# Stochastic Homogenization for Reaction-Diffusion Equations 

Jessica Lin<br>McGill University

Joint Work with Andrej Zlatoš

August 23, 2018

## The Model

Consider

$$
\begin{cases}u_{t}^{\varepsilon}-\varepsilon \Delta u^{\varepsilon}=\frac{1}{\varepsilon} f\left(\frac{x}{\varepsilon}, u^{\varepsilon}, \omega\right) & \text { in }(0, \infty) \times \mathbb{R}^{d} \\ u^{\varepsilon}(0, x) \approx \chi_{A} & \text { on } \quad \mathbb{R}^{d},\end{cases}
$$

where
$-u^{\varepsilon}:(0, \infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$,

- $A \subseteq \mathbb{R}^{d}$ open and bounded,
- $f(x, \cdot, \omega)$ is a random ignition reaction, typically looking like:



## The Model

Consider

$$
\begin{cases}u_{t}^{\varepsilon}-\varepsilon \Delta u^{\varepsilon}=\frac{1}{\varepsilon} f\left(\frac{x}{\varepsilon}, u^{\varepsilon}, \omega\right) & \text { in }(0, \infty) \times \mathbb{R}^{d}, \\ \left(\lim _{\varepsilon \rightarrow 0} u^{\varepsilon}(0, x)=(1-\alpha) \chi_{A}\right) & \text { on } \quad \mathbb{R}^{d},\end{cases}
$$

where

- $u^{\varepsilon}:(0, \infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$,
- $A \subseteq \mathbb{R}^{d}$ open and bounded,
- $f(\cdot, \cdot, \omega)$ is a random ignition reaction, typically looking like:



## The Random Environment

$(\Omega, \mathcal{F}, \mathbb{P})$

## The Random Environment

$(\Omega, \mathcal{F}, \mathbb{P})$
For each $\omega \in \Omega, f(x, u, \omega)$ satisfies

- $f(x, \cdot, \omega)$ is an ignition reaction
- There exists a fixed $f_{0}:[0,1] \rightarrow \mathbb{R}$ homogeneous ignition reaction such that $f(x, u, \omega) \geq f_{0}(u)$.
- $f(\cdot, \cdot, \omega)$ is Lipschitz continuous with Lipschitz constant $M$


Stationarity and Ergodicity (SE):

- $f(\cdot, u, \cdot)$ is stationary, i.e. there exists a measure-preserving group of transformations $\left\{\mathcal{T}_{y}\right\}_{y \in \mathbb{R}^{d}}: \Omega \rightarrow \Omega$ so that for all $u \in \mathbb{R}$,

$$
f(x+y, u, \omega)=f\left(x, u, \mathcal{T}_{y} \omega\right) .
$$

Stationarity and Ergodicity (SE):

- $f(\cdot, u, \cdot)$ is stationary, i.e. there exists a measure-preserving group of transformations $\left\{\mathcal{T}_{y}\right\}_{y \in \mathbb{R}^{d}}: \Omega \rightarrow \Omega$ so that for all $u \in \mathbb{R}$,

$$
f(x+y, u, \omega)=f\left(x, u, \mathcal{T}_{y} \omega\right) .
$$

- $(\Omega, \mathcal{F}, \mathbb{P})$ is ergodic with respect to $\mathcal{T}_{y}$. In other words, if there exists an event $E \in \mathcal{F}$ so that

$$
E=\mathcal{T}_{y} E \quad \text { for all } \quad y \in \mathbb{R}^{d},
$$

then $\mathbb{P}[E]$ is either 0 or 1 .

## Interpretation of This Model

Observe

$$
\begin{cases}u_{t}^{\varepsilon}-\varepsilon \Delta u^{\varepsilon}=\frac{1}{\varepsilon} f\left(\frac{x}{\varepsilon}, u^{\varepsilon}, \omega\right) & \text { in }(0, \infty) \times \mathbb{R}^{d}, \\ u^{\varepsilon}(0, x) \approx \chi_{A} & \text { on } \mathbb{R}^{d},\end{cases}
$$

Then

$$
u^{\varepsilon}(t, x, \omega)=u\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}, \omega\right)
$$

where $u$ solves

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=f(x, u, \omega) \quad \text { in } \quad(0, \infty) \times \mathbb{R}^{d}, \\
\left.u(0, x, \omega) \approx \chi_{\frac{1}{\varepsilon} A} A\right) \quad \text { on } \quad \mathbb{R}^{d} .
\end{array}\right.
$$

## Interpretation of This Model

Observe

$$
\begin{cases}u_{t}^{\varepsilon}-\varepsilon \Delta u^{\varepsilon}=\frac{1}{\varepsilon} f\left(\frac{x}{\varepsilon}, u^{\varepsilon}, \omega\right) & \text { in }(0, \infty) \times \mathbb{R}^{d}, \\ u^{\varepsilon}(0, x) \approx \chi_{A} & \text { on } \mathbb{R}^{d},\end{cases}
$$

Then

$$
u^{\varepsilon}(t, x, \omega)=u\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}, \omega\right)
$$

where $u$ solves

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=f(x, u, \omega) \quad \text { in } \quad(0, \infty) \times \mathbb{R}^{d}, \\
u(0, x, \omega) \approx \chi_{\frac{1}{\varepsilon} A}(x) \quad \text { on } \quad \mathbb{R}^{d}
\end{array}\right.
$$

So support of the initial function is large compared to the size of the heterogeneities.

## Interpretation of This Model

Observe

$$
\begin{cases}u_{t}^{\varepsilon}-\varepsilon \Delta u^{\varepsilon}=\frac{1}{\varepsilon} f\left(\frac{x}{\varepsilon}, u^{\varepsilon}, \omega\right) & \text { in }(0, \infty) \times \mathbb{R}^{d} \\ u^{\varepsilon}(0, x) \approx \chi_{A} & \text { on } \quad \mathbb{R}^{d}\end{cases}
$$

Then

$$
u^{\varepsilon}(t, x, \omega)=u\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}, \omega\right)
$$

where $u$ solves

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=f(x, u, \omega) \quad \text { in } \quad(0, \infty) \times \mathbb{R}^{d}, \\
\left.u(0, x, \omega) \approx \chi_{\frac{1}{\varepsilon} A} A\right) \quad \text { on } \quad \mathbb{R}^{d} .
\end{array}\right.
$$

So support of the initial function is large compared to the size of the heterogeneities.
Homogenization Goal: Identify a deterministic $\bar{u}$ such that for $\mathbb{P}$-a.e. $\omega$, $u^{\varepsilon} \rightarrow \bar{u}$, which represents a large-scale, long-time limit of the unscaled RD equation with random right hand side.

## What does $\bar{u}$ look like?

Since

$$
\begin{cases}u_{t}^{\varepsilon}-\varepsilon \Delta u^{\varepsilon}=\frac{1}{\varepsilon} f\left(\frac{\chi}{\varepsilon}, u^{\varepsilon}, \omega\right) & \text { in }(0, \infty) \times \mathbb{R}^{d}, \\ u^{\varepsilon}(0, x) \approx \chi_{A} & \text { on } \mathbb{R}^{d},\end{cases}
$$

we expect that $\bar{u}$ should take on values such that $f(x, \bar{u}, \omega)=0$.

## What does $\bar{u}$ look like?

Since

$$
\begin{cases}u_{t}^{\varepsilon}-\varepsilon \Delta u^{\varepsilon}=\frac{1}{\varepsilon} f\left(\frac{\chi}{\varepsilon}, u^{\varepsilon}, \omega\right) & \text { in }(0, \infty) \times \mathbb{R}^{d}, \\ u^{\varepsilon}(0, x) \approx \chi_{A} & \text { on } \mathbb{R}^{d},\end{cases}
$$

we expect that $\bar{u}$ should take on values such that $f(x, \bar{u}, \omega)=0$. Thus, $\bar{u}=0$ or 1 , so we expect

$$
\bar{u}(t, x)=\chi_{\{t\} \times A_{t}}(t, x)=\chi_{A_{t}}(x)
$$

for sets $\left\{A_{t}\right\}_{t>0} \subseteq \mathbb{R}^{d}$.

## What does $\bar{u}$ look like?

Since

$$
\begin{cases}u_{t}^{\varepsilon}-\varepsilon \Delta u^{\varepsilon}=\frac{1}{\varepsilon} f\left(\frac{x}{\varepsilon}, u^{\varepsilon}, \omega\right) & \text { in } \quad(0, \infty) \times \mathbb{R}^{d} \\ u^{\varepsilon}(0, x) \approx \chi_{A} & \text { on } \quad \mathbb{R}^{d}\end{cases}
$$

we expect that $\bar{u}$ should take on values such that $f(x, \bar{u}, \omega)=0$.
Thus, $\bar{u}=0$ or 1 , so we expect

$$
\bar{u}(t, x)=\chi_{\{t\} \times A_{t}}(t, x)=\chi_{A_{t}}(x)
$$

for sets $\left\{A_{t}\right\}_{t>0} \subseteq \mathbb{R}^{d}$.
More Specific Goal: Identify deterministic open sets $\left\{A_{t}\right\}_{t>0}$ such that almost surely and locally uniformly away from the boundary,

$$
\lim _{\varepsilon \rightarrow 0} u^{\varepsilon}(t, x, \omega)=\left\{\begin{array}{lll}
1 & \text { if } & (t, x) \in\{t\} \times A_{t} \\
0 & \text { if } & (t, x) \in\left((0, \infty) \times \mathbb{R}^{d}\right) \backslash\left(\{t\} \times \overline{A_{t}}\right)
\end{array}\right.
$$

$\left\{A_{t}\right\}_{t>0}$ represents the effective front propagation taking place on average in the random, heterogeneous environment.

## Identifying $\bar{u}(t, x)$ with a PDE

What PDE can $\bar{u}(x, t)=\chi_{A_{t}}(x)$ solve?

## Identifying $\bar{u}(t, x)$ with a PDE

What PDE can $\bar{u}(x, t)=\chi_{A_{t}}(x)$ solve?
Front propagation can be identified by the level sets of a Hamilton-Jacobi Equation.

## Identifying $\bar{u}(t, x)$ with a PDE

What PDE can $\bar{u}(x, t)=\chi_{A_{t}}(x)$ solve?
Front propagation can be identified by the level sets of a Hamilton-Jacobi Equation.
Homogenization: Identify a deterministic function $c^{*}: \mathbb{S}^{d-1} \rightarrow(0, \infty)$ such that almost surely and locally uniformly in space-time (away from certain boundaries),

$$
\lim _{\varepsilon \rightarrow 0} u^{\varepsilon}(t, x, \omega)=\bar{u}(t, x)
$$

where $\bar{u}$ is the unique viscosity solution of

$$
\begin{cases}\bar{u}_{t}=c^{*}\left(-\frac{D \bar{u}}{|\overline{\bar{u}}|}\right)|D \bar{u}| & \text { in }(0, \infty) \times \mathbb{R}^{d}, \\ \bar{u}(0, x)=\chi_{A}(x) & \text { on } \mathbb{R}^{d} .\end{cases}
$$

## Identifying $\bar{u}(t, x)$ with a PDE

What PDE can $\bar{u}(x, t)=\chi_{A_{t}}(x)$ solve?
Front propagation can be identified by the level sets of a Hamilton-Jacobi Equation.
Homogenization: Identify a deterministic function $c^{*}: \mathbb{S}^{d-1} \rightarrow(0, \infty)$ such that almost surely and locally uniformly in space-time (away from certain boundaries),

$$
\lim _{\varepsilon \rightarrow 0} u^{\varepsilon}(t, x, \omega)=\bar{u}(t, x)
$$

where $\bar{u}$ is the unique viscosity solution of

$$
\begin{cases}\bar{u}_{t}=c^{*}\left(-\frac{D \bar{u}}{|D \bar{u}|}\right)|D \bar{u}| & \text { in } \quad(0, \infty) \times \mathbb{R}^{d}, \\ \bar{u}(0, x)=\chi_{A}(x) & \text { on } \quad \mathbb{R}^{d} .\end{cases}
$$

$c^{*}(e)=$ the normal velocity in direction $e \in \mathbb{S}^{d-1}$ governing the front propagation

## Identifying $\bar{u}(t, x)$ with a PDE

What PDE can $\bar{u}(x, t)=\chi_{A_{t}}(x)$ solve?
Front propagation can be identified by the level sets of a Hamilton-Jacobi Equation.
Homogenization: Identify a deterministic function $c^{*}: \mathbb{S}^{d-1} \rightarrow(0, \infty)$ such that almost surely and locally uniformly in space-time (away from certain boundaries),

$$
\lim _{\varepsilon \rightarrow 0} u^{\varepsilon}(t, x, \omega)=\bar{u}(t, x)
$$

where $\bar{u}$ is the unique viscosity solution of

$$
\begin{cases}\bar{u}_{t}=c^{*}\left(-\frac{D \bar{u}}{|D \bar{u}|}\right)|D \bar{u}| & \text { in } \quad(0, \infty) \times \mathbb{R}^{d} \\ \bar{u}(0, x)=\chi_{A}(x) & \text { on } \quad \mathbb{R}^{d}\end{cases}
$$

$c^{*}(e)=$ the normal velocity in direction $e \in \mathbb{S}^{d-1}$ governing the front propagation
$c^{*}(e)=$ front speed in direction $e$

## Identifying $\bar{u}(t, x)$ with a PDE

What PDE can $\bar{u}(x, t)=\chi_{A_{t}}(x)$ solve?
Front propagation can be identified by the level sets of a Hamilton-Jacobi Equation.
Homogenization: Identify a deterministic function $c^{*}: \mathbb{S}^{d-1} \rightarrow(0, \infty)$ such that almost surely and locally uniformly in space-time (away from certain boundaries),

$$
\lim _{\varepsilon \rightarrow 0} u^{\varepsilon}(t, x, \omega)=\bar{u}(t, x)
$$

where $\bar{u}$ is the unique viscosity solution of

$$
\begin{cases}\bar{u}_{t}=c^{*}\left(-\frac{D \bar{u}}{|D \bar{u}|}\right)|D \bar{u}| & \text { in } \quad(0, \infty) \times \mathbb{R}^{d} \\ \bar{u}(0, x)=\chi_{A}(x) & \text { on } \quad \mathbb{R}^{d}\end{cases}
$$

$c^{*}(e)=$ the normal velocity in direction $e \in \mathbb{S}^{d-1}$ governing the front propagation
$c^{*}(e)=$ front speed in direction $e$
Barles, Soner, and Souganidis: For $c^{*}$ "nice enough", $\bar{u}(t, x)=\chi_{A_{t}}(x)$ is the unique discontinuous viscosity solution.

## Motivation: Forest Fires



## Motivation: Forest Fires



## Motivation: Forest Fires



5
s


Homogenization says that for $\mathbb{P}$-almost every configuration of trees in the forest, the fire will spread like the function $\bar{u}(t, x)$ (burnt and unburnt state) (once the heterogeneities are sufficiently small and asymptotically in time)

## Literature Context

Many works on periodic/random homogenization/identification of front speeds with different scalings: Barles, Soner, and Souganidis; Barles and Souganidis; Berestycki and Hamel; Majda and Souganidis; Nolen and Ryzhik; Nolen and Xin; Weinberger; Xin; Zlatoš...

- Periodic Setting: Alfaro and Giletti (2015)-periodic, monostable reactions, initial data for sets $A$ convex and smooth.


## Literature Context

Many works on periodic/random homogenization/identification of front speeds with different scalings: Barles, Soner, and Souganidis; Barles and Souganidis; Berestycki and Hamel; Majda and Souganidis; Nolen and Ryzhik; Nolen and Xin; Weinberger; Xin; Zlatoš...

- Periodic Setting: Alfaro and Giletti (2015)-periodic, monostable reactions, initial data for sets $A$ convex and smooth.
- Random Setting: Lions and Souganidis (2005)-stationary ergodic KPP reactions


## Literature Context

Many works on periodic/random homogenization/identification of front speeds with different scalings: Barles, Soner, and Souganidis; Barles and Souganidis; Berestycki and Hamel; Majda and Souganidis; Nolen and Ryzhik; Nolen and Xin; Weinberger; Xin; Zlatoš...

- Periodic Setting: Alfaro and Giletti (2015)-periodic, monostable reactions, initial data for sets $A$ convex and smooth.
- Random Setting: Lions and Souganidis (2005)-stationary ergodic KPP reactions
Approach:
- KPP Reaction-Diffusion Equations can be compared to solutions of

$$
v_{t}-\Delta v=f_{u}(x, 0) v
$$

## Literature Context

Many works on periodic/random homogenization/identification of front speeds with different scalings: Barles, Soner, and Souganidis; Barles and Souganidis; Berestycki and Hamel; Majda and Souganidis; Nolen and Ryzhik; Nolen and Xin; Weinberger; Xin; Zlatoš...

- Periodic Setting: Alfaro and Giletti (2015)-periodic, monostable reactions, initial data for sets $A$ convex and smooth.
- Random Setting: Lions and Souganidis (2005)-stationary ergodic KPP reactions
Approach:
- KPP Reaction-Diffusion Equations can be compared to solutions of

$$
v_{t}-\Delta v=f_{u}(x, 0) v .
$$

- Hopf-Cole transformation: Converts this PDE into a viscous Hamilton-Jacobi equation with a convex Hamiltonian.


## Literature Context

Many works on periodic/random homogenization/identification of front speeds with different scalings: Barles, Soner, and Souganidis; Barles and Souganidis; Berestycki and Hamel; Majda and Souganidis; Nolen and Ryzhik; Nolen and Xin; Weinberger; Xin; Zlatoš...

- Periodic Setting: Alfaro and Giletti (2015)-periodic, monostable reactions, initial data for sets $A$ convex and smooth.
- Random Setting: Lions and Souganidis (2005)-stationary ergodic KPP reactions
Approach:
- KPP Reaction-Diffusion Equations can be compared to solutions of

$$
v_{t}-\Delta v=f_{u}(x, 0) v .
$$

- Hopf-Cole transformation: Converts this PDE into a viscous Hamilton-Jacobi equation with a convex Hamiltonian.
- Stochastic homogenization for viscous HJ equations with convex Hamiltonians is well-understood.


## Typical Strategies

- Homogenization Ansatz and an "additive" corrector:

$$
u^{\varepsilon}(t, x, \omega) \approx \bar{u}(t, x)+\text { corrector } .
$$

## Typical Strategies

- Homogenization Ansatz and an "additive" corrector:

$$
u^{\varepsilon}(t, x, \omega) \approx \bar{u}(t, x)+\text { corrector }
$$

$u^{\varepsilon}$ and $\bar{u}$ have essentially the same initial data; $u^{\varepsilon}$ is continuous, and $\bar{u}$ is discontinuous...

## Typical Strategies

- Homogenization Ansatz and an "additive" corrector:

$$
u^{\varepsilon}(t, x, \omega) \approx \bar{u}(t, x)+\text { corrector. }
$$

$u^{\varepsilon}$ and $\bar{u}$ have essentially the same initial data; $u^{\varepsilon}$ is continuous, and $\bar{u}$ is discontinuous...

- No corrector $\rightarrow$ No perturbed test function method


## Typical Strategies

- Homogenization Ansatz and an "additive" corrector:

$$
u^{\varepsilon}(t, x, \omega) \approx \bar{u}(t, x)+\text { corrector }
$$

$u^{\varepsilon}$ and $\bar{u}$ have essentially the same initial data; $u^{\varepsilon}$ is continuous, and $\bar{u}$ is discontinuous...

- No corrector $\rightarrow$ No perturbed test function method No convenient way to measure $u^{\varepsilon}-\bar{u}, u^{\varepsilon}$ is not fluctuating around $\bar{u}$, and very unclear how to get error estimates...


## Typical Strategies

- Homogenization Ansatz and an "additive" corrector:

$$
u^{\varepsilon}(t, x, \omega) \approx \bar{u}(t, x)+\text { corrector }
$$

$u^{\varepsilon}$ and $\bar{u}$ have essentially the same initial data; $u^{\varepsilon}$ is continuous, and $\bar{u}$ is discontinuous...

- No corrector $\rightarrow$ No perturbed test function method No convenient way to measure $u^{\varepsilon}-\bar{u}, u^{\varepsilon}$ is not fluctuating around $\bar{u}$, and very unclear how to get error estimates...
- No corrector equation $\rightarrow$ no PDE to identify $c^{*}(e)$.


## Typical Strategies

- Homogenization Ansatz and an "additive" corrector:

$$
u^{\varepsilon}(t, x, \omega) \approx \bar{u}(t, x)+\text { corrector }
$$

$u^{\varepsilon}$ and $\bar{u}$ have essentially the same initial data; $u^{\varepsilon}$ is continuous, and $\bar{u}$ is discontinuous...

- No corrector $\rightarrow$ No perturbed test function method No convenient way to measure $u^{\varepsilon}-\bar{u}, u^{\varepsilon}$ is not fluctuating around $\bar{u}$, and very unclear how to get error estimates...
- No corrector equation $\rightarrow$ no PDE to identify $c^{*}(e)$.

The PDE is reaction diffusion, and the homogenized PDE is Hamilton-Jacobi...

## Typical Strategies

- Homogenization Ansatz and an "additive" corrector:

$$
u^{\varepsilon}(t, x, \omega) \approx \bar{u}(t, x)+\text { corrector }
$$

$u^{\varepsilon}$ and $\bar{u}$ have essentially the same initial data; $u^{\varepsilon}$ is continuous, and $\bar{u}$ is discontinuous...

- No corrector $\rightarrow$ No perturbed test function method No convenient way to measure $u^{\varepsilon}-\bar{u}, u^{\varepsilon}$ is not fluctuating around $\bar{u}$, and very unclear how to get error estimates...
- No corrector equation $\rightarrow$ no PDE to identify $c^{*}(e)$.

The PDE is reaction diffusion, and the homogenized PDE is Hamilton-Jacobi...

So how will we identify $c^{*}(e)$ for $e \in \mathbb{S}^{d-1}$ ?

## Defining $c^{*}(e)$

- $c^{*}(e)$ has an interpretation as the normal velocity governing front propagation.


## Defining $c^{*}(e)$

- $c^{*}(e)$ has an interpretation as the normal velocity governing front propagation.
- Fix $e \in \mathbb{S}^{d-1}$, and let $u(\cdot, \cdot, \omega)$ solve

$$
\begin{cases}u_{t}-\Delta u=f(x, u, \omega) & \text { in } \quad(0, \infty) \times \mathbb{R}^{d}, \\ u(0, x, \omega)=(1-\alpha) \chi_{\{x \cdot e \leq 0\}}(x) & \text { on } \quad \mathbb{R}^{d}\end{cases}
$$

The front speed $c^{*}(e)>0$ is the deterministic constant such that for $\mathbb{P}$-a.e. $\omega$, for any $K \subseteq \mathbb{R}^{d}$ compact, for any $\delta>0$,

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \inf _{K \subseteq\left\{x \cdot e \leq c^{*}(e)-\delta\right\}} u(t, x t, \omega)=1 \\
& \lim _{t \rightarrow \infty} \sup _{K \subseteq\left\{x \cdot e \geq c^{*}(e)+\delta\right\}} u(t, x t, \omega)=0 .
\end{aligned}
$$

## Defining $c^{*}(e)$

- $c^{*}(e)$ has an interpretation as the normal velocity governing front propagation.
- Fix $e \in \mathbb{S}^{d-1}$, and let $u(\cdot, \cdot, \omega)$ solve

$$
\begin{cases}u_{t}-\Delta u=f(x, u, \omega) & \text { in } \quad(0, \infty) \times \mathbb{R}^{d}, \\ u(0, x, \omega)=(1-\alpha) \chi_{\{x \cdot e \leq 0\}}(x) & \text { on } \quad \mathbb{R}^{d}\end{cases}
$$

The front speed $c^{*}(e)>0$ is the deterministic constant such that for $\mathbb{P}$-a.e. $\omega$, for any $K \subseteq \mathbb{R}^{d}$ compact, for any $\delta>0$,

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \inf _{K \subseteq\left\{x \cdot e \leq c^{*}(e)-\delta\right\}} u(t, x t, \omega)=1 \\
& \lim _{t \rightarrow \infty} \sup _{K \subseteq\left\{x \cdot e \geq c^{*}(e)+\delta\right\}} u(t, x t, \omega)=0 .
\end{aligned}
$$

Roughly speaking, this says that for $\mathbb{P}$-a.e. $\omega$,

$$
u(t, x, \omega) \underset{t \rightarrow \infty}{\longrightarrow} \chi_{\left\{x \cdot e<c^{*}(e) t\right\}}(x)
$$

## Defining $c^{*}(e)$

- $c^{*}(e)$ has an interpretation as the normal velocity governing front propagation.
- Fix $e \in \mathbb{S}^{d-1}$, and let $u(\cdot, \cdot, \omega)$ solve

$$
\begin{cases}u_{t}-\Delta u=f(x, u, \omega) & \text { in } \quad(0, \infty) \times \mathbb{R}^{d}, \\ u(0, x, \omega)=(1-\alpha) \chi_{\{x \cdot e \leq 0\}}(x) & \text { on } \quad \mathbb{R}^{d}\end{cases}
$$

The front speed $c^{*}(e)>0$ is the deterministic constant such that for $\mathbb{P}$-a.e. $\omega$, for any $K \subseteq \mathbb{R}^{d}$ compact, for any $\delta>0$,

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \inf _{K \subseteq\left\{x \cdot e \leq c^{*}(e)-\delta\right\}} u(t, x t, \omega)=1 \\
& \lim _{t \rightarrow \infty} \sup _{K \subseteq\left\{x \cdot e \geq c^{*}(e)+\delta\right\}} u(t, x t, \omega)=0 .
\end{aligned}
$$

Roughly speaking, this says that for $\mathbb{P}$-a.e. $\omega$,

$$
u(t, x, \omega) \underset{t \rightarrow \infty}{\longrightarrow} \chi_{\left\{x \cdot e<c^{*}(e) t\right\}}(x)
$$

Observe: Initial data is invariant with respect to hyperbolic scaling, so can re-write this definition in $u^{\varepsilon}$ scaling.

## Seeing $c^{*}(e)$ from a Solution to a PDE

- If the right hand side is $f(u)$, a traveling front with speed $c$ is an entire solution of the form

$$
u(t, x)=U(x \cdot e-c t)
$$

where

$$
\lim _{s \rightarrow-\infty} U(s)=1 \quad \lim _{s \rightarrow \infty} U(s)=0
$$

If $(U, c)$ is a traveling front pair, then $c$ satisfies our definition of front speeds.

## Seeing $c^{*}(e)$ from a Solution to a PDE

- If the right hand side is $f(u)$, a traveling front with speed $c$ is an entire solution of the form

$$
u(t, x)=U(x \cdot e-c t)
$$

where

$$
\lim _{s \rightarrow-\infty} U(s)=1 \quad \lim _{s \rightarrow \infty} U(s)=0
$$

If $(U, c)$ is a traveling front pair, then $c$ satisfies our definition of front speeds.

- There is an analogous type of solution (pulsating front) for right hand side $f(x, u)$ when $f(\cdot, u)$ is periodic.


## Seeing $c^{*}(e)$ from a Solution to a PDE

- If the right hand side is $f(u)$, a traveling front with speed $c$ is an entire solution of the form

$$
u(t, x)=U(x \cdot e-c t)
$$

where

$$
\lim _{s \rightarrow-\infty} U(s)=1 \quad \lim _{s \rightarrow \infty} U(s)=0
$$

If $(U, c)$ is a traveling front pair, then $c$ satisfies our definition of front speeds.

- There is an analogous type of solution (pulsating front) for right hand side $f(x, u)$ when $f(\cdot, u)$ is periodic.
- No such solutions exist for general heterogeneous right hand side $f(x, u, \omega)$.


## Challenges Specific to Ignition

(H1) $u$ has to spread. Ignition has the possibility that

- If temperature is too low (i.e. $u(0, x) \leq \theta(x, \omega)$ ), then $f(x, u, \omega)=0$ so RD becomes the heat equation.
- If initial data supported on a small set, the solution may not spread.

We need there is $\theta_{0}, R$ such that

$$
\begin{cases}u_{t}-\Delta u=f(x, u, \omega) & \text { in } \quad(0, \infty) \times \mathbb{R}^{d} \\ u(0, x, \omega)=\theta_{0} B_{R} & \text { on } \quad \mathbb{R}^{d}\end{cases}
$$

then locally uniformly in $x$,

$$
\lim _{t \rightarrow \infty} u(t, x, \omega)=1
$$

(this is ok for ignition by $f_{0}(u)$ lower bound).
(H2) We need to control the width of the transition zone for unscaled solutions.
(H2) We need to control the width of the transition zone for unscaled solutions.
1D:

$$
\begin{cases}u_{t}-u_{x x}=f(x, u) & \text { in } \quad(0, \infty) \times \mathbb{R}, \\ u(0, x, \omega) \approx \chi_{A} & \text { on } \quad \mathbb{R} .\end{cases}
$$



For $\eta \in\left(0, \frac{1}{2}\right)$, let

$$
L_{u, \eta}(t):=\operatorname{dist}_{H}(\{x: u(t, x) \geq 1-\eta\},\{x: u(t, x) \geq \eta\})
$$

(H2) We need to control the width of the transition zone for unscaled solutions.
1D:

$$
\begin{cases}u_{t}-u_{x x}=f(x, u) & \text { in } \quad(0, \infty) \times \mathbb{R}, \\ u(0, x, \omega) \approx \chi_{A} & \text { on } \quad \mathbb{R} .\end{cases}
$$

$$
\mathrm{u}=1
$$

For $\eta \in\left(0, \frac{1}{2}\right)$, let

$$
\begin{aligned}
L_{u, \eta}(t):= & \operatorname{dist}_{H}(\{x: u(t, x) \geq 1-\eta\},\{x: u(t, x) \geq \eta\}) \\
& x \rightarrow \frac{x}{\varepsilon} \approx x t
\end{aligned}
$$

(H2) We need to control the width of the transition zone for unscaled solutions.
1D:

$$
\begin{cases}u_{t}-u_{x x}=f(x, u) & \text { in } \quad(0, \infty) \times \mathbb{R}, \\ u(0, x, \omega) \approx \chi_{A} & \text { on } \quad \mathbb{R} .\end{cases}
$$



For $\eta \in\left(0, \frac{1}{2}\right)$, let

$$
\begin{aligned}
L_{u, \eta}(t):= & \operatorname{dist}_{H}(\{x: u(t, x) \geq 1-\eta\},\{x: u(t, x) \geq \eta\}) \\
& x \rightarrow \frac{x}{\varepsilon} \approx x t \Rightarrow L_{u, \eta}(t) \sim o(t) .
\end{aligned}
$$

Theorem (Zlatoš, '14)
Let u solve

$$
\begin{cases}u_{t}-\Delta u=f(x, u) & \text { in } \quad(0, \infty) \times \mathbb{R}^{d} \\ u_{t} \geq 0 & \text { in }(0, \infty) \times \mathbb{R}^{d}\end{cases}
$$

If $d \leq 3$, then
$\lim \sup L_{u, \eta}(t)<\infty$.
$t \rightarrow \infty$

Theorem (Zlatoš, '14)
Let u solve

$$
\begin{cases}u_{t}-\Delta u=f(x, u) & \text { in }(0, \infty) \times \mathbb{R}^{d} \\ u_{t} \geq 0 & \text { in }(0, \infty) \times \mathbb{R}^{d}\end{cases}
$$

If $d \leq 3$, then

$$
\lim \sup L_{u, \eta}(t)<\infty .
$$

$$
t \rightarrow \infty
$$

In fact, for $d \leq 3$, there exists $C>0$ such that for $\mathbb{P}$-a.e. $\omega$,

$$
\limsup _{t \rightarrow \infty} L_{u, \eta, \omega}(t)<C
$$

Theorem (Zlatoš, '14)
Let u solve

$$
\begin{cases}u_{t}-\Delta u=f(x, u) & \text { in }(0, \infty) \times \mathbb{R}^{d} \\ u_{t} \geq 0 & \text { in }(0, \infty) \times \mathbb{R}^{d}\end{cases}
$$

If $d \leq 3$, then

$$
\lim \sup L_{u, \eta}(t)<\infty
$$

$$
t \rightarrow \infty
$$

In fact, for $d \leq 3$, there exists $C>0$ such that for $\mathbb{P}$-a.e. $\omega$,

$$
\limsup _{t \rightarrow \infty} L_{u, \eta, \omega}(t)<C
$$

For $d>3$, this is not in general true! There exist reactions $f(\cdot, \cdot, \omega)$ with
$\omega \in \Omega$ such that

$$
L_{u, \eta, \omega}(t) \sim C t
$$

## Without solutions, how will we identify $c^{*}(e)$ ?

Strategy: Track where $u \approx 1$ and $u \approx 0$.

## Without solutions, how will we identify $c^{*}(e)$ ?

Strategy: Track where $u \approx 1$ and $u \approx 0$.
Front-Like Initial Data and Higher Dimensions:


Front speeds in random media in one dimension: Nolen and Ryzhik, Zlatoš

## Definition: Spreading Speeds

Fix $e \in \mathbb{S}^{d-1}$, and let $u(\cdot, \cdot, \omega)$ solve

$$
\begin{cases}u_{t}-\Delta u=f(x, u, \omega) & \text { in } \quad(0, \infty) \times \mathbb{R}^{d}, \\ u(0, x)=\theta_{0} \chi_{B_{R}} & \text { on } \quad \mathbb{R}^{d} .\end{cases}
$$

Then we say $w(e)$ is the spreading speed in direction $e$ if for $\mathbb{P}$-a.e. $\omega$, for any $\delta>0$,

$$
\begin{aligned}
\lim _{t \rightarrow \infty} u(t,(w(e)-\delta) t e, \omega) & =1 \\
\lim _{t \rightarrow \infty} u(t,(w(e)+\delta) t e, \omega) & =0
\end{aligned}
$$

## Definition: Spreading Speeds

Fix $e \in \mathbb{S}^{d-1}$, and let $u(\cdot, \cdot, \omega)$ solve

$$
\begin{cases}u_{t}-\Delta u=f(x, u, \omega) & \text { in } \quad(0, \infty) \times \mathbb{R}^{d}, \\ u(0, x)=\theta_{0} \chi_{B_{R}} & \text { on } \quad \mathbb{R}^{d} .\end{cases}
$$

Then we say $w(e)$ is the spreading speed in direction $e$ if for $\mathbb{P}$-a.e. $\omega$, for any $\delta>0$,

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} u(t,(w(e)-\delta) t e, \omega)=1, \\
& \lim _{t \rightarrow \infty} u(t,(w(e)+\delta) t e, \omega)=0 .
\end{aligned}
$$

The homogenized PDE should be Hamilton-Jacobi, so try to use some ideas from stochastic homogenization for Hamilton-Jacobi equations...but no corrector equation.

First Passage Times for Reaction-Diffusion Equations

Define

$$
\tau(0, y, \omega):=\inf \left\{t: u(t, x, \omega) \geq \theta_{0} \chi_{B_{R}(y)}\right\} .
$$

## First Passage Times for Reaction-Diffusion Equations

Define

$$
\tau(0, y, \omega):=\inf \left\{t: u(t, x, \omega) \geq \theta_{0} \chi_{B_{R}(y)}\right\} .
$$

By the subadditive ergodic theorem, there exists a deterministic $\bar{\tau}(e)$ such that for $\mathbb{P}$-a.e. $\omega$,

$$
\lim _{n \rightarrow \infty} \frac{\tau(0, n e, \omega)}{n}=\bar{\tau}(e) .
$$

## First Passage Times for Reaction-Diffusion Equations

Define

$$
\tau(0, y, \omega):=\inf \left\{t: u(t, x, \omega) \geq \theta_{0} \chi_{B_{R}(y)}\right\} .
$$

By the subadditive ergodic theorem, there exists a deterministic $\bar{\tau}(e)$ such that for $\mathbb{P}$-a.e. $\omega$,

$$
\lim _{n \rightarrow \infty} \frac{\tau(0, n e, \omega)}{n}=\bar{\tau}(e) .
$$

Then

$$
w(e):=\frac{1}{\bar{\tau}(e)}
$$

satisfies the definition of spreading speed.

## All Directions at Once: The Wulff Shape

Proposition
Let $u(\cdot, \cdot, \omega)$ solve

$$
\begin{cases}u_{t}-\Delta u=f(x, u, \omega) & \text { in }(0, \infty) \times \mathbb{R}^{d} \\ u(0, x)=\theta_{0} \chi_{B_{R}} & \text { on } \mathbb{R}^{d}\end{cases}
$$

Define

$$
\mathcal{S}:=\left\{s e: 0 \leq s \leq w(e) ; e \in \mathbb{S}^{d-1}\right\} \subseteq \mathbb{R}^{d},
$$

a convex set. For $\mathbb{P}$-a.e. $\omega$, for every $\delta>0$, for $t$ sufficiently large,

$$
(1-\delta) t \mathcal{S} \subseteq\left\{x: u(t, x, \omega)=\frac{1}{2}\right\} \subseteq(1+\delta) t \mathcal{S}
$$

## All Directions at Once: The Wulff Shape

Proposition
Let $u(\cdot, \cdot, \omega)$ solve

$$
\begin{cases}u_{t}-\Delta u=f(x, u, \omega) & \text { in }(0, \infty) \times \mathbb{R}^{d} \\ u(0, x)=\theta_{0} \chi_{B_{R}} & \text { on } \mathbb{R}^{d}\end{cases}
$$

Define

$$
\mathcal{S}:=\left\{s e: 0 \leq s \leq w(e) ; e \in \mathbb{S}^{d-1}\right\} \subseteq \mathbb{R}^{d}
$$

a convex set. For $\mathbb{P}$-a.e. $\omega$, for every $\delta>0$, for $t$ sufficiently large,

$$
(1-\delta) t \mathcal{S} \subseteq\left\{x: u(t, x, \omega)=\frac{1}{2}\right\} \subseteq(1+\delta) t \mathcal{S}
$$

$\mathcal{S}$ is called the Wulff Shape, or asymptotic spreading set.

## All Directions at Once: The Wulff Shape

Proposition
Let $u(\cdot, \cdot, \omega)$ solve

$$
\begin{cases}u_{t}-\Delta u=f(x, u, \omega) & \text { in }(0, \infty) \times \mathbb{R}^{d} \\ u(0, x)=\theta_{0} \chi_{B_{R}} & \text { on } \quad \mathbb{R}^{d}\end{cases}
$$

Define

$$
\mathcal{S}:=\left\{s e: 0 \leq s \leq w(e) ; e \in \mathbb{S}^{d-1}\right\} \subseteq \mathbb{R}^{d}
$$

a convex set. For $\mathbb{P}$-a.e. $\omega$, for every $\delta>0$, for $t$ sufficiently large,

$$
(1-\delta) t \mathcal{S} \subseteq\left\{x: u(t, x, \omega)=\frac{1}{2}\right\} \subseteq(1+\delta) t \mathcal{S}
$$

$\mathcal{S}$ is called the Wulff Shape, or asymptotic spreading set.
Remark: Can also obtain the Wulff shape for any solution with initial condition $u(0, x, \omega)=\theta_{0} \chi_{B_{R}(y)}$ for $|y| \leq \Lambda t$.

## Recovery of Front Speeds

In the periodic setting, Freidlin-Gärtner formula says:

$$
w(e)=\inf _{\substack{e^{\prime} \in \mathbb{S}^{d-1} \\ e^{\prime} \cdot e>0}} \frac{c^{*}\left(e^{\prime}\right)}{e^{\prime} \cdot e}
$$

## Recovery of Front Speeds

In the periodic setting, Freidlin-Gärtner formula says:

$$
w(e)=\inf _{\substack{e^{\prime} \in \mathbb{S}^{d-1} \\ e^{\prime} \cdot e>0}} \frac{c^{*}\left(e^{\prime}\right)}{e^{\prime} \cdot e}
$$

For us, we do not have front speeds, but we DO have spreading speeds!

## Recovery of Front Speeds

In the periodic setting, Freidlin-Gärtner formula says:

$$
w(e)=\inf _{\substack{e^{\prime} \in \mathbb{S}^{d-1} \\ e^{\prime} \cdot e>0}} \frac{c^{*}\left(e^{\prime}\right)}{e^{\prime} \cdot e}
$$

For us, we do not have front speeds, but we DO have spreading speeds! Let

$$
c^{*}(e):=\sup _{\substack{e^{\prime} \in \mathbb{S}^{d-1} \\ e^{\prime} \cdot e>0}} w\left(e^{\prime}\right) e^{\prime} \cdot e
$$

(Reverse Freidlin-Gärtner Formula)

## Recovery of Front Speeds

In the periodic setting, Freidlin-Gärtner formula says:

$$
w(e)=\inf _{\substack{e^{\prime} \in \mathbb{S}^{d-1} \\ e^{\prime} \cdot e>0}} \frac{c^{*}\left(e^{\prime}\right)}{e^{\prime} \cdot e}
$$

For us, we do not have front speeds, but we DO have spreading speeds! Let

$$
c^{*}(e):=\sup _{\substack{e^{\prime} \in \mathbb{S}^{d-1}, e^{\prime} \cdot e>0}} w\left(e^{\prime}\right) e^{\prime} \cdot e
$$

(Reverse Freidlin-Gärtner Formula)


## When does the Formula Hold?

- Comparison Principle:

$$
c^{*}(e) \geq \sup _{\substack{e^{\prime} \in \mathbb{S}^{d-1} \\ e^{\prime} \cdot e>0}} w\left(e^{\prime}\right) e^{\prime} \cdot e
$$

## When does the Formula Hold?

- Comparison Principle:

$$
c^{*}(e) \geq \sup _{\substack{e^{\prime} \in \mathbb{S}^{d-1}, e^{\prime} \cdot e>0}} w\left(e^{\prime}\right) e^{\prime} \cdot e .
$$

- To get the other inequality, suppose $\mathcal{S}$ has a unique tangent plane in the direction $e$.


## When does the Formula Hold?

- Comparison Principle:

$$
c^{*}(e) \geq \sup _{\substack{e^{\prime} \in \mathbb{S}^{d-1}, e^{\prime} \cdot e>0}} w\left(e^{\prime}\right) e^{\prime} \cdot e .
$$

- To get the other inequality, suppose $\mathcal{S}$ has a unique tangent plane in the direction $e$.
Lemma (Local Comparison)
There are $m^{\prime}, c^{\prime}>0$ such that if $u, u^{\prime}$ solve the RDE with

$$
0 \leq u(0, x) \leq u^{\prime}(0, x) \leq 1 \quad \text { in } \quad B_{r}(y)
$$

then

$$
u(t, y) \leq u^{\prime}(t, y)+c^{\prime} e^{-m^{\prime}\left(r-c^{\prime} t\right)}
$$

## When does the Formula Hold?

- Comparison Principle:

$$
c^{*}(e) \geq \sup _{\substack{e^{\prime} \in \mathbb{S}^{d-1}, e^{\prime} \cdot e>0}} w\left(e^{\prime}\right) e^{\prime} \cdot e .
$$

- To get the other inequality, suppose $\mathcal{S}$ has a unique tangent plane in the direction $e$.


## Lemma (Local Comparison)

There are $m^{\prime}, c^{\prime}>0$ such that if $u, u^{\prime}$ solve the RDE with

$$
0 \leq u(0, x) \leq u^{\prime}(0, x) \leq 1 \quad \text { in } \quad B_{r}(y)
$$

then

$$
u(t, y) \leq u^{\prime}(t, y)+c^{\prime} e^{-m^{\prime}\left(r-c^{\prime} t\right)}
$$

If $\mathcal{S}$ has a tangent in direction $e \in \mathbb{S}^{d-1}$, then the reverse Freidlin-Gartner formula holds at e!

## Convergence of $u^{\varepsilon} \rightarrow u$

After defining $c^{*}(e)$ by this formula, we show $c^{*}(e)$ is nice enough to adapt the method of Barles and Souganidis (generalized front propagation) to show that

$$
\lim _{\varepsilon \rightarrow 0} u^{\varepsilon}(t, x)=\bar{u}(t, x) .
$$

Theorem (L., Zlatoš)
Suppose $u^{\varepsilon}$ solves

$$
\begin{cases}u_{t}^{\varepsilon}-\varepsilon \Delta u^{\varepsilon}=\frac{1}{\varepsilon} f\left(\frac{x}{\varepsilon}, u^{\varepsilon}, \omega\right) & \text { in }(0, \infty) \times \mathbb{R}^{d} \\ u^{\varepsilon}(0, x) \approx \chi_{A} & \text { on } \mathbb{R}^{d}\end{cases}
$$

with $d \leq 3$, and $f$ a stationary-ergodic ignition reaction satisfying the above hypotheses. If the Wulff shape $\mathcal{S}$ has no corners, then homogenization holds.

## Example where Homogenization Holds: Isotropic Environment

(I) The random environment is isotropic. This guarantees that $\mathbb{P}$ is invariant with respect to rotations in physical space.

## Example where Homogenization Holds: Isotropic Environment

(I) The random environment is isotropic. This guarantees that $\mathbb{P}$ is invariant with respect to rotations in physical space.

Canonical Example: Poisson Point Process
Let $\mathcal{P}(\omega):=\left\{x_{n}(\omega)\right\}_{n \in \mathbb{N}} \subseteq \mathbb{R}^{d}$ denote a collection of points distributed by a Poisson point process with intensity 1 . Then we have

$$
f(x, u, \omega) \approx f_{1}(u) \chi_{B_{1}(\mathcal{P}(\omega))}+f_{0}(u)\left(1-\chi_{B_{1}(\mathcal{P}(\omega))}\right)
$$

## Common Theme: Convexity

Let

$$
\bar{H}(p):=c^{*}\left(\frac{p}{|p|}\right)|p|
$$

- For all solvable cases of stochastic homogenization for reaction-diffusion equations (solvable ignition and all KPP), $\bar{H}(p)$ is convex.


## Common Theme: Convexity

Let

$$
\bar{H}(p):=c^{*}\left(\frac{p}{|p|}\right)|p|
$$

- For all solvable cases of stochastic homogenization for reaction-diffusion equations (solvable ignition and all KPP ), $\bar{H}(p)$ is convex.
- In such cases, we recover a Huygen's Principle guiding the front propagation, and we can explicitly describe $\left\{A_{t}\right\}_{t>0}$, and in fact

$$
A_{t}=A \oplus t \mathcal{S}
$$

## Common Theme: Convexity

Let

$$
\bar{H}(p):=c^{*}\left(\frac{p}{|p|}\right)|p|
$$

- For all solvable cases of stochastic homogenization for reaction-diffusion equations (solvable ignition and all KPP ), $\bar{H}(p)$ is convex.
- In such cases, we recover a Huygen's Principle guiding the front propagation, and we can explicitly describe $\left\{A_{t}\right\}_{t>0}$, and in fact

$$
A_{t}=A \oplus t \mathcal{S}
$$

- For the stochastic homogenization of Hamilton-Jacobi equations, there are counterexamples to homogenization when the random Hamiltonians are nonconvex (Ziliotto ['16], Feldman-Souganidis ['16]).


## Common Theme: Convexity

Let

$$
\bar{H}(p):=c^{*}\left(\frac{p}{|p|}\right)|p|
$$

- For all solvable cases of stochastic homogenization for reaction-diffusion equations (solvable ignition and all KPP ), $\bar{H}(p)$ is convex.
- In such cases, we recover a Huygen's Principle guiding the front propagation, and we can explicitly describe $\left\{A_{t}\right\}_{t>0}$, and in fact

$$
A_{t}=A \oplus t \mathcal{S}
$$

- For the stochastic homogenization of Hamilton-Jacobi equations, there are counterexamples to homogenization when the random Hamiltonians are nonconvex (Ziliotto ['16], Feldman-Souganidis ['16]).
- For general ignition, will likely need to strengthen some assumptions to obtain general homogenization.


## Final Comments and Future Directions:

- This approach works for very general homogenization problems of the form $u_{t}^{\varepsilon}=\varepsilon^{-1} F\left(\varepsilon^{2} D^{2} u^{\varepsilon}, \varepsilon D u^{\varepsilon}, u^{\varepsilon}, \frac{x}{\varepsilon}, \omega\right)$ satisfying some general conditions (like (H1) and (H2)).


## Final Comments and Future Directions:

- This approach works for very general homogenization problems of the form $u_{t}^{\varepsilon}=\varepsilon^{-1} F\left(\varepsilon^{2} D^{2} u^{\varepsilon}, \varepsilon D u^{\varepsilon}, u^{\varepsilon}, \frac{x}{\varepsilon}, \omega\right)$ satisfying some general conditions (like (H1) and (H2)).
- Even if the front speeds $c^{*}(e)$ are not necessarily "nice enough," can still always homogenize initial data supported on a convex set.


## Final Comments and Future Directions:

- This approach works for very general homogenization problems of the form $u_{t}^{\varepsilon}=\varepsilon^{-1} F\left(\varepsilon^{2} D^{2} u^{\varepsilon}, \varepsilon D u^{\varepsilon}, u^{\varepsilon}, \frac{x}{\varepsilon}, \omega\right)$ satisfying some general conditions (like (H1) and (H2)).
- Even if the front speeds $c^{*}(e)$ are not necessarily "nice enough," can still always homogenize initial data supported on a convex set.
- The Canadian Forest Fire Behavior Prediction System uses the Huygen's principle $A_{t}=A \oplus t \mathcal{S}$ for $\mathcal{S}$ an ellipse (called Richards' equation) to predict the spread of forest fires.

Thank you very much for your attention!

