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The Model
Consider {

uεt − ε∆uε = 1
ε f
(
x
ε , u

ε, ω
)

in (0,∞)× Rd ,

uε(0, x) ≈ χA on Rd ,

where
I uε : (0,∞)× Rd → R,
I A ⊆ Rd open and bounded,
I f (x , ·, ω) is a random ignition reaction, typically looking like:
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Stationarity and Ergodicity (SE):
I f (·, u, ·) is stationary, i.e. there exists a measure-preserving group of

transformations {Ty}y∈Rd : Ω→ Ω so that for all u ∈ R,

f (x + y , u, ω) = f (x , u,Tyω).

I (Ω,F ,P) is ergodic with respect to Ty . In other words, if there
exists an event E ∈ F so that

E = TyE for all y ∈ Rd ,

then P[E ] is either 0 or 1.



Set-Up Challenges Resolution

Stationarity and Ergodicity (SE):
I f (·, u, ·) is stationary, i.e. there exists a measure-preserving group of

transformations {Ty}y∈Rd : Ω→ Ω so that for all u ∈ R,

f (x + y , u, ω) = f (x , u,Tyω).

I (Ω,F ,P) is ergodic with respect to Ty . In other words, if there
exists an event E ∈ F so that

E = TyE for all y ∈ Rd ,

then P[E ] is either 0 or 1.



Set-Up Challenges Resolution

Interpretation of This Model
Observe {

uεt − ε∆uε = 1
ε f
(
x
ε , u

ε, ω
)

in (0,∞)× Rd ,

uε(0, x) ≈ χA on Rd ,

Then
uε(t, x , ω) = u

( t
ε
,
x

ε
, ω
)

where u solves {
ut −∆u = f (x , u, ω) in (0,∞)× Rd ,

u(0, x , ω) ≈ χ 1
εA
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So support of the initial function is large compared to the size of the
heterogeneities.
Homogenization Goal: Identify a deterministic u such that for P-a.e. ω,
uε → u, which represents a large-scale, long-time limit of the unscaled
RD equation with random right hand side.
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What does u look like?
Since {

uεt − ε∆uε = 1
ε f
(
x
ε , u

ε, ω
)

in (0,∞)× Rd ,

uε(0, x) ≈ χA on Rd ,

we expect that u should take on values such that f (x , u, ω) = 0.

Thus, u = 0 or 1, so we expect

u(t, x) = χ{t}×At
(t, x) = χAt (x)

for sets {At}t>0 ⊆ Rd .

More Specific Goal: Identify deterministic open sets {At}t>0 such that
almost surely and locally uniformly away from the boundary,

lim
ε→0

uε(t, x , ω) =

{
1 if (t, x) ∈ {t} × At

0 if (t, x) ∈
(
(0,∞)× Rd

)
\
(
{t} × At

)
.

{At}t>0 represents the effective front propagation taking place on
average in the random, heterogeneous environment.
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Identifying u(t, x) with a PDE
What PDE can u(x , t) = χAt (x) solve?

Front propagation can be identified by the level sets of a Hamilton-Jacobi
Equation.

Homogenization: Identify a deterministic function c∗ : Sd−1 → (0,∞)
such that almost surely and locally uniformly in space-time (away from
certain boundaries),

lim
ε→0

uε(t, x , ω) = u(t, x),

where u is the unique viscosity solution of{
ut = c∗

(
− Du
|Du|

)
|Du| in (0,∞)× Rd ,

u(0, x) = χA(x) on Rd .

c∗(e)=the normal velocity in direction e ∈ Sd−1 governing the front
propagation
c∗(e)=front speed in direction e

Barles, Soner, and Souganidis: For c∗ “nice enough”, u(t, x) = χAt (x) is
the unique discontinuous viscosity solution.
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Homogenization says that for P-almost every configuration of trees in the
forest, the fire will spread like the function u(t, x) (burnt and unburnt
state) (once the heterogeneities are sufficiently small and asymptotically
in time)
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Literature Context
Many works on periodic/random homogenization/identification of front
speeds with different scalings: Barles, Soner, and Souganidis; Barles and
Souganidis; Berestycki and Hamel; Majda and Souganidis; Nolen and
Ryzhik; Nolen and Xin; Weinberger; Xin; Zlatoš...

I Periodic Setting: Alfaro and Giletti (2015)–periodic, monostable
reactions, initial data for sets A convex and smooth.

I Random Setting: Lions and Souganidis (2005)–stationary ergodic
KPP reactions

Approach:

I KPP Reaction-Diffusion Equations can be compared to solutions of

vt −∆v = fu(x , 0)v .

I Hopf-Cole transformation: Converts this PDE into a viscous
Hamilton-Jacobi equation with a convex Hamiltonian.

I Stochastic homogenization for viscous HJ equations with convex
Hamiltonians is well-understood.
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Set-Up Challenges Resolution

Typical Strategies

I Homogenization Ansatz and an “additive” corrector:

uε(t, x , ω) ≈ u(t, x) + corrector.

uε and u have essentially the same initial data; uε is continuous, and
u is discontinuous...

I No corrector → No perturbed test function method
No convenient way to measure uε − u, uε is not fluctuating around
u, and very unclear how to get error estimates...

I No corrector equation → no PDE to identify c∗(e).
The PDE is reaction diffusion, and the homogenized PDE is
Hamilton-Jacobi...

So how will we identify c∗(e) for e ∈ Sd−1?
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Set-Up Challenges Resolution

Defining c∗(e)
I c∗(e) has an interpretation as the normal velocity governing front

propagation.

I Fix e ∈ Sd−1, and let u(·, ·, ω) solve{
ut −∆u = f (x , u, ω) in (0,∞)× Rd ,

u(0, x , ω) = (1− α)χ{x·e≤0}(x) on Rd

The front speed c∗(e) > 0 is the deterministic constant such that
for P-a.e. ω, for any K ⊆ Rd compact, for any δ > 0,

lim
t→∞

inf
K⊆{x·e≤c∗(e)−δ}

u(t, xt, ω) = 1

lim
t→∞

sup
K⊆{x·e≥c∗(e)+δ}

u(t, xt, ω) = 0.

Roughly speaking, this says that for P-a.e. ω,

u(t, x , ω) −−−→
t→∞

χ{x·e<c∗(e)t}(x)

Observe: Initial data is invariant with respect to hyperbolic scaling,
so can re-write this definition in uε scaling.
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Roughly speaking, this says that for P-a.e. ω,

u(t, x , ω) −−−→
t→∞

χ{x·e<c∗(e)t}(x)

Observe: Initial data is invariant with respect to hyperbolic scaling,
so can re-write this definition in uε scaling.



Set-Up Challenges Resolution

Seeing c∗(e) from a Solution to a PDE

I If the right hand side is f (u), a traveling front with speed c is an
entire solution of the form

u(t, x) = U(x · e − ct)

where
lim

s→−∞
U(s) = 1 lim

s→∞
U(s) = 0.

If (U, c) is a traveling front pair, then c satisfies our definition of
front speeds.

I There is an analogous type of solution (pulsating front) for right
hand side f (x , u) when f (·, u) is periodic.

I No such solutions exist for general heterogeneous right hand side
f (x , u, ω).
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Challenges Specific to Ignition

(H1) u has to spread. Ignition has the possibility that
I If temperature is too low (i.e. u(0, x) ≤ θ(x , ω)), then f (x , u, ω) = 0

so RD becomes the heat equation.
I If initial data supported on a small set, the solution may not spread.

We need there is θ0,R such that{
ut −∆u = f (x , u, ω) in (0,∞)× Rd ,

u(0, x , ω) = θ0BR on Rd ,

then locally uniformly in x ,

lim
t→∞

u(t, x , ω) = 1.

(this is ok for ignition by f0(u) lower bound).



Set-Up Challenges Resolution

(H2) We need to control the width of the transition zone for unscaled
solutions.

1D: {
ut − uxx = f (x , u) in (0,∞)× R,
u(0, x , ω) ≈ χA on R.

u=1

u=0

For η ∈
(
0, 1

2

)
, let

Lu,η(t) := distH ({x : u(t, x) ≥ 1− η} , {x : u(t, x) ≥ η})

x → x

ε
≈ xt ⇒ Lu,η(t) ∼ o(t).
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Set-Up Challenges Resolution

Theorem (Zlatoš, ’14)
Let u solve {

ut −∆u = f (x , u) in (0,∞)× Rd ,

ut ≥ 0 in (0,∞)× Rd .

If d ≤ 3, then
lim sup
t→∞

Lu,η(t) <∞.

In fact, for d ≤ 3, there exists C > 0 such that for P-a.e. ω,

lim sup
t→∞

Lu,η,ω(t) < C .

For d > 3, this is not in general true! There exist reactions f (·, ·, ω) with

ω ∈ Ω such that
Lu,η,ω(t) ∼ Ct
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Set-Up Challenges Resolution

Without solutions, how will we identify c∗(e)?

Strategy: Track where u ≈ 1 and u ≈ 0.

Front-Like Initial Data and Higher Dimensions:

¥f¥÷¥F:
Front speeds in random media in one dimension: Nolen and Ryzhik,
Zlatoš
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Set-Up Challenges Resolution

Definition: Spreading Speeds

Fix e ∈ Sd−1, and let u(·, ·, ω) solve{
ut −∆u = f (x , u, ω) in (0,∞)× Rd ,

u(0, x) = θ0χBR
on Rd .

Then we say w(e) is the spreading speed in direction e if for P-a.e. ω, for
any δ > 0,

lim
t→∞

u(t, (w(e)− δ)te, ω) = 1,

lim
t→∞

u(t, (w(e) + δ)te, ω) = 0.

The homogenized PDE should be Hamilton-Jacobi, so try to use some
ideas from stochastic homogenization for Hamilton-Jacobi equations...but
no corrector equation.
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Set-Up Challenges Resolution

First Passage Times for Reaction-Diffusion Equations

Define
τ(0, y , ω) := inf

{
t : u(t, x , ω) ≥ θ0χBR (y)

}
.

By the subadditive ergodic theorem, there exists a deterministic τ(e)
such that for P-a.e. ω,

lim
n→∞

τ(0, ne, ω)

n
= τ(e).

Then
w(e) :=

1
τ(e)

satisfies the definition of spreading speed.
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Set-Up Challenges Resolution

All Directions at Once: The Wulff Shape
Proposition
Let u(·, ·, ω) solve{

ut −∆u = f (x , u, ω) in (0,∞)× Rd ,

u(0, x) = θ0χBR
on Rd .

Define
S :=

{
se : 0 ≤ s ≤ w(e); e ∈ Sd−1} ⊆ Rd ,

a convex set. For P-a.e. ω, for every δ > 0, for t sufficiently large,

(1− δ)tS ⊆
{
x : u(t, x , ω) =

1
2

}
⊆ (1 + δ)tS.

S is called the Wulff Shape, or asymptotic spreading set.

Remark: Can also obtain the Wulff shape for any solution with initial
condition u(0, x , ω) = θ0χBR (y) for |y | ≤ Λt.
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Set-Up Challenges Resolution

Recovery of Front Speeds
In the periodic setting, Freidlin-Gärtner formula says:

w(e) = inf
e′∈Sd−1,
e′·e>0

c∗(e′)

e′ · e

For us, we do not have front speeds, but we DO have spreading speeds!
Let

c∗(e) := sup
e′∈Sd−1,
e′·e>0

w(e′)e′ · e

(Reverse Freidlin-Gärtner Formula)

ing
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Set-Up Challenges Resolution

When does the Formula Hold?
I Comparison Principle:

c∗(e) ≥ sup
e′∈Sd−1,
e′·e>0

w(e′)e′ · e.

I To get the other inequality, suppose S has a unique tangent plane in
the direction e.

Lemma (Local Comparison)
There are m′, c ′ > 0 such that if u, u′ solve the RDE with

0 ≤ u(0, x) ≤ u′(0, x) ≤ 1 in Br (y)

then
u(t, y) ≤ u′(t, y) + c ′e−m

′(r−c′t).

If S has a tangent in direction e ∈ Sd−1, then the reverse
Freidlin-Gartner formula holds at e!
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Set-Up Challenges Resolution

Convergence of uε → u

After defining c∗(e) by this formula, we show c∗(e) is nice enough to
adapt the method of Barles and Souganidis (generalized front
propagation) to show that

lim
ε→0

uε(t, x) = u(t, x).



Set-Up Challenges Resolution

Theorem (L., Zlatoš)
Suppose uε solves{

uεt − ε∆uε = 1
ε f
(
x
ε , u

ε, ω
)

in (0,∞)× Rd ,

uε(0, x) ≈ χA on Rd ,

with d ≤ 3, and f a stationary-ergodic ignition reaction satisfying the
above hypotheses. If the Wulff shape S has no corners, then
homogenization holds.



Set-Up Challenges Resolution

Example where Homogenization Holds: Isotropic
Environment

(I) The random environment is isotropic. This guarantees that P is
invariant with respect to rotations in physical space.

Canonical Example: Poisson Point Process

Let P(ω) := {xn(ω)}n∈N ⊆ Rd denote a collection of points distributed
by a Poisson point process with intensity 1. Then we have

f (x , u, ω) ≈ f1(u)χB1(P(ω)) + f0(u)(1− χB1(P(ω)))
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Set-Up Challenges Resolution

Common Theme: Convexity
Let

H(p) := c∗
(

p

|p|

)
|p|.

I For all solvable cases of stochastic homogenization for
reaction-diffusion equations (solvable ignition and all KPP), H(p) is
convex.

I In such cases, we recover a Huygen’s Principle guiding the front
propagation, and we can explicitly describe {At}t>0, and in fact

At = A⊕ tS.

I For the stochastic homogenization of Hamilton-Jacobi equations,
there are counterexamples to homogenization when the random
Hamiltonians are nonconvex (Ziliotto [’16], Feldman-Souganidis
[’16]).

I For general ignition, will likely need to strengthen some assumptions
to obtain general homogenization.
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Final Comments and Future Directions:

I This approach works for very general homogenization problems of
the form uεt = ε−1F

(
ε2D2uε, εDuε, uε, xε , ω

)
satisfying some

general conditions (like (H1) and (H2)).

I Even if the front speeds c∗(e) are not necessarily “nice enough,” can
still always homogenize initial data supported on a convex set.

I The Canadian Forest Fire Behavior Prediction System uses the
Huygen’s principle At = A⊕ tS for S an ellipse (called Richards’
equation) to predict the spread of forest fires.
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Thank you very much for your attention!
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