Stochastic averaging: effectives

Xue-Mei Li

Imperial College London

LMS Durham Symposium on Homogenisation in Disordered Media

19-25 August, 2018

Introduction

Diffusion Operators

In local coordinates,

$$
\mathcal{L}=\frac{1}{2} \sum_{i, j=1}^{n} a_{i, j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{k=1}^{n} b_{k}(x) \frac{\partial}{\partial x_{k}} .
$$

Here $A(x):=\left(a_{i, j}(x)\right)$ is a $n \times n$ symmetric non-negative matrix. If Lipschitz continuous, there exist a family of vector fields $X_{1}, \ldots, X_{m}, m \geq n$, s.t.

$$
\mathcal{L} f=\frac{1}{2} \sum_{k=1}^{m} X_{k}\left(X_{k} f\right)+X_{0} f .
$$

- \mathcal{L} is elliptic if and only if $X(x): \mathbf{R}^{m} \rightarrow T_{x} M$ is a surjection and so determines a Riemannian metric.
An elliptic operator is $\frac{1}{2} \Delta$ plus drift for some Riemannian metric. A strong Markov process with generator $\frac{1}{2} \Delta$ is a BM.

SDEs

Given $\mathcal{L}=\frac{1}{2} \sum\left(X_{i}\right)^{2}+X_{0}$, define

$$
d x_{t}=\sum_{i=1}^{m} X_{i}\left(x_{t}\right) \circ d B_{t}^{i}+X_{0}\left(x_{t}\right) d t
$$

The solutions are diffusions (strong Markov processes) with generator \mathcal{L}.

Stochastic slow fast systems

$$
\left\{\begin{array}{l}
d x_{t}^{\epsilon}=\sum_{k=1}^{m_{1}} X_{k}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) \circ d B_{t}^{k}+X_{0}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) d t \\
d y_{t}^{\epsilon}=\frac{1}{\sqrt{\epsilon}} \sum_{k=1}^{m_{2}} Y_{k}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) \circ d W_{t}^{k}+\frac{1}{\epsilon} Y_{0}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) d t
\end{array}\right.
$$

Problem. Take $\epsilon \rightarrow 0$, show x_{t}^{ϵ} converges weakly.

$$
\left.\begin{array}{rl}
\frac{1}{\epsilon}(\overbrace{\frac{1}{2} Y_{i}^{2}(x, \cdot)+Y_{0}(x, \cdot)}^{\mathcal{L}_{0} \equiv \mathcal{L}_{0}^{x}})
\end{array}\right)+\overbrace{\left(\frac{1}{2} X_{k}(\cdot, y)^{2}+X_{0}(\cdot, y)\right)}^{\mathcal{L}_{1} \equiv \mathcal{L}_{1}^{y}} .
$$

Uniform LLN (uniform Birkhoff)

- Suppose for each x, \mathcal{L}^{x} has a unique invariant measure. Then \mathcal{L}^{x} is said to satisfy a locally uniform law of large numbers if
- $x \rightarrow \mu^{x}$ is locally Lipschitz continuous.
- For every $f \in L^{2} \cap C^{r}$, there exists a locally bounded $C(x)$ such that

$$
\left|\frac{1}{T} \int_{t}^{t+T} f\left(y_{r}^{x}\right) d r-\int_{G} f(y) \mu^{x}(d y)\right|_{L_{2}(\Omega)} \leq C(x) c(f) \frac{1}{\sqrt{T}} .
$$

-This is useful for estimating speed of convergence.

- Not trivial: consider $d y_{t}=\sigma(x) d B_{t}+\nabla h\left(x, y_{t}\right) d t$.
-Proved in case G is compact, $\sum Y_{i}$ satisfies Hörmander's condition+ bounds [xml18, Abel Symp].

Zero index Fredholm operators

-To solve $\mathcal{L}^{x} f=v, v$ must satisfy several independent constraints. The dimension of the solutions minus the dimension of the independent constraints is the 'index'.
-If \mathcal{L} satisfies Hörmander's conditions, it is Fredholm from its domain to $L^{2}: \mathcal{L}$ has closed range,

$$
\operatorname{dim}\left(\operatorname{ker} \mathcal{L}^{x}\right)<\infty, \quad \operatorname{dim}\left(\operatorname{ker}\left(\mathcal{L}^{x}\right)^{*}\right)<\infty
$$

-If the Fredholm index $=0$, define $\Pi_{x}: L_{2} \rightarrow \operatorname{ker}\left(\mathcal{L}^{x}\right)$, functioning as an averaging operator.
Open Problem.

$$
\left|\frac{1}{T} \int_{t}^{t+T} f\left(y_{r}^{x}\right) d r-\Pi_{x} f\right| \leq C(x) c(f) \beta(T) ?
$$

Note: Given $\mathcal{L}^{x}: E \rightarrow F$, smooth in $x, \operatorname{dim}\left(\operatorname{ker}\left(\mathcal{L}^{x}\right)\right)$ may not be continuous in x. Their index is [M. Atiyah]. Caution: $\operatorname{Dom}\left(\mathcal{L}^{x}\right)$ may vary with x.

Effective Motions

Effective motions

Effective motions coming from averaging is associated with a first integral or a conserved map. Effective motions typically live in a reduced space: a quotient of the original space and an action space.
When the unperturbed motion has a full range of symmetries, the quotient space (or orbit space) is a smooth manifold. The classification will rely on algebra and differential geometry. The reduced space is often a foliation or a graph.
When this is a graph, the identification of the effective motion is associated with exit laws of Markov processes. [Brin, Freidlin, Wentzell, Bhatin, Borodin, Koralov, ...]

A baby model on Hopf fibration

$$
S^{3} \sim S U(2)=\left\{\left(\begin{array}{cc}
z & w \\
-\bar{w}, & \bar{z}
\end{array}\right): z, w \in \mathbb{C}\right\} .
$$

- The Pauli matrices :

$$
X_{1}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad X_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad X_{3}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) .
$$

- Berger's spheres is S^{3} with $\left\{\frac{1}{\sqrt{\epsilon}} X_{1}, X_{2}, X_{3}\right\}$ o.n.b. The spectra of Berger's spheres, i.e. $\frac{1}{\epsilon}\left(X_{1}\right)^{2}+\left(X_{2}\right)^{2}+\left(X_{3}\right)^{2}$, converges.
- Problem.

$$
\mathcal{L}^{\epsilon}=\frac{1}{2 \epsilon}\left(X_{1}\right)^{2}+X_{2} .
$$

What information can we extract from \mathcal{L}^{ϵ}, when ϵ is taken to zero? Look at $d g_{t}^{\epsilon}=\frac{1}{\sqrt{\epsilon}} g_{t}^{\epsilon} X_{1} \circ d B_{t}+g_{t}^{\epsilon} X_{2} d t$.

a baby theorem

Take a unit vector $Y_{0} \in\left\langle X_{2}, X_{3}\right\rangle$.

$$
d g_{t}^{\epsilon}=\frac{1}{\sqrt{\epsilon}} g_{t}^{\epsilon} X_{1} d B_{t}+g_{t}^{\epsilon} Y_{0} d t
$$

$\pi(z, w)=\left(\frac{1}{2}\left(|w|^{2}-|z|^{2}\right), z \bar{w}\right)$ is the Hopf map, mapping S^{3}
to $S^{2}=S U(2) / S^{1}$, and $x_{t}^{\epsilon}=\pi\left(g_{t}^{\epsilon}\right)$.
Theorem. [xml'18 JJMS]

- As $\epsilon \rightarrow 0, x_{t}^{\epsilon}:=\pi\left(g_{t}^{\epsilon}\right) \rightarrow \pi\left(g_{0}\right)$
- $x_{\frac{t}{\epsilon}}^{\epsilon}$ converges in law to the BM on $S^{2}\left(\frac{1}{2}\right)$ scaled by $\lambda=\frac{1}{2}$.
- The horizontal lift, $\left(\tilde{x}_{t}^{\epsilon}\right)$, of $\left(x_{t}^{\epsilon}\right)$, converges weakly to the hypoelliptic diffusion with generator $\overline{\mathcal{L}}=\frac{1}{2} \Delta^{h o r}$.

Using symmetries

Suppose that H is a compact subgroup of a Lie group G with a left invariant metric.

- Then $\mathfrak{g}=\mathfrak{g} \oplus \mathfrak{h}^{\perp}$ and there is an $\operatorname{ad}(H)$-invariant orthogonal splitting :

$$
\mathfrak{h}^{\perp}=\mathfrak{m}_{0} \oplus \mathfrak{m}_{1} \oplus \cdots \oplus \mathfrak{m}_{l},
$$

\mathfrak{m}_{0} is the space of $\operatorname{Ad}(H)$ invariant vectors.

- Take $A_{k} \in \mathfrak{h}$, and $Y \in \mathfrak{h}^{\perp}$.

$$
d g_{t}=\sum_{k=1}^{p} \gamma A_{k}\left(g_{t}\right) \circ d B_{t}^{k}+\delta Y\left(g_{t}\right) d t
$$

The solutions interpolate between translates of the one parameter group on G and diffusions on H.

- We will take $\gamma \rightarrow \infty$ while setting $\delta=1$. Consider diffusions on the orbit space G / H.

Adiabatic limit on homogeneous spaces

Suppose $\left\{A_{k}\right\}$ and their iterated commutators generate \mathfrak{h}.

$$
d g_{t}^{\epsilon}=\frac{1}{\sqrt{\epsilon}} \sum_{k=1}^{N} A_{k}\left(g_{t}^{\epsilon}\right) \circ d b_{t}^{k}+Y\left(g_{t}^{\epsilon}\right) d t, \quad g_{0}^{\epsilon}=g_{0},
$$

- There exists \tilde{g}_{t}^{ϵ}, with $g_{t}^{\epsilon} H=\tilde{g}_{t}^{\epsilon} H$, converging to the solution of $\frac{\partial}{\partial t} \bar{g}=Y_{\mathrm{m}_{0}}(\bar{g})$. Key: $\int_{H} \operatorname{Ad}(H)(Y) d h=0$ iff $Y \in \mathfrak{m}_{1} \oplus \cdots \oplus \mathfrak{m}_{l}$,
- If $Y \in \mathfrak{m}_{k}$ is a unit vector, $\tilde{g}_{t / \epsilon}^{\epsilon}$ converges to a diffusion with generator $\lambda(Y) \sum_{j=1}^{\operatorname{dim}^{\left(\mathfrak{m}_{k}\right)}}\left(Y_{k, j}\right)^{2}$. associate matrix eigenvector to eigenfunction of \mathcal{L}_{0}, solve Poisson eq. and use a result of D. Rumynin.
- $\pi\left(\tilde{g}_{t / \epsilon}^{\epsilon}\right) \in G / H$ converges to Markov proces. Paralle translations along $\pi\left(\tilde{g}_{t / \epsilon}^{\epsilon}\right)$, converges to stochastic parallel transports along the limiting diffusions.
- If $\left\{A_{k}\right\}$ is an o.n.b. of $\mathfrak{h}, \lambda_{k}(Y)$ is independent of Y.

Taking the adiabatic limit in geometry

-Taking the adiabatic limit in geometry is popular: Getzler, Bismut, Lebeau,...,
-The theorem follows from a separation of scales, and :

$$
\begin{equation*}
\dot{y}_{t}^{\epsilon}(\omega)=\sum_{k=1}^{m} Y_{k}\left(y_{t}^{\epsilon}(\omega)\right) \alpha_{k}\left(z_{t}^{\epsilon}(\omega)\right), \quad y_{0}^{\epsilon}(\omega)=y_{0} . \tag{1}
\end{equation*}
$$

where z_{t}^{ϵ} is a $\frac{1}{\epsilon} \mathcal{L}_{0}$ diffusion, α_{k} 'averages' to zero w.r.t. the invariant measure of \mathcal{L}_{0}.
Then $y_{\frac{t}{\epsilon}}^{\epsilon}$ converges to an explicit Markov process with rate $\epsilon^{\frac{1}{4}}$ in Wasserstein distance.
[xml, PTRF'17], Lions, Sougnidis, Papaniclaou, Keller, Varadhan, ...

Hamiltonian systems

Averaging

- Let $x_{0} \in T^{n}$ and $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$ where $\omega_{1}, \ldots, \omega_{n}$ are linearly independent real numbers over Q. Then

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f\left(x_{0}+s \omega\right) d s=\int_{T^{n}} f(x) \mu(d x), \quad f \in L^{1}
$$

- If

$$
\dot{I}=\epsilon g(I, \theta), \quad \dot{\theta}=\omega(I)+\epsilon f(I, \theta)
$$

then $I^{\epsilon}\left(\frac{t}{\epsilon}\right) \rightarrow \bar{I}(t)$, where

$$
\frac{d}{d t} \bar{I}(t)=\int g(\bar{I}(t), \theta) \mu(d \theta)
$$

Integrable Hamiltonian

- Darboux's theorem. Given an integrable Hamiltonian system, for almost every point, there is a canonical action-angle coordinates such that the Hamiltonian H is a function of I only. Then $\dot{x}_{t}=X_{H}\left(x_{t}\right)$ is equivalent to

$$
\dot{I}=0, \quad \dot{\theta}=\omega(I) .
$$

Let us consider a perturbation: $\dot{x}_{t}=(\nabla H)^{\perp}\left(x_{t}\right)+\epsilon V\left(x_{t}\right)$. Then $H\left(x_{t}^{\epsilon}\right)$ is a slow motion and converges within the canonical charts. ${ }^{1}$

- Shape of the effective limit is a challenge beyond the local coordinates: Non-constant frequencies. more than 1-degree of freedom, product of one dimensional Hamiltonians is most promising. Neshdadt, ...

[^0]
Perturbation of 1-dim. Hamiltonians

M. Brin, M. Freidlin, A.D. Wentzell,...:

$$
d x_{t}^{\epsilon, \delta}=\frac{1}{2} \delta d B_{t}+\frac{1}{\epsilon} J \nabla H\left(x_{t}^{\epsilon, \delta}\right) .
$$

As $\delta \rightarrow 0, x_{t}^{\epsilon, \delta}$ converges weakly to a diffusion \bar{x}_{t}^{ϵ} on graph. Then take $\epsilon \rightarrow 0, \bar{x}_{t}^{\epsilon}$ converges weakly to a motion on graph, deterministic on each edge of the energy graph, random on vertex.
Bhatin, Dolgopyat, Korolov, Kifer, ...

The shallow water equation

Suppose we have a shallow water with height H and free surface $z+H$.

$$
\begin{aligned}
\frac{\partial u}{\partial t}+u \cdot \nabla u & =\nu \Delta u_{t}+\xi_{1}+\nabla h \\
\frac{\partial h}{\partial t}+\operatorname{div}((z+H) u) & =\alpha \Delta h+\xi_{2} .
\end{aligned}
$$

We then put this on a rotationary frame: $\dot{\tilde{e}}=R \times e$ and obtain a rotationary shallow water equation. Then any vector $A=\sum_{i=1}^{3} A_{i} e_{i}$ evolves by

$$
\begin{gathered}
\dot{A}=\sum_{i=1}^{3} \frac{d}{d t}\left(A_{i} e_{i}\right)=\sum_{i=1}^{3} \frac{d}{d t} \tilde{A}_{i} \dot{\tilde{e}}_{i} . \\
\dot{A}_{\text {rot }}:=\dot{A}_{\text {int }}+R \times A .
\end{gathered}
$$

Shallow water in rotational frame

The shallow water equation in rotational frame has an additional Coriolis force: $2 R \times u$ and an additional centrifugal force $R \times R \times u$.
By analyzing the wave forms, Salzman (1962) used a double Fourier series expansion and obtained a set of ODE's. Lorenz (1963) found (also 60) the same equations by brutally truncating the Fourier modes.

$$
\begin{aligned}
& \dot{u}=-v w+b v z, \\
& \dot{v}=u w-b u z \\
& \dot{w}=-u v \\
& \dot{x}=-\frac{1}{\epsilon} z \\
& \dot{z}=\frac{1}{\epsilon} x+b u v
\end{aligned}
$$

(u, v, w) represents slow waves in large scale caused by rotation of the planet, (x, z) represents gravity wave (eg surface wave at beach, fast smaller in scale).

Lorenz system

$$
\begin{aligned}
& \dot{u}=-v w+b v z, \\
& \dot{v}=u w-b u z \\
& \dot{w}=-u v \\
& \dot{x}=-\frac{1}{\epsilon} z \\
& \dot{z}=\frac{1}{\epsilon} x+b u v
\end{aligned}
$$

$b=\frac{u_{0}}{\sqrt{g_{0} l_{0}}}, \epsilon=$ Rossby $\frac{b}{\sqrt{1+b^{2}}}$. We first take $\epsilon=1, b$ small.
The system has two constants of motion:

$$
u^{2}+v^{2}=C_{1}, \quad v^{2}+w^{2}+x^{2}+z^{2}=C_{2} .
$$

There are no non-trivial solutions such that $C_{1}=0$ or $C_{2}=0$. We restrict it to the energy surfaces, is it chaotic? is it integrable?

Poincare map for hydrodynamic 5d system

The Poincare map for $w=0$ section on (z, x) plane ${ }^{2}$

${ }^{2}$ Acknowledgement: Obtained for me by Alexey Kazakov and Dimitry Turaev.

Hamiltonian

Setting $u=\sqrt{C} \cos \phi^{\prime}, v=\sqrt{C} \sin \phi^{\prime}, \phi^{\prime}=\phi-\epsilon b x$. The system is in fact a Hamiltonian system in (u, v, z, x). with

$$
H=\frac{1}{2} C \sin ^{2}\left(\phi^{\prime}+\epsilon b x\right)+\frac{1}{2}\left(w^{2}+z^{2}+x^{2}\right)
$$

The part chaotic and part integrable nature is characteristic of Hamiltonian systems.
Restricted to a constant energy surface $u^{2}+v^{2}=C$, It is also equivalent to the nearly integrable system:

$$
\begin{aligned}
& \dot{\psi}=w-b z \\
& \dot{w}=-C \sin (2 \psi) \\
& \dot{z}=x+b C \sin (2 \psi) \\
& \dot{x}=-z
\end{aligned}
$$

Stochastic integrable systems

If we consider a time dependent random energy
$\sum_{i=1}^{n} H_{i} \dot{B}_{t}^{i}$ on $\mathbf{R}^{2 n}$ (or symplectic manifolds), we are naturally lad to a stochastic Hamiltonian system:

$$
d y_{t}=\sum_{i=1}^{n} X_{H_{i}}\left(y_{t}\right) \circ d B_{t}^{i} .
$$

Consider now a small perturbation

$$
d y_{t}=\frac{1}{\epsilon} \sum_{i} X_{H_{i}}\left(y_{t}\right) \circ d B_{t}^{i}+K\left(y_{t}\right) d t
$$

Theorem. [xml, nonlinearity 08.] Inside canonical coord.

- $H_{i}\left(y_{\epsilon}\right)$ converges in L_{p} to solution of an ODE, speed of convergence is controlled above by $c(t) \epsilon^{\frac{1}{4}}$.
- Fluctuation from limit. If K is a Hamiltonian vector field, then $H_{i}\left(y_{\frac{s}{\epsilon^{2}}}\right)$ converges to a Markov process.

Stochastic Lorenz equation

Set $H_{1}=\frac{1}{2} w^{2}+\sin ^{2} \psi, H_{2}=\frac{1}{2}\left(z^{2}+x^{2}\right)$.

$$
\begin{cases}\dot{\psi}=w & -b z \\ \dot{w}=-C \sin (2 \psi) & \\ \dot{z}=x & +b C \sin (2 \psi) \\ \dot{x}=-z & \end{cases}
$$

Consider

$$
\left\{\begin{array}{lrrr}
d \psi & = & w \circ d B^{1} & -b z d t \\
\dot{w} & = & -C \sin (2 \psi) \circ d B^{1} & \\
\dot{z} & = & x \circ d B^{2} & +b C \sin (2 \psi) d t \\
\dot{x} & = & -z \circ d B^{2} &
\end{array}\right.
$$

Set $H_{i}^{b}(t)=H_{2}\left(x_{t / b}, y_{t / b}\right)$. Observe that $H_{t o t}=H_{1}+H_{2}$ is a first integral, so H_{1}, H_{2} are bounded,

$$
\frac{d}{d t} H_{2}^{b}\left(x_{t / b}, y_{t / b}\right)=C z_{t / b} \sin \left(2 \psi_{t / b}\right)
$$

Product canonical coordinates

$$
x=\sqrt{2 I_{2}} \cos \theta_{2}, \quad z=\sqrt{2 I_{2}} \sin \theta_{2}
$$

Let $\left(I_{1}, \theta_{1}\right)$ denote the canonical coordinate for the pendulum,

$$
H_{1}=\frac{1}{2} w^{2}+\sin ^{2} \psi
$$

which divides into two phases: $H<C$ and $H>C$. Set $\kappa\left(I_{1}\right):=\frac{\tilde{H}_{1}\left(I_{1}\right)}{C}$. On $H<C$,

$$
\begin{gathered}
I_{1}=\frac{4}{2 \pi} \int_{0}^{\sin ^{-1} \frac{\tilde{H}_{1}\left(I_{1}\right)}{C}} \sqrt{2 \tilde{H}\left(I_{1}\right)-2 C \sin ^{2} \psi} d \psi \\
\theta_{1}=\frac{d}{d I_{1}} \int_{0}^{\psi} \sqrt{2 \tilde{H}_{1}\left(I_{1}\right)-2 C \sin ^{2} \psi} d \psi
\end{gathered}
$$

We take the product canonical coordinates. Observe that $H_{1}+H_{2}$ is a first integral.

Couple oscillator with pendulum

Liberation phase

$$
\begin{aligned}
& k=1, \quad \text { separatrix } \\
& k=H_{\text {tot }} / c
\end{aligned}
$$

[xml+ Patching18+].

In canonical local coordinates, the perturbation vector field can be written with elliptic integrals, in 4 lines.
The reduced equation in liberation phase is:

$$
\begin{array}{r}
d \theta_{1}=\omega\left(I_{1}\right) d B_{t}^{1}+b \tilde{K}_{\theta_{1}} d t \\
d \theta_{1}=d B_{t}^{2}+b \tilde{K}_{\theta_{2}} d t \\
d I_{1}=b \tilde{K}_{I_{1}} d t \\
d I_{2}=b \tilde{K}_{I_{2}} d t .
\end{array}
$$

All functions are explicit, involving elliptic integrals. The drifts in the angle components are complicated involving both I_{2}, I_{1} and θ_{2}. The invariant measures turns out to be the normalized Lebesgue measure. Using a result in [xml'08], [c.f. Stratonovich, A.D. Khasminski, M. Freidlin, D. Athreya $09, \ldots$], explicit limits can be obtained, with rate of convergence.

Rough exit time estimates

In the liberation phase,

$$
T^{b}=\inf _{t \geq 0}\left\{\kappa\left(I_{1}(t)\right)=\delta_{1}, \text { or } \kappa\left(I_{1}(t)\right)=\left(1 \wedge \frac{H_{t o t}}{C}\right)-\delta_{2}\right\} .
$$

Then, [xml+pathcing 18+]

$$
\begin{array}{r}
T^{b} \geq\left(\frac{\sin ^{-1} \sqrt{\frac{C}{H_{\text {tot }}} \kappa(0)}-\sin ^{-1} \sqrt{\frac{C}{H_{\text {tot }}} \delta_{1}}}{b \sqrt{C / 2}}\right) \\
\wedge\left(\frac{\sin ^{-1} \sqrt{\frac{C}{H_{\text {tot }}}\left(1 \wedge \frac{H_{\text {tot }}}{C}\right)-\delta_{2}}-\sin ^{-1} \sqrt{\frac{C}{H_{\text {tot }}} \kappa(0)}}{b \sqrt{C / 2}}\right)
\end{array}
$$

A separate formula is available in the rotation phase.

Effective limits

-Despite that K is not Hamiltonian, there is no visible movement of H_{i} on $\left[0, \frac{1}{b}\right]$. (for the liberating case:

$$
\mathbf{E}\left\{\sup _{s \leq t}\left|H_{1}\left(y_{\frac{s}{b} \wedge T^{b}}\right)-H_{i}\left(y_{0}\right)\right| T^{b}>t / b\right\} \leq \frac{2 c(t) b^{\frac{1}{4}}}{1-b^{1 / 4 \frac{c(t)}{\tilde{c}}}} .
$$

-Within the liberaing phrase, $H_{1}^{b}\left(t / b^{2}\right)$ converges to

$$
\begin{gathered}
d \zeta_{t}=\sqrt{a}\left(\zeta_{t}\right) \circ d W_{t}+\gamma_{1}\left(\zeta_{t}\right) d t \\
a\left(I_{1}\right)=\frac{C \kappa I_{2}}{2 K(\kappa)} \int_{0}^{u_{0}(\kappa)} \operatorname{sn}(u, k) d n(u, k) \hat{\phi}(u, k) d u . \\
\hat{\phi}(u ; k)=\left[A_{1}(\kappa)+F_{1}(u, \kappa) e^{u / \sqrt{2 C}}+\left[A_{2}(\kappa)+F_{2}(u, \kappa)\right] e^{-u / \sqrt{2 C}}\right. \\
\gamma_{1}=\frac{1}{2} \int_{[0,2 \pi]^{2}} L_{K} \Theta d \theta . \\
\Theta=\sqrt{2 K I_{2} \hat{\phi}(u ; \kappa) \sin \left(\theta_{2}\right)}
\end{gathered}
$$

[^0]: 1Early 60's: Bogolyubov-Mitropolskii, Anosov, 70's: V I Arnold, Neishtadt.

