary ergodic setting with $d=1$.
Let $A$ satisfy $(\mathrm{A} 1)-(\mathrm{A} 2)$, and $H_{ \pm}(\cdot, \cdot, \omega) \in \mathcal{H}\left(\alpha_{0}, \beta_{0}, \gamma\right)$, where bounds and parameters are independent of $\omega$. Assume, in addition, that $\left(\mathrm{HJ}_{\varepsilon}^{\omega}\right)$ with Hamiltonians $H_{ \pm}$homogenizes,

$$
H_{ \pm}(x, 0, \omega) \equiv 0 \quad \forall x \in \mathbb{R} \text { and } \omega \in \Omega .
$$

Set

$$
H(x, p, \omega):= \begin{cases}H_{+}(x, p, \omega) & \text { if } p \geqslant 0 \\ H_{-}(x, p, \omega) & \text { if } p \leqslant 0\end{cases}
$$

Remark. The condition $H_{ \pm}(\cdot, 0, \cdot) \equiv 0$ can be relaxed in favor of $H_{ \pm}\left(\cdot, p_{0}, \cdot\right) \equiv h_{0}$ for some $p_{0}, h_{0} \in \mathbb{R}$.

Remark. The homogenization requirement for $H_{ \pm}$is met if, for example,

- $H_{ \pm}$are convex in $p$;
- $A \equiv 0$ and $H_{ \pm}$are level set convex;


## 1d homogenization in random media

Let us put ourself in a stationary ergodic setting with $d=1$.
Let $A$ satisfy $(\mathrm{A} 1)-(\mathrm{A} 2)$, and $H_{ \pm}(\cdot, \cdot, \omega) \in \mathcal{H}\left(\alpha_{0}, \beta_{0}, \gamma\right)$, where bounds and parameters are independent of $\omega$. Assume, in addition, that $\left(H J_{\varepsilon}^{\omega}\right)$ with Hamiltonians $H_{ \pm}$homogenizes,

$$
H_{ \pm}(x, 0, \omega) \equiv 0 \quad \forall x \in \mathbb{R} \text { and } \omega \in \Omega
$$

Set

$$
H(x, p, \omega):= \begin{cases}H_{+}(x, p, \omega) & \text { if } p \geqslant 0 \\ H_{-}(x, p, \omega) & \text { if } p \leqslant 0\end{cases}
$$

Remark. The condition $H_{ \pm}(\cdot, 0, \cdot) \equiv 0$ can be relaxed in favor of $H_{ \pm}\left(\cdot, p_{0}, \cdot\right) \equiv h_{0}$ for some $p_{0}, h_{0} \in \mathbb{R}$.

Remark. The homogenization requirement for $H_{ \pm}$is met if, for example,

- $H_{ \pm}$are convex in $p$;
- $A \equiv 0$ and $H_{ \pm}$are level set convex;
- $H_{ \pm}$are of the form for which we already obtained homogenization.

Theorem 4 (AD, E. Kosygina (2017)). Let $d=1$ and $A, H$ as above.

Theorem 4 (AD, E. Kosygina (2017)). Let $d=1$ and $A, H$ as above. Then $\left(H J_{\varepsilon}^{\omega}\right)$ homogenizes, with

$$
\bar{H}(\theta)= \begin{cases}\bar{H}_{+}(\theta) & \text { if } \theta \geqslant 0 \\ \bar{H}_{-}(\theta) & \text { if } \theta \leqslant 0\end{cases}
$$

where $\bar{H}_{+}$and $\bar{H}_{-}$are the effective Hamiltonians obtained by homogenizing $\left(H J_{\varepsilon}^{\omega}\right)$ with $H_{+}$and $H_{-}$in place of $H$.

Theorem 4 (AD, E. Kosygina (2017)). Let $d=1$ and $A, H$ as above. Then $\left(H J_{\varepsilon}^{\omega}\right)$ homogenizes, with

$$
\bar{H}(\theta)= \begin{cases}\bar{H}_{+}(\theta) & \text { if } \theta \geqslant 0 \\ \bar{H}_{-}(\theta) & \text { if } \theta \leqslant 0\end{cases}
$$

where $\bar{H}_{+}$and $\bar{H}_{-}$are the effective Hamiltonians obtained by homogenizing $\left(H J_{\varepsilon}^{\omega}\right)$ with $H_{+}$and $H_{-}$in place of $H$.

Remark. The effective Hamiltonian $\bar{H}$ is not convex in general.

## Sketch of the proof

The solution $u_{\theta}^{\varepsilon}$ of

$$
u_{t}^{\varepsilon}-\varepsilon A\left(\frac{x}{\varepsilon}\right) u_{x x}^{\varepsilon}+H\left(\frac{x}{\varepsilon}, u_{x}^{\varepsilon}, \omega\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{R},
$$

with initial datum $u_{\theta}^{\varepsilon}(0, x)=\theta x$

## Sketch of the proof

The solution $u_{\theta}^{\varepsilon}$ of

$$
u_{t}^{\varepsilon}-\varepsilon A\left(\frac{x}{\varepsilon}\right) u_{x x}^{\varepsilon}+H\left(\frac{x}{\varepsilon}, u_{x}^{\varepsilon}, \omega\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{R},
$$

with initial datum $u_{\theta}^{\varepsilon}(0, x)=\theta x$ is such that $u_{\theta}^{\varepsilon}(t, \cdot, \omega)$ has the same type of monotonicity of its initial datum, for every $t>0$ and $\omega$.

## Sketch of the proof

The solution $u_{\theta}^{\varepsilon}$ of

$$
u_{t}^{\varepsilon}-\varepsilon A\left(\frac{x}{\varepsilon}\right) u_{x x}^{\varepsilon}+H\left(\frac{x}{\varepsilon}, u_{x}^{\varepsilon}, \omega\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{R},
$$

with initial datum $u_{\theta}^{\varepsilon}(0, x)=\theta x$ is such that $u_{\theta}^{\varepsilon}(t, \cdot, \omega)$ has the same type of monotonicity of its initial datum, for every $t>0$ and $\omega$. For instance, $u_{\theta}^{\varepsilon}(t, \cdot, \omega)$ is nondecreasing if $\theta \geqslant 0$,

## Sketch of the proof

The solution $u_{\theta}^{\varepsilon}$ of

$$
u_{t}^{\varepsilon}-\varepsilon A\left(\frac{x}{\varepsilon}\right) u_{x x}^{\varepsilon}+H\left(\frac{x}{\varepsilon}, u_{x}^{\varepsilon}, \omega\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{R},
$$

with initial datum $u_{\theta}^{\varepsilon}(0, x)=\theta x$ is such that $u_{\theta}^{\varepsilon}(t, \cdot, \omega)$ has the same type of monotonicity of its initial datum, for every $t>0$ and $\omega$. For instance, $u_{\theta}^{\varepsilon}(t, \cdot, \omega)$ is nondecreasing if $\theta \geqslant 0$, in particular it is also a solution of

$$
u_{t}^{\varepsilon}-\varepsilon A\left(\frac{x}{\varepsilon}\right) u_{x x}^{\varepsilon}+H_{+}\left(\frac{x}{\varepsilon}, u_{x}^{\varepsilon}, \omega\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{R} .
$$

## Sketch of the proof

The solution $u_{\theta}^{\varepsilon}$ of

$$
u_{t}^{\varepsilon}-\varepsilon A\left(\frac{x}{\varepsilon}\right) u_{x x}^{\varepsilon}+H\left(\frac{x}{\varepsilon}, u_{x}^{\varepsilon}, \omega\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{R},
$$

with initial datum $u_{\theta}^{\varepsilon}(0, x)=\theta x$ is such that $u_{\theta}^{\varepsilon}(t, \cdot, \omega)$ has the same type of monotonicity of its initial datum, for every $t>0$ and $\omega$. For instance, $u_{\theta}^{\varepsilon}(t, \cdot, \omega)$ is nondecreasing if $\theta \geqslant 0$, in particular it is also a solution of

$$
u_{t}^{\varepsilon}-\varepsilon A\left(\frac{x}{\varepsilon}\right) u_{x x}^{\varepsilon}+H_{+}\left(\frac{x}{\varepsilon}, u_{x}^{\varepsilon}, \omega\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{R} .
$$

Since this equation homogenizes, we get

$$
\exists \bar{H}(\theta):=-\lim _{\varepsilon \rightarrow 0^{+}} u_{\theta}^{\varepsilon}(1,0, \omega)=\bar{H}_{+}(\theta) \quad \text { a.s. in } \Omega \text {. }
$$

## Sketch of the proof

The solution $u_{\theta}^{\varepsilon}$ of

$$
u_{t}^{\varepsilon}-\varepsilon A\left(\frac{x}{\varepsilon}\right) u_{x x}^{\varepsilon}+H\left(\frac{x}{\varepsilon}, u_{x}^{\varepsilon}, \omega\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{R},
$$

with initial datum $u_{\theta}^{\varepsilon}(0, x)=\theta x$ is such that $u_{\theta}^{\varepsilon}(t, \cdot, \omega)$ has the same type of monotonicity of its initial datum, for every $t>0$ and $\omega$. For instance, $u_{\theta}^{\varepsilon}(t, \cdot, \omega)$ is nondecreasing if $\theta \geqslant 0$, in particular it is also a solution of

$$
u_{t}^{\varepsilon}-\varepsilon A\left(\frac{x}{\varepsilon}\right) u_{x x}^{\varepsilon}+H_{+}\left(\frac{x}{\varepsilon}, u_{x}^{\varepsilon}, \omega\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{R} .
$$

Since this equation homogenizes, we get

$$
\exists \bar{H}(\theta):=-\lim _{\varepsilon \rightarrow 0^{+}} u_{\theta}^{\varepsilon}(1,0, \omega)=\bar{H}_{+}(\theta) \quad \text { a.s. in } \Omega \text {. }
$$

The argument for $\theta \leqslant 0$ is similar.

Monotonicity of $u_{\theta}^{\varepsilon}(t, \cdot)$

## Monotonicity of $u_{\theta}^{\varepsilon}(t, \cdot)$

Due to $u_{\theta}^{\varepsilon}(t, x)=\varepsilon u_{\theta}\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}\right)$, it is enough to prove it for $\varepsilon=1$.

## Monotonicity of $u_{\theta}^{\varepsilon}(t, \cdot)$

Due to $u_{\theta}^{\varepsilon}(t, x)=\varepsilon u_{\theta}\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}\right)$, it is enough to prove it for $\varepsilon=1$. Assume that $u_{\theta}$ is a solution of

$$
\begin{cases}\left(u_{\theta}\right)_{t}-\left(u_{\theta}\right)_{x x}+H\left(x,\left(u_{\theta}\right)_{x}\right)=0 & \text { in }(0,+\infty) \times \mathbb{R}, \\ u_{\theta}(0, x)=\theta x & \text { in } \mathbb{R},\end{cases}
$$

with $H$ smooth.

## Monotonicity of $u_{\theta}^{\varepsilon}(t, \cdot)$

Due to $u_{\theta}^{\varepsilon}(t, x)=\varepsilon u_{\theta}\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}\right)$, it is enough to prove it for $\varepsilon=1$. Assume that $u_{\theta}$ is a solution of

$$
\begin{cases}\left(u_{\theta}\right)_{t}-\left(u_{\theta}\right)_{x x}+H\left(x,\left(u_{\theta}\right)_{x}\right)=0 & \text { in }(0,+\infty) \times \mathbb{R}, \\ u_{\theta}(0, x)=\theta x & \text { in } \mathbb{R},\end{cases}
$$

with $H$ smooth. By deriving the equation w.r.t. $x$, we get that $v:=\left(u_{\theta}\right)_{x}$ is a solution of

$$
\begin{cases}v_{t}-v_{x x}+\partial_{x} H(x, v)+\partial_{p} H(x, v) v_{x}=0 & \text { in }(0,+\infty) \times \mathbb{R} \\ v(0, x)=\theta & \text { in } \mathbb{R}\end{cases}
$$

## Monotonicity of $u_{\theta}^{\varepsilon}(t, \cdot)$

Due to $u_{\theta}^{\varepsilon}(t, x)=\varepsilon u_{\theta}\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}\right)$, it is enough to prove it for $\varepsilon=1$. Assume that $u_{\theta}$ is a solution of

$$
\begin{cases}\left(u_{\theta}\right)_{t}-\left(u_{\theta}\right)_{x x}+H\left(x,\left(u_{\theta}\right)_{x}\right)=0 & \text { in }(0,+\infty) \times \mathbb{R}, \\ u_{\theta}(0, x)=\theta x & \text { in } \mathbb{R},\end{cases}
$$

with $H$ smooth. By deriving the equation w.r.t. $x$, we get that $v:=\left(u_{\theta}\right)_{x}$ is a solution of

$$
\begin{cases}v_{t}-v_{x x}+\partial_{x} H(x, v)+\partial_{p} H(x, v) v_{x}=0 & \text { in }(0,+\infty) \times \mathbb{R} \\ v(0, x)=\theta & \text { in } \mathbb{R}\end{cases}
$$

Since $\partial_{x} H(x, 0)=0, v \equiv 0$ if $\theta=0$.

## Monotonicity of $u_{\theta}^{\varepsilon}(t, \cdot)$

Due to $u_{\theta}^{\varepsilon}(t, x)=\varepsilon u_{\theta}\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}\right)$, it is enough to prove it for $\varepsilon=1$. Assume that $u_{\theta}$ is a solution of

$$
\begin{cases}\left(u_{\theta}\right)_{t}-\left(u_{\theta}\right)_{x x}+H\left(x,\left(u_{\theta}\right)_{x}\right)=0 & \text { in }(0,+\infty) \times \mathbb{R}, \\ u_{\theta}(0, x)=\theta x & \text { in } \mathbb{R},\end{cases}
$$

with $H$ smooth. By deriving the equation w.r.t. $x$, we get that $v:=\left(u_{\theta}\right)_{x}$ is a solution of

$$
\begin{cases}v_{t}-v_{x x}+\partial_{x} H(x, v)+\partial_{p} H(x, v) v_{x}=0 & \text { in }(0,+\infty) \times \mathbb{R} \\ v(0, x)=\theta & \text { in } \mathbb{R}\end{cases}
$$

Since $\partial_{x} H(x, 0)=0, v \equiv 0$ if $\theta=0$. By comparison, we conclude that

$$
\left(u_{\theta}\right)_{x}=v \geqslant 0 \text { if } \theta>0
$$

## Monotonicity of $u_{\theta}^{\varepsilon}(t, \cdot)$

Due to $u_{\theta}^{\varepsilon}(t, x)=\varepsilon u_{\theta}\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}\right)$, it is enough to prove it for $\varepsilon=1$. Assume that $u_{\theta}$ is a solution of

$$
\begin{cases}\left(u_{\theta}\right)_{t}-\left(u_{\theta}\right)_{x x}+H\left(x,\left(u_{\theta}\right)_{x}\right)=0 & \text { in }(0,+\infty) \times \mathbb{R}, \\ u_{\theta}(0, x)=\theta x & \text { in } \mathbb{R},\end{cases}
$$

with $H$ smooth. By deriving the equation w.r.t. $x$, we get that $v:=\left(u_{\theta}\right)_{x}$ is a solution of

$$
\begin{cases}v_{t}-v_{x x}+\partial_{x} H(x, v)+\partial_{p} H(x, v) v_{x}=0 & \text { in }(0,+\infty) \times \mathbb{R} \\ v(0, x)=\theta & \text { in } \mathbb{R}\end{cases}
$$

Since $\partial_{x} H(x, 0)=0, v \equiv 0$ if $\theta=0$. By comparison, we conclude that

$$
\left(u_{\theta}\right)_{x}=v \geqslant 0 \text { if } \theta>0, \quad\left(u_{\theta}\right)_{x}=v \leqslant 0 \text { if } \theta<0,
$$

## Monotonicity of $u_{\theta}^{\varepsilon}(t, \cdot)$

Due to $u_{\theta}^{\varepsilon}(t, x)=\varepsilon u_{\theta}\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}\right)$, it is enough to prove it for $\varepsilon=1$. Assume that $u_{\theta}$ is a solution of

$$
\begin{cases}\left(u_{\theta}\right)_{t}-\left(u_{\theta}\right)_{x x}+H\left(x,\left(u_{\theta}\right)_{x}\right)=0 & \text { in }(0,+\infty) \times \mathbb{R}, \\ u_{\theta}(0, x)=\theta x & \text { in } \mathbb{R},\end{cases}
$$

with $H$ smooth. By deriving the equation w.r.t. $x$, we get that $v:=\left(u_{\theta}\right)_{x}$ is a solution of

$$
\begin{cases}v_{t}-v_{x x}+\partial_{x} H(x, v)+\partial_{p} H(x, v) v_{x}=0 & \text { in }(0,+\infty) \times \mathbb{R} \\ v(0, x)=\theta & \text { in } \mathbb{R}\end{cases}
$$

Since $\partial_{x} H(x, 0)=0, v \equiv 0$ if $\theta=0$. By comparison, we conclude that

$$
\left(u_{\theta}\right)_{x}=v \geqslant 0 \text { if } \theta>0, \quad\left(u_{\theta}\right)_{x}=v \leqslant 0 \text { if } \theta<0,
$$

yielding the asserted monotonicity of $u_{\theta}^{\varepsilon}(t, \cdot)$.

## A class of 1-dimensional examples

We give a definition first.

## A class of 1-dimensional examples

We give a definition first.
Definition 5. Let $H: \Omega \rightarrow \mathrm{C}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ be a measurable random field. We shall say that $H(x, p, \omega)$ is pinned at $p_{0}$ if there is a constant $h_{0} \in \mathbb{R}$ such that $H\left(\cdot, p_{0}, \cdot\right) \equiv h_{0}$ on $\mathbb{R} \times \Omega$.

## A class of 1-dimensional examples

We give a definition first.
Definition 5. Let $H: \Omega \rightarrow \mathrm{C}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ be a measurable random field. We shall say that $H(x, p, \omega)$ is pinned at $p_{0}$ if there is a constant $h_{0} \in \mathbb{R}$ such that $H\left(\cdot, p_{0}, \cdot\right) \equiv h_{0}$ on $\mathbb{R} \times \Omega$.

Theorem 6 (AD, E. Kosygina (2017)). Let $d=1$ and $A$ be as above.

## A class of 1-dimensional examples

We give a definition first.
Definition 5. Let $H: \Omega \rightarrow \mathrm{C}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ be a measurable random field. We shall say that $H(x, p, \omega)$ is pinned at $p_{0}$ if there is a constant $h_{0} \in \mathbb{R}$ such that $H\left(\cdot, p_{0}, \cdot\right) \equiv h_{0}$ on $\mathbb{R} \times \Omega$.

Theorem 6 (AD, E. Kosygina (2017)). Let $d=1$ and $A$ be as above. Let $H: \Omega \rightarrow \mathrm{C}(\mathbb{R} \times \mathbb{R})$ be a stationary random field satisfying $H(\cdot, \cdot, \omega) \in \mathcal{H}\left(\gamma, \alpha_{0}, \beta_{0}\right)$ for every $\omega$.

## A class of 1-dimensional examples

We give a definition first.
Definition 5. Let $H: \Omega \rightarrow \mathrm{C}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ be a measurable random field. We shall say that $H(x, p, \omega)$ is pinned at $p_{0}$ if there is a constant $h_{0} \in \mathbb{R}$ such that $H\left(\cdot, p_{0}, \cdot\right) \equiv h_{0}$ on $\mathbb{R} \times \Omega$.

Theorem 6 (AD, E. Kosygina (2017)). Let $d=1$ and $A$ be as above. Let $H: \Omega \rightarrow C(\mathbb{R} \times \mathbb{R})$ be a stationary random field satisfying $H(\cdot, \cdot, \omega) \in \mathcal{H}\left(\gamma, \alpha_{0}, \beta_{0}\right)$ for every $\omega$. Let us furthermore assume that
(i) $H$ is pinned at $p_{1}<p_{2}<\cdots<p_{n}$;

## A class of 1-dimensional examples

We give a definition first.
Definition 5. Let $H: \Omega \rightarrow \mathrm{C}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ be a measurable random field. We shall say that $H(x, p, \omega)$ is pinned at $p_{0}$ if there is a constant $h_{0} \in \mathbb{R}$ such that $H\left(\cdot, p_{0}, \cdot\right) \equiv h_{0}$ on $\mathbb{R} \times \Omega$.

Theorem 6 (AD, E. Kosygina (2017)). Let $d=1$ and $A$ be as above. Let $H: \Omega \rightarrow \mathrm{C}(\mathbb{R} \times \mathbb{R})$ be a stationary random field satisfying $H(\cdot, \cdot, \omega) \in \mathcal{H}\left(\gamma, \alpha_{0}, \beta_{0}\right)$ for every $\omega$. Let us furthermore assume that
(i) $H$ is pinned at $p_{1}<p_{2}<\cdots<p_{n}$;
(ii) $H(x, \cdot, \omega)$ is convex (or level-set convex if $A \equiv 0$ ) on each of the intervals $\left(-\infty, p_{1}\right),\left(p_{1}, p_{2}\right), \ldots,\left(p_{n},+\infty\right)$, for every $(x, \omega) \in \mathbb{R} \times \Omega$.

## A class of 1-dimensional examples

We give a definition first.
Definition 5. Let $H: \Omega \rightarrow \mathrm{C}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ be a measurable random field. We shall say that $H(x, p, \omega)$ is pinned at $p_{0}$ if there is a constant $h_{0} \in \mathbb{R}$ such that $H\left(\cdot, p_{0}, \cdot\right) \equiv h_{0}$ on $\mathbb{R} \times \Omega$.

Theorem 6 (AD, E. Kosygina (2017)). Let $d=1$ and $A$ be as above. Let $H: \Omega \rightarrow \mathrm{C}(\mathbb{R} \times \mathbb{R})$ be a stationary random field satisfying $H(\cdot, \cdot, \omega) \in \mathcal{H}\left(\gamma, \alpha_{0}, \beta_{0}\right)$ for every $\omega$. Let us furthermore assume that
(i) $H$ is pinned at $p_{1}<p_{2}<\cdots<p_{n}$;
(ii) $H(x, \cdot, \omega)$ is convex (or level-set convex if $A \equiv 0$ ) on each of the intervals $\left(-\infty, p_{1}\right),\left(p_{1}, p_{2}\right), \ldots,\left(p_{n},+\infty\right)$, for every $(x, \omega) \in \mathbb{R} \times \Omega$.

Then ( $\mathrm{H} J_{\varepsilon}^{\omega}$ ) homogenizes.

## Sketch of the proof

The Hamiltonian $H$ can be written in the following form:

$$
H(x, p, \omega):= \begin{cases}H_{1}(x, p, \omega) & \text { if } p \leqslant p_{1} \\ H_{2}(x, p, \omega) & \text { if } p_{1} \leqslant p \leqslant p_{2} \\ \cdots & \cdots \\ H_{n+1}(x, p, \omega) & \text { if } p \geqslant p_{n}\end{cases}
$$

where $H_{1}, \ldots, H_{n+1}$ are stationary Hamiltonians belonging to $\mathcal{H}\left(\gamma, \alpha_{0}, \beta_{0}\right)$ for every $\omega$ and such that

- $H_{1}, \ldots, H_{n+1}$ are convex if $A \not \equiv 0$ or level-set convex if $A \equiv 0$.


## Sketch of the proof

The Hamiltonian $H$ can be written in the following form:

$$
H(x, p, \omega):= \begin{cases}H_{1}(x, p, \omega) & \text { if } p \leqslant p_{1} \\ H_{2}(x, p, \omega) & \text { if } p_{1} \leqslant p \leqslant p_{2} \\ \ldots & \ldots \\ H_{n+1}(x, p, \omega) & \text { if } p \geqslant p_{n}\end{cases}
$$

where $H_{1}, \ldots, H_{n+1}$ are stationary Hamiltonians belonging to $\mathcal{H}\left(\gamma, \alpha_{0}, \beta_{0}\right)$ for every $\omega$ and such that

- $H_{1}, \ldots, H_{n+1} \quad$ are convex if $A \not \equiv 0$ or level-set convex if $A \equiv 0$.

Then $\left(H J_{\varepsilon}^{\omega}\right)$ homogenizes, with

$$
\bar{H}(\theta)= \begin{cases}\bar{H}_{1}(\theta) & \text { if } \theta \leqslant p_{1} \\ \bar{H}_{2}(\theta) & \text { if } p_{1} \leqslant \theta \leqslant p_{2} \\ \cdots & \cdots \\ \bar{H}_{n+1}(\theta) & \text { if } \theta \geqslant p_{n}\end{cases}
$$

where $\bar{H}_{1}, \cdots, \bar{H}_{n+1}$ are the effective Hamiltonians obtained by homogenizing $\left(H J_{\varepsilon}^{\omega}\right)$ with $H_{1}, \ldots, H_{n+1}$ in place of $H$.

## Thank you

for your attention!

