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Plan of the talk

Introduction of the known coercive case.

A non coercive Hamilton-Jacobi equation: the horizontal gradient
in Carnot groups and anisotropic rescaling.

The associated variational problem.

The effective Lagrangian as limit of a constrained variational
problem.

Approximation argument by piecewise X -lines.

Sketch of the proof for the convergence result.
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Homogenization of Hamilton-Jacobi equations.

Given a probability space
(
Ω,F ,P

)
the Hamilton-Jacobi problem:uεt + H

(x
ε
,Duε, ω

)
= 0, x ∈ RN , ω ∈ Ω, t > 0

uε(0, x) = g(x).
(1)

Theorem (Souganidis 1999 and Rezakhanlou-Tarver 2000)

Under suitable assumptions, the (unique) viscosity solutions uε(t , x , ω)
of problems (1) converge locally uniformly in x and t and a.s. in ω to a
deterministic limit function u(t , x).
Moreover the limit function u can be characterised as the (unique)
viscosity solution of a deterministic effective Hamilton-Jacobi problem
of the form: {

ut + H (Du) = 0, x ∈ RN , t > 0
u(0, x) = g(x).

(2)
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Assumptions:

p 7→ H(x ,p, ω) is convex in p, ∀ (x , ω) ∈ RN × Ω

there exist C1 > 0, γ > 1 such that

C−1
1 (|p|γ−1) ≤ H(x ,p, ω) ≤ C1(|p|γ+1), ∀ (x ,p, ω) ∈ RN×RN×Ω

there exists m : [0,+∞)→ [0,+∞) continuous, monotone
increasing, with m(0+) = 0 such that ∀ x , y ,p ∈ RN , ω ∈ Ω

|H(x ,p, ω)− H(y ,p, ω)| ≤ m
(
|x − y | (1 + |p|)

)
for all p ∈ RN the function (x , ω) 7→ H(x ,p, ω) is stationary, ergodic
random field on RN × Ω w.r.t. the unitary translation operator.
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Idea of the proof.

Use of the variational formula for the solutions: For all ε > 0, the
viscosity solution of (1) is given by

uε(t , x , ω) = inf
y∈RN

[
g(y) + Lε(x , y , t , ω)

]
,

where

Lε(x , y , t , ω) = inf
ξ

∫ t

0
L
(
ξ(s)

ε
, ξ̇(s), ω

)
ds

and ξ ∈W 1,∞((0, t)) such that ξ(0) = y and ξ(t) = x ,
and where L = H∗ is the Legendre-Fenchel transform of the H, i.e.

L(q) = sup
p∈RN
{p · q − H(p)}.

Key property: H = L∗ if and only if H convex.
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1 (Uniform in x and t > 0) convergence of Lε via Sub-additive
Ergodic Theorem.

2 In particular Lε(x , y , t , ω)→ tL
( x−y

t

)
; so one can find the effective

Lagrangian as limit of the variational problem.
3 Then uε(t , x , ω)→ infy

[
g(y) + tL

( x−y
t

)]
=: u(t , x).

4 Whenever the effective Lagrangian is convex, by Hopf-Lax formula
u (as above) is the (unique) viscosity solution of{

ut + H (Du) = 0, x ∈ RN , t > 0
u(0, x) = g(x),

(3)

where H := L
∗
.
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Goal

To work with Hamiltonians coercive only w.r.t. some prescribed
directions: {

ut + H (x , σ(x)Du, ω) = 0, x ∈ RN , t > 0
u(0, x) = g(x),

where σ(x)Du is a subgradient (in Carnot group); that means σ(x) is a
m × n matrix satisfying the Hörmander condition.
Main model: H (x , σ(x)Du, ω) = 1

2

∣∣σ(x)Du
∣∣2 + V

(
x , ω

)
=

1
2

∣∣∣∣ (1 0 −x2
2

0 1 x1
2

)ux1

ux2

ux3

∣∣∣∣2 + V
(
x , ω

)
=

1
2

∣∣∣∣(ux1 −
x2
2 ux3

ux2 + x1
2 ux3

)∣∣∣∣2 + V
(
x , ω

)
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Viscosity solutions via variational formula

u(t , x , ω) = inf
y∈RN

[
g(y) + L(x , y , t , ω)

]
with

L(x , y , t , ω) = inf
ξ

∫ t

0
L
(
ξ(s), αξ(s), ω

)
ds

and ξ ∈W 1,∞((0, t)) such that ξ(0) = y and ξ(t) = x and

ξ̇(s) = σ(ξ(s))α(s), a.e s ∈ [0, t ].

for some α : [0, t ]→ Rm measurable.
In that case we call ξ horizontal curve and α horizontal velocity of the
horizontal curve ξ and we write α = αξ.
Hörmander condition⇒ for every x and y , L(x , y , t , ω) 6= +∞.
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Carnot groups

Carnot group: is a (non-commutative) nilpotent Lie group with a
stratified Lie algebra.
Any Carnot group can be identified with RN with a non
commutative polynomial group operation.
Example: 1-dimensional Heisenberg group R3 with the group law

(x1, x2, x3)◦(y1, y2, y3) =

(
x1 + y1, x2 + y2, x3 + y3 +

−x2y1 + x1y2

2

)

The Left-invariant vector fields spanning the first layer satisfy the
Hörmander condition.
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Homogenization in Carnot groups vs homogenization
in RN (Euclidean)

(isotropic) scaling in RN vs (anisotropic) dilations.
In general: λ(x ◦ y) 6= (λx ◦ λy)

E.g. variational formula for the rescaled Hamiltonian?
If ξ horizontal, in general ξε is not horizontal.
Dilations δλ induced by the stratification of the algebra:
E.g. in Heisenberg: δλ(x1, x2, x3) = (λx1, λx2, λ

2x3).
δλ(x ◦ y) = δλ(x) ◦ δλ(y).

ξ horizontal⇒ δ 1
ε
(ξ) horizontal and α

δ 1
ε
(ξ)

= 1
εα

ξ.
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ε-problem in Carnot groups.

Given the Hamilton-Jacobi problem:uεt + H
(
δ 1

ε
(x), σ(x)Duε, ω

)
= 0, x ∈ RN , ω ∈ Ω, t > 0

uε(0, x) = g(x),
(4)

Theorem (Dirr-D.-Mannucci-Marchi 2017)

Under suitable assumptions, the (unique) viscosity solutions uε(t , x , ω)
of problems (4) converge locally uniformly in x and t and a.s. in ω to a
deterministic limit function u(t , x), that can be characterised as the
(unique) viscosity solution of a deterministic effective Hamilton-Jacobi
problem of the form:{

ut + H (σ(x)Du) = 0, x ∈ RN , t > 0
u(0, x) = g(x).

(5)
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Assumptions:

Set q = σ(x)p ∈ Rm, for all p ∈ RN

q 7→ H(x ,q, ω) is convex in q, ∀ (x , ω) ∈ RN × Ω

there exist C1 > 0, γ > 1 such that

C−1
1 (|q|γ−1) ≤ H(x ,q, ω) ≤ C1(|q|γ+1), ∀ (x ,q, ω) ∈ RN×Rm×Ω

there exists m : [0,+∞)→ [0,+∞) continuous, monotone
increasing, with m(0+) = 0 such that ∀ x , y ,p ∈ Rn, ω ∈ Ω
|H(x ,q, ω)− H(y ,q, ω)| ≤ m

(∥∥y−1 ◦ x
∥∥

h (1 + |q|γ)
)
, with ‖x‖h

homogeneous norm (note locally ‖x‖h ≤ |x |1/k for some natural
number k ≥ 2)
for all q ∈ Rm the function (x , ω) 7→ H(x ,q, ω) is stationary, ergodic
random field on RN × Ω w.r.t. the unitary translation operator.

Federica Dragoni (Cardiff University) Stochastic Homogenisation in Carnot groups Durham, 23/08/2018 12 / 27



Assumptions:

Set q = σ(x)p ∈ Rm, for all p ∈ RN

q 7→ H(x ,q, ω) is convex in q, ∀ (x , ω) ∈ RN × Ω

there exist C1 > 0, γ > 1 such that

C−1
1 (|q|γ−1) ≤ H(x ,q, ω) ≤ C1(|q|γ+1), ∀ (x ,q, ω) ∈ RN×Rm×Ω

there exists m : [0,+∞)→ [0,+∞) continuous, monotone
increasing, with m(0+) = 0 such that ∀ x , y ,p ∈ Rn, ω ∈ Ω
|H(x ,q, ω)− H(y ,q, ω)| ≤ m

(∥∥y−1 ◦ x
∥∥

h (1 + |q|γ)
)
, with ‖x‖h

homogeneous norm (note locally ‖x‖h ≤ |x |1/k for some natural
number k ≥ 2)
for all q ∈ Rm the function (x , ω) 7→ H(x ,q, ω) is stationary, ergodic
random field on RN × Ω w.r.t. the unitary translation operator.

Federica Dragoni (Cardiff University) Stochastic Homogenisation in Carnot groups Durham, 23/08/2018 12 / 27



Assumptions:

Set q = σ(x)p ∈ Rm, for all p ∈ RN

q 7→ H(x ,q, ω) is convex in q, ∀ (x , ω) ∈ RN × Ω

there exist C1 > 0, γ > 1 such that

C−1
1 (|q|γ−1) ≤ H(x ,q, ω) ≤ C1(|q|γ+1), ∀ (x ,q, ω) ∈ RN×Rm×Ω

there exists m : [0,+∞)→ [0,+∞) continuous, monotone
increasing, with m(0+) = 0 such that ∀ x , y ,p ∈ Rn, ω ∈ Ω
|H(x ,q, ω)− H(y ,q, ω)| ≤ m

(∥∥y−1 ◦ x
∥∥

h (1 + |q|γ)
)
, with ‖x‖h

homogeneous norm (note locally ‖x‖h ≤ |x |1/k for some natural
number k ≥ 2)
for all q ∈ Rm the function (x , ω) 7→ H(x ,q, ω) is stationary, ergodic
random field on RN × Ω w.r.t. the unitary translation operator.

Federica Dragoni (Cardiff University) Stochastic Homogenisation in Carnot groups Durham, 23/08/2018 12 / 27



Model

H(x ,p, ω) = a(x , ω)|σ(x)p|β + V (x , ω)

with β > 1, and V (x , ω) bounded and uniformly continuous while
a(x , ω) bounded, uniformly continuous, and bounded away from zero.
The ε-problems areuεt + a

(
δ 1

ε
(x), ω

)
|σ(x)Duε|β + V

(
δ 1

ε
(x), ω

)
= 0,

uε(0, x) = g(x),
(6)

for all x ∈ RN , t > 0, ω ∈ Ω.
Note the space-variable contributing to the horizontal gradient σ(x)Du
does NOT rescale.
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Variational formula for the viscosity solutions

Set L = H∗, then

uε(t , x , ω) = inf
y∈RN

[
g(y) + Lε(x , y , t , ω)

]
where

Lε(x , y , t , ω) = inf
ξ

∫ t

0
L
(
δ 1

ε
(ξ(s)), αξ(s), ω

)
ds

ξ ∈W 1,∞((0, t)) horizontal curve s.t. ξ(0) = y , ξ(t) = x ,
x , y ∈ Rn, i.e. ξ̇(t) =

∑m
i=1 αi(t)Xi(ξ(t)), a.e. t > 0.

αξ(t) is a m-valued measurable function which denotes the
horizontal velocity of ξ.
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Convergence of a “constrained” Lε

We apply the Sub-additive Ergodic Theorem to the following
minimising problem:

inf
ξ

∫ b

a
L
(
ξ(s), αξ(s), ω

)
d s

where ξ − lq ∈W 1,+∞
0

(
(a,b)

)
and lq(s) is the horizontal curve (starting

from the origin) with constant horizontal velocity α(s) = q. We call the
horizontal curves with constant horizontal velocity X -lines.
E.g. In Heisenberg:

ξ1(t) = x0
1 + q1 t

ξ2(t) = x0
2 + q2 t

ξ3(t) = x0
3 +
−q1x0

2 + q2x0
1

2
t

for every q1,q2 ∈ R.
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Subadditive Ergodic Theorem:
Lε(0, y ,1, ω) converges as ε→ 0+ locally uniformly in y and a.s. in ω
to a deterministic function depending only on q where q is the constant
horizontal velocity of the X -line joining the origin to y at time 1.
More precisely q = y in the standard (Euclidean coercive) case, while
q = πm(y) in our Carnot groups case.

E.g. In Heisenberg q =

(
y1
y2

)
.

Main Problem: The Hörmander condition does not imply that for every
y ∈ RN there exists a X -line joining the origin to y !
Constrain: We need to assume that y belongs to the X -plane from the
origin, i.e. the set of all the points which can be reached from the origin
moving on a X -line. We indicate this m-dimensional space as V0.
Definition of the effective Lagrangian: L : Rm → R defined as

L(q) := lim
ε→0+

Lε(0, (q, yq),1, ω),

where yq ∈ RN−m is uniquely determined by q and the condition
(q, yq) ∈ V0 ⊂ RN .
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Independence on ω
We have ergodicity on RN while we have translation invariance only for
a one-parameter subgroup.
We can show that this is enough to deduce a.s. independence on ω.
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Homogenization for the constrained variational
problem.

Definition
Call Vx the set of all the points reachable from x with a constant
horizontal velocity curve.

By using the Subadditive Ergodic Theorem, the Ergodic Theorem,
uniform estimates on Lε etc....

Theorem (Dirr-D.-Mannucci-Marchi 2017)

If y ∈ Vx then, as ε→ 0+, Lε(x , y , t , ω)→ tL
(
πm(x)−πm(y)

t

)
, locally

uniformly in x, y, t and a.s. ω (where πm(x) is the projection of x on
the first m components).
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What we have so far....

The constrained variational problem defines the effective Lagrangian.
By proving that the effective Lagrangian L is convex (non trivial), we
can define the effective Hamiltonian H := L

∗
and so deduce the

effective problem.
By uniform convergence we can deduce the following result:

vε(x , t , ω) := inf
y∈Vx

[
g(y) + Lε(x , y , t , ω)

]
→ inf

y∈Vx

[
g(y) + tL

(
πm(x)− πm(y)

t

)]
Note: vε do not solve the ε-problems and in general the right-hand

side does not solve the limit problem either!
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The Hörmander conditions and the unconstrained
variational problem.

Heuristic idea: Assume that α(s) is smooth, then we can approximate
by piece-wise constant functions in L1.
This means that there exists απ : [0, t ]→ Rm piecewise constant
functions such that as |π| → 0∫ t

0
απ(s)ds →

∫ t

0
α(s) and ‖ξπ − ξ‖∞ → 0,

where ξπ is the piecewise X -line horizontal curve with horizontal
velocity απ and by π we indicate a partition of the interval [0, t ].

Theorem (Dirr-D.-Mannucci-Marchi 2017)

Lε(x , y , t , ω)→ inf
α

∫ t

0
L (α(s)) ds, as ε→ 0+,

locally uniformly in x, y, t and a.s. ω and where the infimum on the
right-hand side is over the admissible horizontal velocity α(s) = αξ(s)
with ξ ∈W 1,∞ joining y to x in a time t.
Federica Dragoni (Cardiff University) Stochastic Homogenisation in Carnot groups Durham, 23/08/2018 21 / 27



The Hörmander conditions and the unconstrained
variational problem.

Heuristic idea: Assume that α(s) is smooth, then we can approximate
by piece-wise constant functions in L1.
This means that there exists απ : [0, t ]→ Rm piecewise constant
functions such that as |π| → 0∫ t

0
απ(s)ds →

∫ t

0
α(s) and ‖ξπ − ξ‖∞ → 0,

where ξπ is the piecewise X -line horizontal curve with horizontal
velocity απ and by π we indicate a partition of the interval [0, t ].

Theorem (Dirr-D.-Mannucci-Marchi 2017)

Lε(x , y , t , ω)→ inf
α

∫ t

0
L (α(s)) ds, as ε→ 0+,

locally uniformly in x, y, t and a.s. ω and where the infimum on the
right-hand side is over the admissible horizontal velocity α(s) = αξ(s)
with ξ ∈W 1,∞ joining y to x in a time t.
Federica Dragoni (Cardiff University) Stochastic Homogenisation in Carnot groups Durham, 23/08/2018 21 / 27



The Hörmander conditions and the unconstrained
variational problem.

Heuristic idea: Assume that α(s) is smooth, then we can approximate
by piece-wise constant functions in L1.
This means that there exists απ : [0, t ]→ Rm piecewise constant
functions such that as |π| → 0∫ t

0
απ(s)ds →

∫ t

0
α(s) and ‖ξπ − ξ‖∞ → 0,

where ξπ is the piecewise X -line horizontal curve with horizontal
velocity απ and by π we indicate a partition of the interval [0, t ].

Theorem (Dirr-D.-Mannucci-Marchi 2017)

Lε(x , y , t , ω)→ inf
α

∫ t

0
L (α(s)) ds, as ε→ 0+,

locally uniformly in x, y, t and a.s. ω and where the infimum on the
right-hand side is over the admissible horizontal velocity α(s) = αξ(s)
with ξ ∈W 1,∞ joining y to x in a time t.
Federica Dragoni (Cardiff University) Stochastic Homogenisation in Carnot groups Durham, 23/08/2018 21 / 27



The Hörmander conditions and the unconstrained
variational problem.

Heuristic idea: Assume that α(s) is smooth, then we can approximate
by piece-wise constant functions in L1.
This means that there exists απ : [0, t ]→ Rm piecewise constant
functions such that as |π| → 0∫ t

0
απ(s)ds →

∫ t

0
α(s) and ‖ξπ − ξ‖∞ → 0,

where ξπ is the piecewise X -line horizontal curve with horizontal
velocity απ and by π we indicate a partition of the interval [0, t ].

Theorem (Dirr-D.-Mannucci-Marchi 2017)

Lε(x , y , t , ω)→ inf
α

∫ t

0
L (α(s)) ds, as ε→ 0+,

locally uniformly in x, y, t and a.s. ω and where the infimum on the
right-hand side is over the admissible horizontal velocity α(s) = αξ(s)
with ξ ∈W 1,∞ joining y to x in a time t.
Federica Dragoni (Cardiff University) Stochastic Homogenisation in Carnot groups Durham, 23/08/2018 21 / 27



Homogenisation for Hamilton-Jacobi eqs.
uε(t , x , ω) = inf

y∈RN

[
g(y)+Lε(x , y , t , ω)

]
→ inf

y∈RN

[
g(y) + inf

α

∫ t

0
L (α(s)) ds

]
The right-hand side is called Hopf-Lax function in Carnot groups.

Theorem (Balogh-Calogero-Pini 2014)

If q → L(q) is convex (and other standard assumptions), then

u(t , x) = inf
y∈RN

[
g(y) + inf

α

∫ t

0
L (α(s)) ds

]
is the unique viscosity solution of{

ut + H
(
σ(x)Du

)
= 0

u(0, x) = g(x)

where H := L
∗
.
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Idea of the proof for the convergence of Lε(x , y , t , ω).

Lε(x , y , t , ω) = inf
ξ

∫ t

0
L
(
δ 1

ε
(ξ(s)), αξ(s), ω

)
ds → inf

α

∫ t

0
L (α(s)) ds

Convergence of minimisers:
For the Upper bound we consider the Γ-realising sequence.
Riemann sum for r.h.s. → piecewise X -lines approximation for
limit path.
We use the assumption on the growth in q to control the error.

See next picture!
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Upper bound:
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Lower bound:

Step 1 Take a sequence ξε converging to the infimum on l.h.s.,
take the limit ξ of ξε (up to subsequence)

Step 2 Approximate ξ by piecewise X -lines with error control
(Nontrivial: Carnot-group version of "abs. cont. path
differentiable at any Lebesgue point")

Step 3 Show that minimisers with boundary condition on a piece
of a X -line and the corresponding piece of ξε have almost
same energy.

See next picture!
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Thanks for your attention!
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