Stochastic averaging: effectives

Xue-Mei Li

Imperial College London

LMS Durham Symposium on Homogenisation in Disordered Media 19 -25 August, 2018

Introduction

Diffusion Operators

In local coordinates,

$$\mathcal{L} = \frac{1}{2} \sum_{i,j=1}^{n} a_{i,j}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{k=1}^{n} b_k(x) \frac{\partial}{\partial x_k}.$$

Here $A(x) := (a_{i,j}(x))$ is a $n \times n$ symmetric non-negative matrix. If Lipschitz continuous, there exist a family of vector fields $X_1, \ldots, X_m, m \ge n$, s.t.

$$\mathcal{L}f = \frac{1}{2}\sum_{k=1}^{m} X_k(X_k f) + X_0 f.$$

L is elliptic if and only if X(x) : ℝ^m → T_xM is a surjection and so determines a Riemannian metric. An elliptic operator is ½Δ plus drift for some Riemannian metric. A strong Markov process with generator ½Δ is a BM.

SDEs

Given $\mathcal{L} = \frac{1}{2} \sum (X_i)^2 + X_0$, define

$$dx_t = \sum_{i=1}^m X_i(x_t) \circ dB_t^i + X_0(x_t)dt.$$

The solutions are diffusions (strong Markov processes) with generator $\mathcal{L}.$

Stochastic slow fast systems

$$\begin{cases} dx_t^{\epsilon} = \sum_{k=1}^{m_1} X_k(x_t^{\epsilon}, y_t^{\epsilon}) \circ dB_t^k + X_0(x_t^{\epsilon}, y_t^{\epsilon}) dt, \\ dy_t^{\epsilon} = \frac{1}{\sqrt{\epsilon}} \sum_{k=1}^{m_2} Y_k(x_t^{\epsilon}, y_t^{\epsilon}) \circ dW_t^k + \frac{1}{\epsilon} Y_0(x_t^{\epsilon}, y_t^{\epsilon}) dt. \end{cases}$$

Problem. Take $\epsilon \to 0$, show x_t^{ϵ} converges weakly.

$$\frac{1}{\epsilon} \left(\underbrace{\frac{\mathcal{L}_0 \equiv \mathcal{L}_0^x}{\frac{1}{2} Y_i^2(x, \cdot) + Y_0(x, \cdot)}}_{\left\{ \frac{d}{dt} u^{\epsilon}(t, x, y) = \left(\frac{1}{\epsilon} \mathcal{L}_0 + \mathcal{L}_1\right) u^{\epsilon}(t, x, y) \\ u^{\epsilon}(0, x, y) = f(x) \right\}}_{\epsilon = 1} \underbrace{\frac{\mathcal{L}_1 \equiv \mathcal{L}_1^y}{\left(\frac{1}{2} X_k(\cdot, y)^2 + X_0(\cdot, y)\right)}}_{\frac{1}{5/30}}.$$

Uniform LLN (uniform Birkhoff)

- Suppose for each x, L^x has a unique invariant measure. Then L^x is said to satisfy a locally uniform law of large numbers if
 - $x \to \mu^x$ is locally Lipschitz continuous.
 - For every $f \in L^2 \cap C^r$, there exists a locally bounded C(x) such that

$$\left|\frac{1}{T}\int_t^{t+T} f(y_r^x) dr - \int_G f(y)\mu^x(dy)\right|_{L_2(\Omega)} \le C(x)c(f)\frac{1}{\sqrt{T}}.$$

-This is useful for estimating speed of convergence. -Not trivial: consider $dy_t = \sigma(x)dB_t + \nabla h(x, y_t)dt$. -Proved in case *G* is compact, $\sum Y_i$ satisfies Hörmander's condition+ bounds [xml18, Abel Symp].

Zero index Fredholm operators

-To solve $\mathcal{L}^x f = v$, v must satisfy several independent constraints. The dimension of the solutions minus the dimension of the independent constraints is the 'index'. -If \mathcal{L} satisfies Hörmander's conditions, it is Fredholm from its domain to L^2 : \mathcal{L} has closed range,

 $\dim(\ker \mathcal{L}^x) < \infty, \quad \dim(\ker(\mathcal{L}^x)^*) < \infty$

-If the Fredholm index =0, define $\Pi_x : L_2 \to \ker(\mathcal{L}^x)$, functioning as an averaging operator. **Open Problem.**

$$\left|\frac{1}{T}\int_{t}^{t+T}f(y_{r}^{x})\ dr - \Pi_{x}f\right| \leq C(x)c(f)\beta(T)?$$

Note: Given $\mathcal{L}^x : E \to F$, smooth in x, dim $(\ker(\mathcal{L}^x))$ may not be continuous in x. Their index is [M. Atiyah]. Caution: $\operatorname{Dom}(\mathcal{L}^x)$ may vary with x.

Effective Motions

Effective motions

Effective motions coming from averaging is associated with a first integral or a conserved map. Effective motions typically live in a reduced space: a quotient of the original space and an action space.

When the unperturbed motion has a full range of symmetries, the quotient space (or orbit space) is a smooth manifold. The classification will rely on algebra and differential geometry. The reduced space is often a foliation or a graph.

When this is a graph, the identification of the effective motion is associated with exit laws of Markov processes. [Brin, Freidlin, Wentzell, Bhatin, Borodin, Koralov, ...]

A baby model on Hopf fibration

$$S^{3} \sim SU(2) = \left\{ \begin{pmatrix} z & w \\ -\bar{w}, & \bar{z} \end{pmatrix} : z, w \in \mathbb{C} \right\}.$$

The Pauli matrices :

$$X_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad X_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad X_3 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

Berger's spheres is S³ with {1/√ε X₁, X₂, X₃} o.n.b. The spectra of Berger's spheres, i.e. 1/ε(X₁)² + (X₂)² + (X₃)², converges.

Problem.

$$\mathcal{L}^{\epsilon} = \frac{1}{2\epsilon} (X_1)^2 + X_2.$$

What information can we extract from \mathcal{L}^{ϵ} , when ϵ is taken to zero? Look at $dg_t^{\epsilon} = \frac{1}{\sqrt{\epsilon}} g_t^{\epsilon} X_1 \circ dB_t + g_t^{\epsilon} X_2 dt$.

a baby theorem

Take a unit vector $Y_0 \in \langle X_2, X_3 \rangle$.

$$dg_t^{\epsilon} = \frac{1}{\sqrt{\epsilon}} g_t^{\epsilon} X_1 dB_t + g_t^{\epsilon} Y_0 dt.$$

 $\pi(z,w)=(\frac{1}{2}(|w|^2-|z|^2),z\bar{w})$ is the Hopf map, mapping S^3

to
$$S^2 = SU(2)/S^1$$
, and $x^{\epsilon}_t = \pi(g^{\epsilon}_t)$.

Theorem. [xml'18 JJMS]

- As $\epsilon \to 0$, $x_t^{\epsilon} := \pi(g_t^{\epsilon}) \to \pi(g_0)$
- $x_{\frac{t}{\epsilon}}^{\epsilon}$ converges in law to the BM on $S^{2}(\frac{1}{2})$ scaled by $\lambda = \frac{1}{2}$.
- ► The horizontal lift, (\tilde{x}_t^{ϵ}) , of (x_t^{ϵ}) , converges weakly to the hypoelliptic diffusion with generator $\bar{\mathcal{L}} = \frac{1}{2} \Delta^{hor}$.

Using symmetries

Suppose that H is a compact subgroup of a Lie group G with a left invariant metric.

Then g = g ⊕ h[⊥] and there is an ad(H)-invariant orthogonal splitting :

$$\mathfrak{h}^{\perp} = \mathfrak{m}_0 \oplus \mathfrak{m}_1 \oplus \cdots \oplus \mathfrak{m}_l$$

 \mathfrak{m}_0 is the space of $\mathrm{Ad}(H)$ invariant vectors.

• Take $A_k \in \mathfrak{h}$, and $Y \in \mathfrak{h}^{\perp}$.

$$dg_t = \sum_{k=1}^p \gamma A_k(g_t) \circ dB_t^k + \delta Y(g_t) dt.$$

The solutions interpolate between translates of the one parameter group on G and diffusions on H.

We will take γ → ∞ while setting δ = 1. Consider diffusions on the orbit space G/H.

Adiabatic limit on homogeneous spaces

Suppose $\{A_k\}$ and their iterated commutators generate \mathfrak{h} .

$$dg_t^{\epsilon} = \frac{1}{\sqrt{\epsilon}} \sum_{k=1}^N A_k(g_t^{\epsilon}) \circ db_t^k + Y(g_t^{\epsilon}) dt, \quad g_0^{\epsilon} = g_0,$$

- ▶ There exists \tilde{g}_t^{ϵ} , with $g_t^{\epsilon}H = \tilde{g}_t^{\epsilon}H$, converging to the solution of $\frac{\partial}{\partial t}\bar{g} = Y_{\mathfrak{m}_0}(\bar{g})$. Key: $\int_H \operatorname{Ad}(H)(Y)dh = 0$ iff $Y \in \mathfrak{m}_1 \oplus \cdots \oplus \mathfrak{m}_l$,
- If Y ∈ m_k is a unit vector, ğ^ε_{t/ε} converges to a diffusion with generator λ(Y) ∑^{dim(m_k)}_{j=1} (Y_{k,j})². associate matrix eigenvector to eigenfunction of L₀, solve Poisson eq. and use a result of D. Rumynin.
- π(ğ^ε_{t/ε}) ∈ G/H converges to Markov proces. Paralle translations along π(ğ^ε_{t/ε}), converges to stochastic parallel transports along the limiting diffusions.
- If $\{A_k\}$ is an o.n.b. of \mathfrak{h} , $\lambda_k(Y)$ is independent of Y.

Taking the adiabatic limit in geometry

-Taking the adiabatic limit in geometry is popular: Getzler, Bismut, Lebeau,...,

-The theorem follows from a separation of scales, and :

$$\dot{y}_t^{\epsilon}(\omega) = \sum_{k=1}^m Y_k\left(y_t^{\epsilon}(\omega)\right) \alpha_k(z_t^{\epsilon}(\omega)), \qquad y_0^{\epsilon}(\omega) = y_0.$$
 (1)

where z_t^{ϵ} is a $\frac{1}{\epsilon}\mathcal{L}_0$ diffusion, α_k 'averages' to zero w.r.t. the invariant measure of \mathcal{L}_0 .

Then $y_{\frac{t}{\epsilon}}^{\epsilon}$ converges to an explicit Markov process with rate $\epsilon^{\frac{1}{4}}$ in Wasserstein distance.

[xml, PTRF'17], Lions, Sougnidis, Papaniclaou, Keller, Varadhan, ...

Hamiltonian systems

Averaging

▶ Let $x_0 \in T^n$ and $\omega = (\omega_1, \ldots, \omega_n)$ where $\omega_1, \ldots, \omega_n$ are linearly independent real numbers over Q. Then

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t f(x_0 + s\omega) ds = \int_{T^n} f(x) \mu(dx), \quad f \in L^1.$$

 $\dot{I} = \epsilon g(I, \theta), \qquad \dot{\theta} = \omega(I) + \epsilon f(I, \theta),$ then $I^{\epsilon}(\frac{t}{\epsilon}) \rightarrow \bar{I}(t)$, where

$$\frac{d}{dt}\bar{I}(t) = \int g(\bar{I}(t),\theta)\mu(d\theta).$$

Integrable Hamiltonian

► Darboux's theorem. Given an integrable Hamiltonian system, for almost every point, there is a canonical action-angle coordinates such that the Hamiltonian H is a function of I only. Then $\dot{x}_t = X_H(x_t)$ is equivalent to

$$\dot{I} = 0, \qquad \dot{\theta} = \omega(I).$$

Let us consider a perturbation:

 $\dot{x}_t = (\nabla H)^{\perp}(x_t) + \epsilon V(x_t)$. Then $H(x_t^{\epsilon})$ is a slow motion and converges within the canonical charts. ¹

Shape of the effective limit is a challenge beyond the local coordinates: Non-constant frequencies. more than 1-degree of freedom, product of one dimensional Hamiltonians is most promising. Neshdadt, ...

¹Early 60's: Bogolyubov-Mitropolskii, Anosov, 70's: V I Arnold, Neishtadt.

Perturbation of 1-dim. Hamiltonians

M. Brin, M. Freidlin, A.D. Wentzell,...:

$$dx_t^{\epsilon,\delta} = \frac{1}{2}\delta \, dB_t + \frac{1}{\epsilon} J \nabla H(x_t^{\epsilon,\delta}).$$

As $\delta \to 0$, $x_t^{\epsilon,\delta}$ converges weakly to a diffusion \bar{x}_t^{ϵ} on graph. Then take $\epsilon \to 0$, \bar{x}_t^{ϵ} converges weakly to a motion on graph, deterministic on each edge of the energy graph, random on vertex.

Bhatin, Dolgopyat, Korolov, Kifer, ...

The shallow water equation

Suppose we have a shallow water with height H and free surface z + H.

$$\frac{\partial u}{\partial t} + u \cdot \nabla u = \nu \Delta u_t + \xi_1 + \nabla h$$
$$\frac{\partial h}{\partial t} + \operatorname{div}((z+H)u) = \alpha \Delta h + \xi_2.$$

We then put this on a rotationary frame: $\dot{\tilde{e}} = R \times e$ and obtain a rotationary shallow water equation. Then any vector $A = \sum_{i=1}^{3} A_i e_i$ evolves by

$$\dot{A} = \sum_{i=1}^{3} \frac{d}{dt} (A_{i}e_{i}) = \sum_{i=1}^{3} \frac{d}{dt} \tilde{A}_{i}\dot{\tilde{e}}_{i}.$$
$$\dot{A}_{rot} := \dot{A}_{int} + R \times A.$$

Shallow water in rotational frame

The shallow water equation in rotational frame has an additional Coriolis force: $2R \times u$ and an additional centrifugal force $R \times R \times u$.

By analyzing the wave forms, Salzman (1962) used a double Fourier series expansion and obtained a set of ODE's. Lorenz (1963) found (also 60) the same equations by brutally truncating the Fourier modes.

$$\begin{aligned} \dot{u} &= -vw + bvz \\ \dot{v} &= uw - buz \\ \dot{w} &= -uv \\ \dot{x} &= -\frac{1}{\epsilon}z \\ \dot{z} &= \frac{1}{\epsilon}x + buv \end{aligned}$$

(u, v, w) represents slow waves in large scale caused by rotation of the planet, (x, z) represents gravity wave (eg surface wave at beach, fast smaller in scale)

Lorenz system

$$\begin{split} \dot{u} &= -vw + bvz, \\ \dot{v} &= uw - buz \\ \dot{w} &= -uv \\ \dot{x} &= -\frac{1}{\epsilon}z \\ \dot{z} &= \frac{1}{\epsilon}x + buv \end{split}$$

 $b = \frac{u_0}{\sqrt{g_0 l_0}}$, $\epsilon = {}_{\text{Rossby}} \frac{b}{\sqrt{1+b^2}}$. We first take $\epsilon = 1, b$ small. The system has two constants of motion:

$$u^{2} + v^{2} = C_{1}, \quad v^{2} + w^{2} + x^{2} + z^{2} = C_{2}.$$

There are no non-trivial solutions such that $C_1 = 0$ or $C_2 = 0$. We restrict it to the energy surfaces, is it chaotic? is it integrable?

Poincare map for hydrodynamic 5d system

The Poincare map for w = 0 section on (z, x) plane²

²Acknowledgement: Obtained for me by Alexey Kazakov and Dimitry Turaev.

Hamiltonian

Setting $u = \sqrt{C} \cos \phi'$, $v = \sqrt{C} \sin \phi'$, $\phi' = \phi - \epsilon bx$. The system is in fact a Hamiltonian system in (u, v, z, x). with

$$H = \frac{1}{2}C\sin^2(\phi' + \epsilon bx) + \frac{1}{2}(w^2 + z^2 + x^2),$$

The part chaotic and part integrable nature is characteristic of Hamiltonian systems.

Restricted to a constant energy surface $u^2 + v^2 = C$, It is also equivalent to the nearly integrable system:

$$\dot{\psi} = w - bz$$

$$\dot{w} = -C\sin(2\psi)$$

$$\dot{z} = x + bC\sin(2\psi)$$

$$\dot{x} = -z$$

Stochastic integrable systems

If we consider a time dependent random energy $\sum_{i=1}^{n} H_i \dot{B}_t^i$ on \mathbf{R}^{2n} (or symplectic manifolds), we are naturally lad to a stochastic Hamiltonian system:

$$dy_t = \sum_{i=1}^n X_{H_i}(y_t) \circ dB_t^i.$$

Consider now a small perturbation

$$dy_t = \frac{1}{\epsilon} \sum_i X_{H_i}(y_t) \circ dB_t^i + K(y_t)dt.$$

Theorem. [xml, nonlinearity 08.] Inside canonical coord.

- *H_i(y_s)* converges in *L_p* to solution of an ODE, speed of convergence is controlled above by *c*(*t*)*ϵ*^{1/4}.
- Fluctuation from limit. If K is a Hamiltonian vector field, then H_i(y^s/₂) converges to a Markov process.

Stochastic Lorenz equation

Set
$$H_1 = \frac{1}{2}w^2 + \sin^2\psi$$
, $H_2 = \frac{1}{2}(z^2 + x^2)$.

$$\begin{cases} \dot{\psi} = w & -bz \\ \dot{w} = -C\sin(2\psi) \\ \dot{z} = x & +bC\sin(2\psi) \\ \dot{x} = -z \end{cases}$$

Consider

$$\begin{cases} d\psi &= w \circ dB^1 & -bzdt \\ \dot{w} &= -C\sin(2\psi) \circ dB^1 \\ \dot{z} &= x \circ dB^2 & +bC\sin(2\psi)dt \\ \dot{x} &= -z \circ dB^2 \end{cases}$$

Set $H_i^b(t) = H_2(x_{t/b}, y_{t/b})$. Observe that $H_{tot} = H_1 + H_2$ is a first integral, so H_1, H_2 are bounded,

$$\frac{d}{dt}H_2^b(x_{t/b}, y_{t/b}) = Cz_{t/b}\sin(2\psi_{t/b}).$$

Product canonical coordinates

$$x = \sqrt{2I_2}\cos\theta_2, \qquad z = \sqrt{2I_2}\sin\theta_2.$$

Let (I_1, θ_1) denote the canonical coordinate for the pendulum,

$$H_1 = \frac{1}{2}w^2 + \sin^2\psi,$$

which divides into two phases: H < C and H > C. Set $\kappa(I_1) := \frac{\tilde{H}_1(I_1)}{C}$. On H < C,

$$I_{1} = \frac{4}{2\pi} \int_{0}^{\sin^{-1}\frac{\tilde{H}_{1}(I_{1})}{C}} \sqrt{2\tilde{H}(I_{1}) - 2C\sin^{2}\psi} \, d\psi.$$
$$\theta_{1} = \frac{d}{dI_{1}} \int_{0}^{\psi} \sqrt{2\tilde{H}_{1}(I_{1}) - 2C\sin^{2}\psi} \, d\psi.$$

We take the product canonical coordinates. Observe that $H_1 + H_2$ is a first integral.

Couple oscillator with pendulum

[xml+ Patching18+].

In canonical local coordinates, the perturbation vector field can be written with elliptic integrals, in 4 lines. The reduced equation in liberation phase is:

$$d\theta_1 = \omega(I_1)dB_t^1 + b\tilde{K}_{\theta_1}dt$$
$$d\theta_1 = dB_t^2 + b\tilde{K}_{\theta_2}dt$$
$$dI_1 = b\tilde{K}_{I_1}dt$$
$$dI_2 = b\tilde{K}_{I_2}dt.$$

All functions are explicit, involving elliptic integrals. The drifts in the angle components are complicated involving both I_2 , I_1 and θ_2 . The invariant measures turns out to be the normalized Lebesgue measure. Using a result in [xml'08], [c.f. Stratonovich, A.D. Khasminski, M. Freidlin, D. Athreya 09,...], explicit limits can be obtained, with rate of convergence.

Rough exit time estimates

In the liberation phase,

$$T^{b} = \inf_{t \ge 0} \{ \kappa(I_{1}(t)) = \delta_{1}, \text{ or } \kappa(I_{1}(t)) = (1 \land \frac{H_{tot}}{C}) - \delta_{2} \}.$$

Then, [xml+pathcing 18+]

$$T^{b} \geq \left(\frac{\sin^{-1}\sqrt{\frac{C}{H_{tot}}\kappa(0)} - \sin^{-1}\sqrt{\frac{C}{H_{tot}}}\delta_{1}}{b\sqrt{C/2}}\right)$$
$$\wedge \left(\frac{\sin^{-1}\sqrt{\frac{C}{H_{tot}}(1\wedge\frac{H_{tot}}{C}) - \delta_{2}} - \sin^{-1}\sqrt{\frac{C}{H_{tot}}\kappa(0)}}{b\sqrt{C/2}}\right)$$

A separate formula is available in the rotation phase.

Effective limits

-Despite that *K* is not Hamiltonian, there is no visible movement of H_i on $[0, \frac{1}{b}]$. (for the liberating case:

$$\mathbf{E}\left\{\sup_{s\leq t}|H_1(y_{\frac{s}{b}\wedge T^b}) - H_i(y_0)| \left|T^b > t/b\right\} \leq \frac{2c(t)b^{\frac{1}{4}}}{1 - b^{1/4}\frac{c(t)}{\tilde{c}}}.$$

–Within the liberaing phrase, $H_1^b(t/b^2)$ converges to

$$\begin{aligned} d\zeta_t &= \sqrt{a(\zeta_t)} \circ dW_t + \gamma_1(\zeta_t) dt \\ a(I_1) &= \frac{C\kappa I_2}{2K(\kappa)} \int_0^{u_0(\kappa)} sn(u,k) dn(u,k) \hat{\phi}(u,k) du. \\ \hat{\phi}(u;k) &= [A_1(\kappa) + F_1(u,\kappa) e^{u/\sqrt{2C}} + [A_2(\kappa) + F_2(u,\kappa)] e^{-u/\sqrt{2C}} \\ \gamma_1 &= \frac{1}{2} \int_{[0,2\pi]^2} L_K \Theta d\theta. \\ \Theta &= \sqrt{2KI_2} \hat{\phi}(u;\kappa) \sin(\theta_2) \end{aligned}$$