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Homogenization of Hamilton-Jacobi equations.
Given a probability space (£, F,P) the Hamilton-Jacobi problem:

3

u?+H<§,Du‘f,w> =0, xeRV,weQ t>0
u(0, x) = g(x).
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Homogenization of Hamilton-Jacobi equations.
Given a probability space (£, F,P) the Hamilton-Jacobi problem:

{U?—FH(Z,DUE,Q))O, xeRN weQ,t>0

u*(0,x) = g(x).

Theorem (Souganidis 1999 and Rezakhanlou-Tarver 2000)

Under suitable assumptions, the (unique) viscosity solutions u®(t, x,w)

of problems (1) converge locally uniformly in x and t and a.s. inw to a
deterministic limit function u(t, x).

V.
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Homogenization of Hamilton-Jacobi equations.
Given a probability space (£, F,P) the Hamilton-Jacobi problem:

u,+H< Duf w)—O xeRNweQ,t>0
u™ (0, x) = g(x).

Theorem (Souganidis 1999 and Rezakhanlou-Tarver 2000)

Under suitable assumptions, the (unique) viscosity solutions u®(t, x,w)
of problems (1) converge locally uniformly in x and t and a.s. inw to a
deterministic limit function u(t, x).

Moreover the limit function u can be characterised as the (unique)

viscosity solution of a deterministic effective Hamilton-Jacobi problem
of the form:

_|_
T

Du)=0, xRN t>0 @)
(0 X) = g(x).
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Assumptions:

@ p— H(x,p,w)is convexinp,V (x,w) € RN x Q
@ there exist Cy > 0, v > 1 such that

C (1Pl =1) < H(x,p,w) < Ci(lp["+1), ¥ (x,p,w) € RV xRV xQ

@ there exists m: [0, +00) — [0, +00) continuous, monotone
increasing, with m(0™) =0 such thatV x,y,p € RN, w e Q

[H(x, p,w) = H(y, p,w)| < m(Ix — y| (1 +p]))

e for all p € RN the function (x,w) — H(x, p,w) is stationary, ergodic
random field on RN x Q w.r.t. the unitary translation operator.
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Idea of the proof.

Use of the variational formula for the solutions: For all € > 0, the
viscosity solution of (1) is given by

u(t, x,w) = inf [g(y) + L°(x, y, t,w)],
yERN

where t ()
R . s) .
L*(x,y, t,w)lrgf/o L(E,f(s),w> as

and £ € W'°((0,1)) such that £(0) = y and &(t) = x,

and where L = H* is the Legendre-Fenchel transform of the H, i.e.

L(q) = sup{p-q— H(p)}.

PERN

Key property: H = L* if and only if H convex.
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BN
@ (Uniform in x and t > 0) convergence of L¢ via Sub-additive
Ergodic Theorem.

@ In particular L5(x, y, t,w) — tL (*3¥); so one can find the effective
Lagrangian as limit of the variational problem.
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@ (Uniform in x and t > 0) convergence of L via Sub-additive
Ergodic Theorem.

@ Inparticular L5(x, y, t,w) — tL (*3¥); so one can find the effective
Lagrangian as limit of the variational problem.

@ Then v°(t, x,w) — infy [g(y) + tL (*3£)] =: u(t, x).
© Whenever the effective Lagrangian is convex, by Hopf-Lax formula
u (as above) is the (unique) viscosity solution of

{, +H(Du)=0, xRN t>0 @)

u(0, x) = g(x),

><

where H:=L".
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Goal

To work with Hamiltonians coercive only w.r.t. some prescribed
directions:

ur+ H(x,0(x)Du,w) =0, x e RVt > 0
U(O,X) = g(x),

where o(x)Du is a subgradient (in Carnot group); that means o(x) is a
m x n matrix satisfying the Hérmander condition.
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To work with Hamiltonians coercive only w.r.t. some prescribed
directions:

ur+ H(x,o0(x)Du,w) =0, x e RN, t > 0
U(O,X) = g(x),

where o(x)Du is a subgradient (in Carnot group); that means o(x) is a
m x n matrix satisfying the Hérmander condition.

Main model: H (x,(x)Du,w) = 1[0 (x)Duf® + V(x,w) =

11/1 0 —%\ (% 2
2‘(01 X12> Ure

+ V(X,w)

1 Uy, — %st
GRS (e
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Viscosity solutions via variational formula

u(t, x,w) = inf, [9(y) + L(x,y. t,w)]

with
L(x,y, t,w) mf/ ,w) ds
and £ € W'>°((0, 1)) such that £(0) = y and £(t) = x and
£(s) = a(€(s))a(s), aesel0,1].

for some « : [0, t] — R™ measurable.
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Viscosity solutions via variational formula

u(t, x,w) = inf [g(y)+L(x.y,t,w)]
yERN
with
L(x,y, t,w) mf/ ,w) ds
and £ € W'>°((0, 1)) such that £(0) = y and £(t) = x and

£(s) = a(€(s))a(s), aesel0,1].

for some « : [0, t] — R™ measurable.

In that case we call £ horizontal curve and « horizontal velocity of the
horizontal curve ¢ and we write o = of.
Hérmander condition = for every x and y, L(x, y, t,w) # +oo.
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Carnot groups

@ Carnot group: is a (non-commutative) nilpotent Lie group with a
stratified Lie algebra.
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Carnot groups

@ Carnot group: is a (non-commutative) nilpotent Lie group with a
stratified Lie algebra.

@ Any Carnot group can be identified with RN with a non
commutative polynomial group operation.

@ Example: 1-dimensional Heisenberg group R3 with the group law

—Xo)1 + X
(X1, %2, X3)o(y1, Y2, ¥3) = (X1 EEACRECIC RS 2}’121}’2>
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Carnot groups

@ Carnot group: is a (non-commutative) nilpotent Lie group with a
stratified Lie algebra.

@ Any Carnot group can be identified with RN with a non
commutative polynomial group operation.

@ Example: 1-dimensional Heisenberg group R3 with the group law

—Xo)1 + X
(X1, %2, X3)o(y1, Y2, ¥3) = (X1 EEACRECIC RS 2}’121}’2>

@ The Left-invariant vector fields spanning the first layer satisfy the
Hormander condition.
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Homogenization in Carnot groups vs homogenization
in RN (Euclidean)
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Homogenization in Carnot groups vs homogenization
in RN (Euclidean)

@ (isotropic) scaling in RN vs (anisotropic) dilations.
@ Ingeneral: A(x o y) # (Ax o \y)

@ E.g. variational formula for the rescaled Hamiltonian?
If £ horizontal, in general § is not horizontal.

@ Dilations ¢, induced by the stratification of the algebra:
E.g. in Heisenberg: §x(x1, X2, X3) = (AXq, AXo, A°X3).

@ Jx(xoy) =dx(x)odA(¥).
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Homogenization in Carnot groups vs homogenization
in RN (Euclidean)

(isotropic) scaling in RN vs (anisotropic) dilations.
In general: A\(x o y) # (Ax o \y)

E.g. variational formula for the rescaled Hamiltonian?
If £ horizontal, in general § is not horizontal.

Dilations ¢, induced by the stratification of the algebra:
E.g. in Heisenberg: §x(x1, X2, X3) = (AXq, AXo, A°X3).
(X0 y) = 0A(X) 0 or(Y)-

¢ horizontal = §1(¢) horizontal and 19 = Tat.
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e-problem in Carnot groups.
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e-problem in Carnot groups.
Given the Hamilton-Jacobi problem:
{ Ui + H (5:(x),0(0)DU", ) =0, x ERN,w e 0, t> 0
us(0, x) = g(x),

Theorem (Dirr-D.-Mannucci-Marchi 2017)

Under suitable assumptions, the (unique) viscosity solutions u®(t, x,w)
of problems (4) converge locally uniformly in x and t and a.s. inw to a
deterministic limit function u(t, x), that can be characterised as the
(unique) viscosity solution of a deterministic effective Hamilton-Jacobi
problem of the form:

{ i+ H(o(x)Du) =0, x e RN, t > 0 )

u(0,x) = g(x).
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Set g = o(x)p € R™, for all p € RN
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Assumptions:

Set g = o(x)p € R™, for all p € RN
@ g+~ H(x,q,w)is convexin g,V (x,w) € RN x Q
@ there exist Cy > 0, v > 1 such that

C; ' (lg]"—1) < H(x,q,w) < Ci(lg]"+1), ¥ (x,q,w) € RNxR™xQ

@ there exists m: [0, +00) — [0, +00) continuous, monotone
increasing, with m(0™) =0 such thatV x,y,p e R" w € Q
[H(x. q,w) = H(y. q.w)| < m(|ly" o x|, (1 +al")), with ],
homogeneous norm (note locally ||x||,, < |x|'/¥ for some natural
number k > 2)

@ for all g € R™ the function (x,w) — H(x, q,w) is stationary, ergodic
random field on RN x Q w.r.t. the unitary translation operator.
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Model

H(x,p,w) = a(x,w)|c(x)p|® + V(x,w)

with 8 > 1, and V/(x,w) bounded and uniformly continuous while
a(x,w) bounded, uniformly continuous, and bounded away from zero.
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Model

H(x,p,w) = a(x,w)|c(x)p|® + V(x,w)

with 8 > 1, and V/(x,w) bounded and uniformly continuous while
a(x,w) bounded, uniformly continuous, and bounded away from zero.
The e-problems are

{ 0+ a (5%(X),w> o)D) + V (6%(X),w> —0, o

u*(0,x) = 9(x),

forall x e RN t > 0,w € Q.

Note the space-variable contributing to the horizontal gradient o(x)Du
does NOT rescale.
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Variational formula for the viscosity solutions
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Variational formula for the viscosity solutions

Set L = H*, then

Ut x,w) = inf [g(y) + L(x,y, t,w)]
yERN

where

(£(s)). o (5). ) as

1
€

t
LE(x,y, t,w inf/L 5
(. tw)=inf | L(
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Variational formula for the viscosity solutions

Set L = H*, then

“(t, x,w) = inf L5(x, ¥, 1,
U (t, X, w) ylerﬁw[g(yH (X, . tw)]

where

(£(s)). o (5). ) as

1
€

t
L5(x, y,t, inf/L 5
(. tw)=inf | L(

@ ¢ € W'>=((0,t)) horizontal curve s.t. £(0) =y, £(t) = x,
x,y € R ie. £(1) = 7, ai(H)Xi(£(D)), ae. t>0.

@ of(t) is a m-valued measurable function which denotes the
horizontal velocity of &.
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Convergence of a “constrained” L¢
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Convergence of a “constrained” L¢

We apply the Sub-additive Ergodic Theorem to the following
minimising problem:

irgf/:L(g(s),oﬁ(s),w)ds
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Convergence of a “constrained” L¢

We apply the Sub-additive Ergodic Theorem to the following

minimising problem:
b
irgf/ L(¢(s),af(s),w)d s
a

where £ — I, € W1 °((a, b)) and Iy(s) is the horizontal curve (starting
from the origin) W|th constant horizontal velocity a(s) = q.
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Convergence of a “constrained” L¢

We apply the Sub-additive Ergodic Theorem to the following

minimising problem:
b
irgf/ L(¢(s),af(s),w)d s
a

where ¢ — I € W, "™ ((a, b)) and Iy(s) is the horizontal curve (starting
from the origin) W|th constant horizontal velocity «(s) = q. We call the
horizontal curves with constant horizontal velocity X'-lines.
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Convergence of a “constrained” L¢
We apply the Sub-additive Ergodic Theorem to the following

minimising problem:
b
irgf/ L(¢(s),af(s),w)d s
a

where ¢ — I € W, "™ ((a, b)) and Iy(s) is the horizontal curve (starting
from the origin) W|th constant horizontal velocity «(s) = q. We call the
horizontal curves with constant horizontal velocity X'-lines.

E.g. In Heisenberg:

a(t)=x)+at
&(t) = x3 + aa t

—g1x0 + C72X?t

&(l) =x3 + ——*25

for every g1, g2 € R.
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BN
Subadditive Ergodic Theorem:
L#(0,y,1,w) converges as ¢ — 0T locally uniformly in y and a.s. in w

to a deterministic function depending only on g where q is the constant
horizontal velocity of the X’-line joining the origin to y at time 1.

it
v
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Subadditive Ergodic Theorem:
L¢(0,y,1,w) converges as ¢ — 07 locally uniformly in y and a.s. in w
to a deterministic function depending only on g where q is the constant
horizontal velocity of the X'-line joining the origin to y at time 1.
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Subadditive Ergodic Theorem:
L¢(0,y,1,w) converges as ¢ — 07 locally uniformly in y and a.s. in w
to a deterministic function depending only on g where q is the constant
horizontal velocity of the X'-line joining the origin to y at time 1.
More precisely g = y in the standard (Euclidean coercive) case, while
g = mm(y) in our Carnot groups case.
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Subadditive Ergodic Theorem:
L¢(0,y,1,w) converges as ¢ — 07 locally uniformly in y and a.s. in w
to a deterministic function depending only on g where q is the constant
horizontal velocity of the X'-line joining the origin to y at time 1.
More precisely g = y in the standard (Euclidean coercive) case, while
g = mm(y) in our Carnot groups case.

E.g. In Heisenberg g = <y1)_
Y2
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Subadditive Ergodic Theorem:
L¢(0,y,1,w) converges as ¢ — 07 locally uniformly in y and a.s. in w
to a deterministic function depending only on g where q is the constant
horizontal velocity of the X'-line joining the origin to y at time 1.

More precisely g = y in the standard (Euclidean coercive) case, while
g = mm(y) in our Carnot groups case.

E.g. In Heisenberg g = <y1)_
Y2

Main Problem: The H6rmander condition does not imply that for every
y € RN there exists a X-line joining the origin to y!

Federica Dragoni (Cardiff University) Stochastic Homogenisation in Carnot groups Durham, 23/08/2018 16/27



Subadditive Ergodic Theorem:
L¢(0,y,1,w) converges as ¢ — 07 locally uniformly in y and a.s. in w
to a deterministic function depending only on g where q is the constant
horizontal velocity of the X'-line joining the origin to y at time 1.
More precisely g = y in the standard (Euclidean coercive) case, while
g = mm(y) in our Carnot groups case.

E.g. In Heisenberg g = (;/1)
2
Main Problem: The H6rmander condition does not imply that for every
y € RN there exists a X-line joining the origin to y!
Constrain: We need to assume that y belongs to the X’-plane from the

origin, i.e. the set of all the points which can be reached from the origin
moving on a X-line. We indicate this m-dimensional space as V.
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Subadditive Ergodic Theorem:
L¢(0,y,1,w) converges as ¢ — 07 locally uniformly in y and a.s. in w
to a deterministic function depending only on g where q is the constant
horizontal velocity of the X'-line joining the origin to y at time 1.
More precisely g = y in the standard (Euclidean coercive) case, while
g = mm(y) in our Carnot groups case.

E.g. In Heisenberg g = <y1)_
Y2

Main Problem: The H6rmander condition does not imply that for every
y € RN there exists a X-line joining the origin to y!

Constrain: We need to assume that y belongs to the X’-plane from the
origin, i.e. the set of all the points which can be reached from the origin
moving on a X-line. We indicate this m-dimensional space as V.

Definition of the effective Lagrangian: L : R™ — R defined as
L(g) := lim L5(0,(q,yq),1,w),
e—0+
where y, € RN=™ is uniquely determined by g and the condition
(9,yq) € Vo C RN,
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Subadditive Ergodic Theorem:
L¢(0,y,1,w) converges as ¢ — 07 locally uniformly in y and a.s. in w
to a deterministic function depending only on g where q is the constant
horizontal velocity of the X'-line joining the origin to y at time 1.
More precisely g = y in the standard (Euclidean coercive) case, while
g = mm(y) in our Carnot groups case.

E.g. In Heisenberg g = <y1)_
Y2

Main Problem: The H6rmander condition does not imply that for every
y € RN there exists a X-line joining the origin to y!

Constrain: We need to assume that y belongs to the X’-plane from the
origin, i.e. the set of all the points which can be reached from the origin
moving on a X-line. We indicate this m-dimensional space as V.

Definition of the effective Lagrangian: L : R™ — R defined as
L(g) := lim L5(0,(q,yq),1,w),
e—0+
where y, € RN=™ is uniquely determined by g and the condition
(9,yq) € Vo C RN,
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Independence on w

We have ergodicity on RN while we have translation invariance only for

a one-parameter subgroup.

We can show that this is enouah to deduce a.s. independence on w.

CLMN L(q, 0] =L (4w
/(:> M)«x~/>. by)(/ﬁ@“(“.aﬂ;f)

MY -l
e
7, (0)

£
7, N Y-l
v O(”;l
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Homogenization for the constrained variational
problem.

Definition
Call V the set of all the points reachable from x with a constant
horizontal velocity curve.
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Homogenization for the constrained variational
problem.

Definition
Call V the set of all the points reachable from x with a constant
horizontal velocity curve.

By using the Subadditive Ergodic Theorem, the Ergodic Theorem,
uniform estimates on L¢ efc....

Theorem (Dirr-D.-Mannucci-Marchi 2017)

Ify € Vi then, as e — 0%, L5(x, y, t,w) — (L (M) locally

uniformly in x, y, t and a.s. w (where mm(x) is the projection of x on
the first m components).
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What we have so far....
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What we have so far....

The constrained variational problem defines the effective Lagrangian.
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What we have so far....

The constrained variational problem defines the effective Lagrangian.
By proving that the effective Lagrangian L is convex (non trivial), we

can define the effective Hamiltonian H := L~ and so deduce the
effective problem.
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What we have so far....

The constrained variational problem defines the effective Lagrangian.
By proving that the effective Lagrangian L is convex (non trivial), we
can define the effective Hamiltonian H := L and so deduce the
effective problem.

By uniform convergence we can deduce the following result:

ve(x, tw) = inf [g(y) + L5(x,y, t,w)] — yien‘tx {g(y) +tL (”m(x)t”m(}/)ﬂ

yeVx

Note: v© do not solve the e-problems and in general the right-hand
side does not solve the limit problem either!
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The Hormander conditions and the unconstrained
variational problem.
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The Hormander conditions and the unconstrained
variational problem.

Heuristic idea: Assume that «(s) is smooth, then we can approximate
by piece-wise constant functions in L'.
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The Hormander conditions and the unconstrained
variational problem.

Heuristic idea: Assume that «(s) is smooth, then we can approximate

by piece-wise constant functions in L'.
This means that there exists o™ : [0, {] — R™ piecewise constant
functions such that as |7| — 0

/ ds—>/ and [|" =€, — 0

where £7 is the piecewise X'-line horizontal curve with horizontal
velocity o™ and by 7 we indicate a partition of the interval [0, {].
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The Hormander conditions and the unconstrained
variational problem.

Heuristic idea: Assume that «(s) is smooth, then we can approximate
by piece-wise constant functions in L'.

This means that there exists o™ : [0, {] — R™ piecewise constant
functions such that as |7| — 0

/ ds—>/ and [|" =€, — 0

where £7 is the piecewise X'-line horizontal curve with horizontal
velocity o™ and by 7 we indicate a partition of the interval [0, {].

Theorem (Dirr—D.-Mannucci-Marcpi 2017)
Lf(x,y, t,w) — inf/ L(a(s))ds, ase— 0T,
> Jo

locally uniformly in x, y, t and a.s. w and where the infimum on the
right-hand side is over the admissible horizontal velocity a(s) = a%(s)
with € € W' joining y to x in a time t.
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Homogenisation for Hamilton-Jacobi egs.
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Homogenisation for Hamilton-Jacobi egs.
t
UE(t,x,w) = inf [g(y)+L5(x,y, t,w)] — inf [g(y)+inf/ L(a(s))ds}
yERN yERN a Jo
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Homogenisation for Hamilton-Jacobi egs.
t
UE(t,x,w) = inf [g(y)+L5(x,y, t,w)] — inf [g(y)+inf/ L(a(s))ds}
yERN yERN a Jo

The right-hand side is called Hopf-Lax function in Carnot groups.
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Homogenisation for Hamilton-Jacobi egs.
t
U(tx,w) = inf [g(y)+L5(x,y, t,w)] = inf [g(y)+inf/ L(a(s))ds}
yERN yERN a Jo

The right-hand side is called Hopf-Lax function in Carnot groups.

Theorem (Balogh-Calogero-Pini 2014)
If g — L(q) is convex (and other standard assumptions), then

u(t, x) = inf [g(y)+i2f/()tL(a(s))ds]

yERN

is the unique viscosity solution of

{ us+ H(o(x)Du) =0
u(0,x) = g(x)

where H: = L".

v
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Idea of the proof for the convergence of L*(x, y, t,w).
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Idea of the proof for the convergence of L*(x, y, t,w).

L5(x, y. 1, w) = irgf/ot L (3,(¢(s)). a%(s). ) ds igf/otL(a(s)) ds

Convergence of minimisers:

Federica Dragoni (Cardiff University) Stochastic Homogenisation in Carnot groups Durham, 23/08/2018 23/27



Idea of the proof for the convergence of L*(x, y, t,w).

L5(x, y. 1, w) = irgf/ot L (3,(¢(s)). a%(s). ) ds igf/otL(a(s)) ds

Convergence of minimisers:
@ For the Upper bound we consider the I-realising sequence.
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Idea of the proof for the convergence of L*(x, y, t,w).

L5(x, y. 1, w) = irgf/ot L (3,(¢(s)). a%(s). ) ds igf/otL(a(s)) ds

Convergence of minimisers:
@ For the Upper bound we consider the I-realising sequence.

@ Riemann sum for r.h.s. — piecewise X'-lines approximation for
limit path.
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Idea of the proof for the convergence of L*(x, y, t,w).

L5(x, y. 1, w) = irgf/ot L (3,(¢(s)). a%(s). ) ds igf/otL(a(s)) ds

Convergence of minimisers:
@ For the Upper bound we consider the I-realising sequence.

@ Riemann sum for r.h.s. — piecewise X'-lines approximation for
limit path.
@ We use the assumption on the growth in g to control the error.
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Idea of the proof for the convergence of L*(x, y, t,w).

1
€

L5(x, y. 1, w) = irgf/otL(é (€(5)). a8(s).) s igf/OtL(a(s))ds

Convergence of minimisers:
@ For the Upper bound we consider the I-realising sequence.

@ Riemann sum for r.h.s. — piecewise X'-lines approximation for
limit path.

@ We use the assumption on the growth in g to control the error.
See next picture!
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Upper bound:
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Upper bound:
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Lower bound:
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Lower bound:

Step 1 Take a sequence £ converging to the infimum on I.h.s.,
take the limit £ of £° (up to subsequence)

Step 2 Approximate ¢ by piecewise X-lines with error control
(Nontrivial: Carnot-group version of "abs. cont. path
differentiable at any Lebesgue point")

Step 3 Show that minimisers with boundary condition on a piece

of a X-line and the corresponding piece of £ have almost
same energy.
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Lower bound:

Step 1 Take a sequence £ converging to the infimum on I.h.s.,
take the limit £ of £° (up to subsequence)

Step 2 Approximate ¢ by piecewise X-lines with error control
(Nontrivial: Carnot-group version of "abs. cont. path
differentiable at any Lebesgue point")

Step 3 Show that minimisers with boundary condition on a piece
of a X-line and the corresponding piece of £ have almost
same energy.

See next picture!
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Thanks for your attention!
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