Stochastic Homogenisation in Carnot groups

Federica Dragoni

Cardiff University

joint with Nicolas Dirr, Paola Mannucci and Claudio Marchi.

Federica Dragoni (Cardiff University) Stochastic Homogenisation in Carnot groups

< 6 k

- Introduction of the known coercive case.
- A non coercive Hamilton-Jacobi equation: the horizontal gradient in Carnot groups and anisotropic rescaling.
- The associated variational problem.
- The effective Lagrangian as limit of a constrained variational problem.
- Approximation argument by piecewise X-lines.
- Sketch of the proof for the convergence result.

Introduction of the known coercive case.

- A non coercive Hamilton-Jacobi equation: the horizontal gradient in Carnot groups and anisotropic rescaling.
- The associated variational problem.
- The effective Lagrangian as limit of a constrained variational problem.
- Approximation argument by piecewise X-lines.
- Sketch of the proof for the convergence result.

- Introduction of the known coercive case.
- A non coercive Hamilton-Jacobi equation: the horizontal gradient in Carnot groups and anisotropic rescaling.
- The associated variational problem.
- The effective Lagrangian as limit of a constrained variational problem.
- Approximation argument by piecewise X-lines.
- Sketch of the proof for the convergence result.

- Introduction of the known coercive case.
- A non coercive Hamilton-Jacobi equation: the horizontal gradient in Carnot groups and anisotropic rescaling.
- The associated variational problem.
- The effective Lagrangian as limit of a constrained variational problem.
- Approximation argument by piecewise \mathcal{X} -lines.
- Sketch of the proof for the convergence result.

- Introduction of the known coercive case.
- A non coercive Hamilton-Jacobi equation: the horizontal gradient in Carnot groups and anisotropic rescaling.
- The associated variational problem.
- The effective Lagrangian as limit of a constrained variational problem.
- Approximation argument by piecewise \mathcal{X} -lines.
- Sketch of the proof for the convergence result.

4 D N 4 B N 4 B N 4 B N

- Introduction of the known coercive case.
- A non coercive Hamilton-Jacobi equation: the horizontal gradient in Carnot groups and anisotropic rescaling.
- The associated variational problem.
- The effective Lagrangian as limit of a constrained variational problem.
- Approximation argument by piecewise X-lines.
- Sketch of the proof for the convergence result.

イロト イポト イラト イラト

- Introduction of the known coercive case.
- A non coercive Hamilton-Jacobi equation: the horizontal gradient in Carnot groups and anisotropic rescaling.
- The associated variational problem.
- The effective Lagrangian as limit of a constrained variational problem.
- Approximation argument by piecewise X-lines.
- Sketch of the proof for the convergence result.

< 回 > < 三 > < 三 >

- Introduction of the known coercive case.
- A non coercive Hamilton-Jacobi equation: the horizontal gradient in Carnot groups and anisotropic rescaling.
- The associated variational problem.
- The effective Lagrangian as limit of a constrained variational problem.
- Approximation argument by piecewise X-lines.
- Sketch of the proof for the convergence result.

< 回 > < 三 > < 三 >

Homogenization of Hamilton-Jacobi equations.

Given a probability space $\left(\Omega,\mathcal{F},\mathbb{P}\right)$ the Hamilton-Jacobi problem:

$$\left\{ egin{array}{l} u^arepsilon_t+H\left(rac{x}{arepsilon}, Du^arepsilon, \omega
ight)=0, \; x\in \mathbb{R}^N, \omega\in\Omega, t>0 \ u^arepsilon(0,x)=g(x). \end{array}
ight.$$

Theorem (Souganidis 1999 and Rezakhanlou-Tarver 2000)

Under suitable assumptions, the (unique) viscosity solutions $u^{\varepsilon}(t, x, \omega)$ of problems (1) converge locally uniformly in x and t and a.s. in ω to a deterministic limit function u(t, x).

Moreover the limit function u can be characterised as the (unique) viscosity solution of a deterministic effective Hamilton-Jacobi problem of the form:

$$\begin{cases} u_t + \overline{H}(Du) = 0, \ x \in \mathbb{R}^N, t > 0 \\ u(0, x) = g(x). \end{cases}$$

Homogenization of Hamilton-Jacobi equations.

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ the Hamilton-Jacobi problem:

$$\left\{ egin{array}{l} u^arepsilon_t+H\left(rac{x}{arepsilon}, {\it D}u^arepsilon, \omega
ight)=0, \; x\in \mathbb{R}^N, \omega\in\Omega, t>0 \ u^arepsilon(0,x)=g(x). \end{array}
ight.$$

Theorem (Souganidis 1999 and Rezakhanlou-Tarver 2000)

Under suitable assumptions, the (unique) viscosity solutions $u^{\varepsilon}(t, x, \omega)$ of problems (1) converge locally uniformly in x and t and a.s. in ω to a deterministic limit function u(t, x).

Moreover the limit function u can be characterised as the (unique) viscosity solution of a deterministic effective Hamilton-Jacobi problem of the form:

$$\begin{cases} u_t + \overline{H}(Du) = 0, \ x \in \mathbb{R}^N, t > 0 \\ u(0, x) = g(x). \end{cases}$$

(1)

Homogenization of Hamilton-Jacobi equations.

Given a probability space $\left(\Omega,\mathcal{F},\mathbb{P}\right)$ the Hamilton-Jacobi problem:

$$\left\{ egin{array}{l} u^arepsilon_t+H\left(rac{x}{arepsilon}, {\it D}u^arepsilon, \omega
ight)=0, \; x\in \mathbb{R}^N, \omega\in\Omega, t>0 \ u^arepsilon(0,x)=g(x). \end{array}
ight.$$

Theorem (Souganidis 1999 and Rezakhanlou-Tarver 2000)

Under suitable assumptions, the (unique) viscosity solutions $u^{\varepsilon}(t, x, \omega)$ of problems (1) converge locally uniformly in x and t and a.s. in ω to a deterministic limit function u(t, x).

Moreover the limit function u can be characterised as the (unique) viscosity solution of a deterministic effective Hamilton-Jacobi problem of the form:

$$\begin{cases} u_t + \overline{H}(Du) = 0, \ x \in \mathbb{R}^N, t > 0 \\ u(0, x) = g(x). \end{cases}$$

(1)

(2)

Assumptions:

- $p \mapsto H(x, p, \omega)$ is convex in $p, \forall (x, \omega) \in \mathbb{R}^N \times \Omega$
- there exist $C_1 > 0$, $\gamma > 1$ such that

 $C_1^{-1}(|\boldsymbol{\rho}|^{\gamma}-1) \leq H(\boldsymbol{x},\boldsymbol{\rho},\omega) \leq C_1(|\boldsymbol{\rho}|^{\gamma}+1), \; \forall \; (\boldsymbol{x},\boldsymbol{\rho},\omega) \in \mathbb{R}^N \times \mathbb{R}^N \times \Omega$

there exists m: [0, +∞) → [0, +∞) continuous, monotone increasing, with m(0⁺) = 0 such that ∀ x, y, p ∈ ℝ^N, ω ∈ Ω

$$|H(x,p,\omega) - H(y,p,\omega)| \le m(|x-y|(1+|p|))$$

for all *p* ∈ ℝ^N the function (*x*, ω) → *H*(*x*, *p*, ω) is stationary, ergodic random field on ℝ^N × Ω w.r.t. the unitary translation operator.

Idea of the proof.

Use of the variational formula for the solutions: For all $\varepsilon > 0$, the viscosity solution of (1) is given by

$$u^{\varepsilon}(t, x, \omega) = \inf_{y \in \mathbb{R}^N} \left[g(y) + L^{\varepsilon}(x, y, t, \omega) \right],$$

where

$$L^{\varepsilon}(x, y, t, \omega) = \inf_{\xi} \int_{0}^{t} L\left(\frac{\xi(s)}{\varepsilon}, \dot{\xi}(s), \omega\right) ds$$

and $\xi \in W^{1,\infty}((0,t))$ such that $\xi(0) = y$ and $\xi(t) = x$, and where $L = H^*$ is the Legendre-Fenchel transform of the H, i.e.

$$L(q) = \sup_{p \in \mathbb{R}^N} \{ p \cdot q - H(p) \}.$$

Key property: $H = L^*$ if and only if H convex.

Federica Dragoni (Cardiff University) Stochastic Hon

Stochastic Homogenisation in Carnot groups

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Idea of the proof.

Use of the variational formula for the solutions: For all $\varepsilon > 0$, the viscosity solution of (1) is given by

$$u^{\varepsilon}(t, x, \omega) = \inf_{y \in \mathbb{R}^N} \left[g(y) + L^{\varepsilon}(x, y, t, \omega) \right],$$

where

$$L^{arepsilon}(x,y,t,\omega) = \inf_{\xi} \int_{0}^{t} L\left(rac{\xi(oldsymbol{s})}{arepsilon}, \dot{\xi}(oldsymbol{s}), \omega
ight) doldsymbol{s}$$

and $\xi \in W^{1,\infty}((0,t))$ such that $\xi(0) = y$ and $\xi(t) = x$, and where $L = H^*$ is the Legendre-Fenchel transform of the H, i.e.

$$L(q) = \sup_{p \in \mathbb{R}^N} \{ p \cdot q - H(p) \}.$$

Key property: $H = L^*$ if and only if H convex.

Federica Dragoni (Cardiff University) Stocha

Stochastic Homogenisation in Carnot groups

(日)

Idea of the proof.

Use of the variational formula for the solutions: For all $\varepsilon > 0$, the viscosity solution of (1) is given by

$$u^{\varepsilon}(t,x,\omega) = \inf_{y \in \mathbb{R}^N} \left[g(y) + L^{\varepsilon}(x,y,t,\omega) \right],$$

where

$$L^{\varepsilon}(\boldsymbol{x},\boldsymbol{y},t,\omega) = \inf_{\xi} \int_{0}^{t} L\left(\frac{\xi(\boldsymbol{s})}{\varepsilon},\dot{\xi}(\boldsymbol{s}),\omega\right) d\boldsymbol{s}$$

and $\xi \in W^{1,\infty}((0, t))$ such that $\xi(0) = y$ and $\xi(t) = x$, and where $L = H^*$ is the Legendre-Fenchel transform of the *H*, i.e.

$$L(q) = \sup_{p \in \mathbb{R}^N} \{ p \cdot q - H(p) \}.$$

Key property: $H = L^*$ if and only if H convex.

イロト イポト イラト イラト 一日

- (Uniform in x and t > 0) convergence of L^ε via Sub-additive Ergodic Theorem.
- 2 In particular $L^{\varepsilon}(x, y, t, \omega) \to t\overline{L}\left(\frac{x-y}{t}\right)$; so one can find the effective Lagrangian as limit of the variational problem.
- **③** Then $u^{\varepsilon}(t, x, \omega) \rightarrow \inf_{y} \left[g(y) + t\overline{L}\left(\frac{x-y}{t} \right) \right] =: u(t, x).$
- Whenever the effective Lagrangian is convex, by Hopf-Lax formula u (as above) is the (unique) viscosity solution of

$$\begin{cases} u_t + \overline{H}(Du) = 0, \ x \in \mathbb{R}^N, t > 0\\ u(0, x) = g(x), \end{cases}$$
(3)

A D N A B N A B N A B N

- (Uniform in x and t > 0) convergence of L^{ε} via Sub-additive Ergodic Theorem.
- 2 In particular $L^{\varepsilon}(x, y, t, \omega) \to t\overline{L}(\frac{x-y}{t})$; so one can find the effective Lagrangian as limit of the variational problem.
- **③** Then $u^{\varepsilon}(t, x, \omega) \rightarrow \inf_{y} \left[g(y) + t\overline{L}\left(\frac{x-y}{t}\right) \right] =: u(t, x).$
- Whenever the effective Lagrangian is convex, by Hopf-Lax formula u (as above) is the (unique) viscosity solution of

$$\begin{cases} u_t + \overline{H}(Du) = 0, \ x \in \mathbb{R}^N, t > 0\\ u(0, x) = g(x), \end{cases}$$
(3)

- (Uniform in x and t > 0) convergence of L^{ε} via Sub-additive Ergodic Theorem.
- 2 In particular $L^{\varepsilon}(x, y, t, \omega) \to t\overline{L}(\frac{x-y}{t})$; so one can find the effective Lagrangian as limit of the variational problem.
- **③** Then $u^{\varepsilon}(t, x, \omega) \rightarrow \inf_{y} \left[g(y) + t\overline{L} \left(\frac{x-y}{t} \right) \right] =: u(t, x).$
- Whenever the effective Lagrangian is convex, by Hopf-Lax formula u (as above) is the (unique) viscosity solution of

$$\begin{cases} u_t + \overline{H}(Du) = 0, \ x \in \mathbb{R}^N, t > 0\\ u(0, x) = g(x), \end{cases}$$
(3)

- (Uniform in x and t > 0) convergence of L^{ε} via Sub-additive Ergodic Theorem.
- 2 In particular $L^{\varepsilon}(x, y, t, \omega) \to t\overline{L}(\frac{x-y}{t})$; so one can find the effective Lagrangian as limit of the variational problem.
- Then $u^{\varepsilon}(t, x, \omega) \rightarrow \inf_{y} \left[g(y) + t\overline{L} \left(\frac{x-y}{t} \right) \right] =: u(t, x).$
- Whenever the effective Lagrangian is convex, by Hopf-Lax formula u (as above) is the (unique) viscosity solution of

$$\begin{cases} u_t + \overline{H}(Du) = 0, \ x \in \mathbb{R}^N, t > 0\\ u(0, x) = g(x), \end{cases}$$
(3)

イロト イヨト イヨト イヨト

Goal

To work with Hamiltonians coercive only w.r.t. some prescribed directions:

$$\begin{cases} u_t + H(x, \sigma(x)Du, \omega) = 0, \ x \in \mathbb{R}^N, t > 0\\ u(0, x) = g(x), \end{cases}$$

where $\sigma(x)Du$ is a subgradient (in Carnot group); that means $\sigma(x)$ is a $m \times n$ matrix satisfying the Hörmander condition.

Main model: $H(x, \sigma(x)Du, \omega) = \frac{1}{2}|\sigma(x)Du|^2 + V(x, \omega) =$

$$\frac{1}{2} \left| \begin{pmatrix} 1 & 0 & -\frac{x_2}{2} \\ 0 & 1 & \frac{x_1}{2} \end{pmatrix} \begin{pmatrix} u_{x_1} \\ u_{x_2} \\ u_{x_3} \end{pmatrix} \right|^2 + V(x,\omega) = \frac{1}{2} \left| \begin{pmatrix} u_{x_1} - \frac{x_2}{2} u_{x_3} \\ u_{x_2} + \frac{x_1}{2} u_{x_3} \end{pmatrix} \right|^2 + V(x,\omega)$$

Goal

To work with Hamiltonians coercive only w.r.t. some prescribed directions:

$$\begin{cases} u_t + H(x, \sigma(x)Du, \omega) = 0, \ x \in \mathbb{R}^N, t > 0\\ u(0, x) = g(x), \end{cases}$$

where $\sigma(x)Du$ is a subgradient (in Carnot group); that means $\sigma(x)$ is a $m \times n$ matrix satisfying the Hörmander condition.

Main model: $H(x, \sigma(x)Du, \omega) = \frac{1}{2}|\sigma(x)Du|^2 + V(x, \omega) =$

$$\frac{1}{2} \left| \begin{pmatrix} 1 & 0 & -\frac{x_2}{2} \\ 0 & 1 & \frac{x_1}{2} \end{pmatrix} \begin{pmatrix} u_{x_1} \\ u_{x_2} \\ u_{x_3} \end{pmatrix} \right|^2 + V(x,\omega) = \frac{1}{2} \left| \begin{pmatrix} u_{x_1} - \frac{x_2}{2} u_{x_3} \\ u_{x_2} + \frac{x_1}{2} u_{x_3} \end{pmatrix} \right|^2 + V(x,\omega)$$

Goal

To work with Hamiltonians coercive only w.r.t. some prescribed directions:

$$\begin{cases} u_t + H(x, \sigma(x)Du, \omega) = 0, \ x \in \mathbb{R}^N, t > 0\\ u(0, x) = g(x), \end{cases}$$

where $\sigma(x)Du$ is a subgradient (in Carnot group); that means $\sigma(x)$ is a $m \times n$ matrix satisfying the Hörmander condition.

Main model: $H(x, \sigma(x)Du, \omega) = \frac{1}{2}|\sigma(x)Du|^2 + V(x, \omega) =$

$$\frac{1}{2} \left| \begin{pmatrix} 1 & 0 & -\frac{x_2}{2} \\ 0 & 1 & \frac{x_1}{2} \end{pmatrix} \begin{pmatrix} u_{x_1} \\ u_{x_2} \\ u_{x_3} \end{pmatrix} \right|^2 + V(x,\omega) = \frac{1}{2} \left| \begin{pmatrix} u_{x_1} - \frac{x_2}{2} u_{x_3} \\ u_{x_2} + \frac{x_1}{2} u_{x_3} \end{pmatrix} \right|^2 + V(x,\omega)$$

Viscosity solutions via variational formula

$$u(t, x, \omega) = \inf_{y \in \mathbb{R}^N} \left[g(y) + L(x, y, t, \omega) \right]$$

with

$$L(x, y, t, \omega) = \inf_{\xi} \int_0^t L\left(\xi(s), \alpha^{\xi}(s), \omega\right) ds$$

and $\xi \in W^{1,\infty}((0,t))$ such that $\xi(0) = y$ and $\xi(t) = x$ and

 $\dot{\xi}(\boldsymbol{s}) = \sigma(\xi(\boldsymbol{s}))\alpha(\boldsymbol{s}), \quad \text{a.e } \boldsymbol{s} \in [0, t].$

for some $\alpha : [0, t] \rightarrow \mathbb{R}^m$ measurable.

In that case we call ξ horizontal curve and α horizontal velocity of the horizontal curve ξ and we write $\alpha = \alpha^{\xi}$. Hörmander condition \Rightarrow for every *x* and *y*, $L(x, y, t, \omega) \neq +\infty$.

Viscosity solutions via variational formula

$$u(t, x, \omega) = \inf_{y \in \mathbb{R}^N} \left[g(y) + L(x, y, t, \omega) \right]$$

with

$$L(x, y, t, \omega) = \inf_{\xi} \int_0^t L\left(\xi(s), \alpha^{\xi}(s), \omega\right) ds$$

and $\xi \in W^{1,\infty}((0,t))$ such that $\xi(0) = y$ and $\xi(t) = x$ and

 $\dot{\xi}(\boldsymbol{s}) = \sigma(\xi(\boldsymbol{s}))\alpha(\boldsymbol{s}), \quad \text{a.e } \boldsymbol{s} \in [0, t].$

for some $\alpha : [0, t] \to \mathbb{R}^m$ measurable. In that case we call ξ horizontal curve and α horizontal velocity of the horizontal curve ξ and we write $\alpha = \alpha^{\xi}$.

Hörmander condition \Rightarrow for every x and y, $L(x, y, t, \omega) \neq +\infty$.

Viscosity solutions via variational formula

$$u(t, x, \omega) = \inf_{y \in \mathbb{R}^N} \left[g(y) + L(x, y, t, \omega) \right]$$

with

$$L(x, y, t, \omega) = \inf_{\xi} \int_0^t L\left(\xi(s), \alpha^{\xi}(s), \omega\right) ds$$

and $\xi \in W^{1,\infty}((0,t))$ such that $\xi(0) = y$ and $\xi(t) = x$ and

 $\dot{\xi}(\boldsymbol{s}) = \sigma(\xi(\boldsymbol{s}))\alpha(\boldsymbol{s}), \quad \text{a.e } \boldsymbol{s} \in [0, t].$

for some $\alpha : [0, t] \to \mathbb{R}^m$ measurable. In that case we call ξ horizontal curve and α horizontal velocity of the horizontal curve ξ and we write $\alpha = \alpha^{\xi}$. Hörmander condition \Rightarrow for every *x* and *y*, $L(x, y, t, \omega) \neq +\infty$.

• Carnot group: is a (non-commutative) nilpotent Lie group with a stratified Lie algebra.

- Any Carnot group can be identified with \mathbb{R}^N with a non commutative polynomial group operation.
- **Example:** 1-dimensional Heisenberg group \mathbb{R}^3 with the group law

$$(x_1, x_2, x_3) \circ (y_1, y_2, y_3) = \left(x_1 + y_1, x_2 + y_2, x_3 + y_3 + \frac{-x_2y_1 + x_1y_2}{2}\right)$$

 The Left-invariant vector fields spanning the first layer satisfy the Hörmander condition.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Carnot group: is a (non-commutative) nilpotent Lie group with a stratified Lie algebra.
- Any Carnot group can be identified with ℝ^N with a non commutative polynomial group operation.
- **Example:** 1-dimensional Heisenberg group \mathbb{R}^3 with the group law

$$(x_1, x_2, x_3) \circ (y_1, y_2, y_3) = \left(x_1 + y_1, x_2 + y_2, x_3 + y_3 + \frac{-x_2y_1 + x_1y_2}{2}\right)$$

 The Left-invariant vector fields spanning the first layer satisfy the Hörmander condition.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Carnot group: is a (non-commutative) nilpotent Lie group with a stratified Lie algebra.
- Any Carnot group can be identified with \mathbb{R}^N with a non commutative polynomial group operation.
- Example: 1-dimensional Heisenberg group \mathbb{R}^3 with the group law

$$(x_1, x_2, x_3) \circ (y_1, y_2, y_3) = \left(x_1 + y_1, x_2 + y_2, x_3 + y_3 + \frac{-x_2y_1 + x_1y_2}{2}\right)$$

• The Left-invariant vector fields spanning the first layer satisfy the Hörmander condition.

イロト イポト イラト イラト

- Carnot group: is a (non-commutative) nilpotent Lie group with a stratified Lie algebra.
- Any Carnot group can be identified with ℝ^N with a non commutative polynomial group operation.
- **Example:** 1-dimensional Heisenberg group \mathbb{R}^3 with the group law

$$(x_1, x_2, x_3) \circ (y_1, y_2, y_3) = \left(x_1 + y_1, x_2 + y_2, x_3 + y_3 + \frac{-x_2y_1 + x_1y_2}{2}\right)$$

イロト イポト イラト イラト

• The Left-invariant vector fields spanning the first layer satisfy the Hörmander condition.

- (isotropic) scaling in \mathbb{R}^N vs (anisotropic) dilations.
- In general: $\lambda(x \circ y) \neq (\lambda x \circ \lambda y)$
- E.g. variational formula for the rescaled Hamiltonian? If ξ horizontal, in general $\frac{\xi}{\xi}$ is not horizontal.
- Dilations δ_{λ} induced by the stratification of the algebra: E.g. in Heisenberg: $\delta_{\lambda}(x_1, x_2, x_3) = (\lambda x_1, \lambda x_2, \lambda^2 x_3)$.
- $\delta_{\lambda}(x \circ y) = \delta_{\lambda}(x) \circ \delta_{\lambda}(y).$
- ξ horizontal $\Rightarrow \delta_1(\xi)$ horizontal and $\alpha^{\delta_{\frac{1}{\xi}}(\xi)} = \frac{1}{\varepsilon} \alpha^{\xi}$.

- (isotropic) scaling in \mathbb{R}^N vs (anisotropic) dilations.
- In general: $\lambda(x \circ y) \neq (\lambda x \circ \lambda y)$
- E.g. variational formula for the rescaled Hamiltonian? If ξ horizontal, in general $\frac{\xi}{\xi}$ is not horizontal.
- Dilations δ_{λ} induced by the stratification of the algebra: E.g. in Heisenberg: $\delta_{\lambda}(x_1, x_2, x_3) = (\lambda x_1, \lambda x_2, \lambda^2 x_3)$.
- $\delta_{\lambda}(x \circ y) = \delta_{\lambda}(x) \circ \delta_{\lambda}(y).$
- ξ horizontal $\Rightarrow \delta_1(\xi)$ horizontal and $\alpha^{\delta_1(\xi)} = \frac{1}{\varepsilon} \alpha^{\xi}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- (isotropic) scaling in \mathbb{R}^N vs (anisotropic) dilations.
- In general: $\lambda(x \circ y) \neq (\lambda x \circ \lambda y)$
- E.g. variational formula for the rescaled Hamiltonian? If ξ horizontal, in general $\frac{\xi}{\xi}$ is not horizontal.
- Dilations δ_{λ} induced by the stratification of the algebra: E.g. in Heisenberg: $\delta_{\lambda}(x_1, x_2, x_3) = (\lambda x_1, \lambda x_2, \lambda^2 x_3)$.
- $\delta_{\lambda}(\boldsymbol{x} \circ \boldsymbol{y}) = \delta_{\lambda}(\boldsymbol{x}) \circ \delta_{\lambda}(\boldsymbol{y}).$
- ξ horizontal $\Rightarrow \delta_1(\xi)$ horizontal and $\alpha^{\delta_1(\xi)} = \frac{1}{\epsilon} \alpha^{\xi}$.

(日)

- (isotropic) scaling in \mathbb{R}^N vs (anisotropic) dilations.
- In general: $\lambda(x \circ y) \neq (\lambda x \circ \lambda y)$
- E.g. variational formula for the rescaled Hamiltonian? If ξ horizontal, in general $\frac{\xi}{\xi}$ is not horizontal.
- Dilations δ_{λ} induced by the stratification of the algebra: E.g. in Heisenberg: $\delta_{\lambda}(x_1, x_2, x_3) = (\lambda x_1, \lambda x_2, \lambda^2 x_3)$.
- $\delta_{\lambda}(\boldsymbol{x} \circ \boldsymbol{y}) = \delta_{\lambda}(\boldsymbol{x}) \circ \delta_{\lambda}(\boldsymbol{y}).$
- ξ horizontal $\Rightarrow \delta_{\underline{1}}(\xi)$ horizontal and $\alpha^{\delta_{\underline{1}}(\xi)} = \frac{1}{\varepsilon} \alpha^{\xi}$.

- (isotropic) scaling in \mathbb{R}^N vs (anisotropic) dilations.
- In general: $\lambda(x \circ y) \neq (\lambda x \circ \lambda y)$
- E.g. variational formula for the rescaled Hamiltonian? If ξ horizontal, in general $\frac{\xi}{\xi}$ is not horizontal.
- Dilations δ_{λ} induced by the stratification of the algebra: E.g. in Heisenberg: $\delta_{\lambda}(x_1, x_2, x_3) = (\lambda x_1, \lambda x_2, \lambda^2 x_3)$.
- $\delta_{\lambda}(\boldsymbol{x} \circ \boldsymbol{y}) = \delta_{\lambda}(\boldsymbol{x}) \circ \delta_{\lambda}(\boldsymbol{y}).$
- ξ horizontal $\Rightarrow \delta_{\pm}(\xi)$ horizontal and $\alpha^{\delta_{\pm}(\xi)} = \frac{1}{\varepsilon} \alpha^{\xi}$.

- (isotropic) scaling in \mathbb{R}^N vs (anisotropic) dilations.
- In general: $\lambda(x \circ y) \neq (\lambda x \circ \lambda y)$
- E.g. variational formula for the rescaled Hamiltonian? If ξ horizontal, in general $\frac{\xi}{\xi}$ is not horizontal.
- Dilations δ_{λ} induced by the stratification of the algebra: E.g. in Heisenberg: $\delta_{\lambda}(x_1, x_2, x_3) = (\lambda x_1, \lambda x_2, \lambda^2 x_3)$.
- $\delta_{\lambda}(\mathbf{x} \circ \mathbf{y}) = \delta_{\lambda}(\mathbf{x}) \circ \delta_{\lambda}(\mathbf{y}).$

• ξ horizontal $\Rightarrow \delta_{\underline{1}}(\xi)$ horizontal and $\alpha^{\delta_{\underline{1}}(\xi)} = \frac{1}{\varepsilon} \alpha^{\xi}$.
Homogenization in Carnot groups vs homogenization in \mathbb{R}^N (Euclidean)

- (isotropic) scaling in \mathbb{R}^N vs (anisotropic) dilations.
- In general: $\lambda(\mathbf{x} \circ \mathbf{y}) \neq (\lambda \mathbf{x} \circ \lambda \mathbf{y})$
- E.g. variational formula for the rescaled Hamiltonian? If ξ horizontal, in general $\frac{\xi}{\xi}$ is not horizontal.
- Dilations δ_{λ} induced by the stratification of the algebra: E.g. in Heisenberg: $\delta_{\lambda}(x_1, x_2, x_3) = (\lambda x_1, \lambda x_2, \lambda^2 x_3)$.
- $\delta_{\lambda}(\mathbf{x} \circ \mathbf{y}) = \delta_{\lambda}(\mathbf{x}) \circ \delta_{\lambda}(\mathbf{y}).$
- ξ horizontal $\Rightarrow \delta_{\frac{1}{\varepsilon}}(\xi)$ horizontal and $\alpha^{\delta_{\frac{1}{\varepsilon}}(\xi)} = \frac{1}{\varepsilon} \alpha^{\xi}$.

ε -problem in Carnot groups.

Given the Hamilton-Jacobi problem:

 $\begin{cases} u_t^{\varepsilon} + H\left(\delta_{\frac{1}{\varepsilon}}(x), \sigma(x) D u^{\varepsilon}, \omega\right) = 0, \ x \in \mathbb{R}^N, \omega \in \Omega, t > 0\\ u^{\varepsilon}(0, x) = g(x), \end{cases}$

Theorem (Dirr-D.-Mannucci-Marchi 2017)

Under suitable assumptions, the (unique) viscosity solutions $u^{\varepsilon}(t, x, \omega)$ of problems (4) converge locally uniformly in x and t and a.s. in ω to a deterministic limit function u(t, x), that can be characterised as the (unique) viscosity solution of a deterministic effective Hamilton-Jacobi problem of the form:

$$\begin{cases} u_t + \overline{H}(\sigma(x)Du) = 0, \ x \in \mathbb{R}^N, t > 0 \\ u(0, x) = g(x). \end{cases}$$

ε -problem in Carnot groups.

Given the Hamilton-Jacobi problem:

 $\begin{cases} u_t^{\varepsilon} + H\left(\delta_{\frac{1}{\varepsilon}}(x), \sigma(x) D u^{\varepsilon}, \omega\right) = 0, \ x \in \mathbb{R}^N, \omega \in \Omega, t > 0\\ u^{\varepsilon}(0, x) = g(x), \end{cases}$ (4)

Theorem (Dirr-D.-Mannucci-Marchi 2017)

Under suitable assumptions, the (unique) viscosity solutions $u^{\varepsilon}(t, x, \omega)$ of problems (4) converge locally uniformly in x and t and a.s. in ω to a deterministic limit function u(t, x), that can be characterised as the (unique) viscosity solution of a deterministic effective Hamilton-Jacobi problem of the form:

$$\begin{cases} u_t + \overline{H}(\sigma(x)Du) = 0, \ x \in \mathbb{R}^N, t > 0 \\ u(0, x) = g(x). \end{cases}$$

(5)

Assumptions:

Set $q = \sigma(x) p \in \mathbb{R}^m$, for all $p \in \mathbb{R}^N$

- $\boldsymbol{q} \mapsto \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{q}, \omega)$ is convex in $\boldsymbol{q}, \forall (\boldsymbol{x}, \omega) \in \mathbb{R}^N \times \Omega$
- there exist $C_1 > 0$, $\gamma > 1$ such that

 $C_1^{-1}(|q|^{\gamma}-1) \leq H(x,q,\omega) \leq C_1(|q|^{\gamma}+1), \ \forall \ (x,q,\omega) \in \mathbb{R}^N \times \mathbb{R}^m \times \Omega$

- there exists $m : [0, +\infty) \to [0, +\infty)$ continuous, monotone increasing, with $m(0^+) = 0$ such that $\forall x, y, p \in \mathbb{R}^n, \omega \in \Omega$ $|H(x, q, \omega) - H(y, q, \omega)| \le m (||y^{-1} \circ x||_h (1 + |q|^{\gamma}))$, with $||x||_h$ homogeneous norm (note locally $||x||_h \le |x|^{1/k}$ for some natural number $k \ge 2$)
- for all $q \in \mathbb{R}^m$ the function $(x, \omega) \mapsto H(x, q, \omega)$ is stationary, ergodic random field on $\mathbb{R}^N \times \Omega$ w.r.t. the unitary translation operator.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assumptions:

Set $q = \sigma(x)p \in \mathbb{R}^m$, for all $p \in \mathbb{R}^N$

- $q \mapsto H(x, q, \omega)$ is convex in $q, \forall (x, \omega) \in \mathbb{R}^N \times \Omega$
- there exist $C_1 > 0$, $\gamma > 1$ such that

 $C_1^{-1}(|q|^{\gamma}-1) \leq H(x,q,\omega) \leq C_1(|q|^{\gamma}+1), \ \forall \ (x,q,\omega) \in \mathbb{R}^N \times \mathbb{R}^m \times \Omega$

- there exists $m : [0, +\infty) \to [0, +\infty)$ continuous, monotone increasing, with $m(0^+) = 0$ such that $\forall x, y, p \in \mathbb{R}^n, \omega \in \Omega$ $|H(x, q, \omega) - H(y, q, \omega)| \le m (||y^{-1} \circ x||_h (1 + |q|^{\gamma}))$, with $||x||_h$ homogeneous norm (note locally $||x||_h \le |x|^{1/k}$ for some natural number $k \ge 2$)
- for all $q \in \mathbb{R}^m$ the function $(x, \omega) \mapsto H(x, q, \omega)$ is stationary, ergodic random field on $\mathbb{R}^N \times \Omega$ w.r.t. the unitary translation operator.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assumptions:

Set $q = \sigma(x) p \in \mathbb{R}^m$, for all $p \in \mathbb{R}^N$

- $\boldsymbol{q} \mapsto \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{q}, \omega)$ is convex in $\boldsymbol{q}, \forall (\boldsymbol{x}, \omega) \in \mathbb{R}^{N} \times \Omega$
- there exist $C_1 > 0$, $\gamma > 1$ such that

 $C_1^{-1}(|\boldsymbol{q}|^{\gamma}-1) \leq H(\boldsymbol{x},\boldsymbol{q},\omega) \leq C_1(|\boldsymbol{q}|^{\gamma}+1), \; \forall \; (\boldsymbol{x},\boldsymbol{q},\omega) \in \mathbb{R}^N \times \mathbb{R}^m \times \Omega$

- there exists $m : [0, +\infty) \to [0, +\infty)$ continuous, monotone increasing, with $m(0^+) = 0$ such that $\forall x, y, p \in \mathbb{R}^n, \omega \in \Omega$ $|H(x, q, \omega) - H(y, q, \omega)| \le m (||y^{-1} \circ x||_h (1 + |q|^{\gamma}))$, with $||x||_h$ homogeneous norm (note locally $||x||_h \le |x|^{1/k}$ for some natural number $k \ge 2$)
- for all *q* ∈ ℝ^m the function (*x*, ω) → *H*(*x*, *q*, ω) is stationary, ergodic random field on ℝ^N × Ω w.r.t. the unitary translation operator.

Model

$H(x,p,\omega) = a(x,\omega)|\sigma(x)p|^{\beta} + V(x,\omega)$

with $\beta > 1$, and $V(x, \omega)$ bounded and uniformly continuous while $a(x, \omega)$ bounded, uniformly continuous, and bounded away from zero. The ε -problems are

$$\begin{cases} u_t^{\varepsilon} + a\left(\delta_{\frac{1}{\varepsilon}}(x), \omega\right) |\sigma(x) D u^{\varepsilon}|^{\beta} + V\left(\delta_{\frac{1}{\varepsilon}}(x), \omega\right) = 0, \\ u^{\varepsilon}(0, x) = g(x), \end{cases}$$
(6)

< 日 > < 同 > < 回 > < 回 > < □ > <

for all $x \in \mathbb{R}^N$, t > 0, $\omega \in \Omega$.

Note the space-variable contributing to the horizontal gradient $\sigma(x)Du$ does NOT rescale.

$H(x, p, \omega) = a(x, \omega) |\sigma(x)p|^{\beta} + V(x, \omega)$

with $\beta > 1$, and $V(x, \omega)$ bounded and uniformly continuous while $a(x, \omega)$ bounded, uniformly continuous, and bounded away from zero. The ε -problems are

$$\begin{cases} u_t^{\varepsilon} + a\left(\delta_{\frac{1}{\varepsilon}}(x), \omega\right) |\sigma(x) D u^{\varepsilon}|^{\beta} + V\left(\delta_{\frac{1}{\varepsilon}}(x), \omega\right) = 0, \\ u^{\varepsilon}(0, x) = g(x), \end{cases}$$
(6)

for all $x \in \mathbb{R}^N$, $t > 0, \omega \in \Omega$.

Note the space-variable contributing to the horizontal gradient $\sigma(x)Du$ does NOT rescale.

Set $L = H^*$, then

$$u^{\varepsilon}(t, x, \omega) = \inf_{y \in \mathbb{R}^{N}} \left[g(y) + L^{\varepsilon}(x, y, t, \omega) \right]$$

where

$$L^{\varepsilon}(\boldsymbol{x},\boldsymbol{y},t,\omega) = \inf_{\xi} \int_{0}^{t} L\left(\delta_{\frac{1}{\varepsilon}}(\xi(\boldsymbol{s})), \alpha^{\xi}(\boldsymbol{s}), \omega\right) d\boldsymbol{s}$$

• $\xi \in W^{1,\infty}((0,t))$ horizontal curve s.t. $\xi(0) = y, \xi(t) = x,$ $x, y \in \mathbb{R}^n$, i.e. $\dot{\xi}(t) = \sum_{i=1}^m \alpha_i(t) X_i(\xi(t)),$ a.e. t > 0.

 α^ξ(t) is a m-valued measurable function which denotes the horizontal velocity of ξ.

Set $L = H^*$, then

$$u^{\varepsilon}(t, x, \omega) = \inf_{y \in \mathbb{R}^{N}} \left[g(y) + L^{\varepsilon}(x, y, t, \omega) \right]$$

where

$$L^{\varepsilon}(x, y, t, \omega) = \inf_{\xi} \int_{0}^{t} L\left(\delta_{\frac{1}{\varepsilon}}(\xi(s)), \alpha^{\xi}(s), \omega\right) ds$$

• $\xi \in W^{1,\infty}((0,t))$ horizontal curve s.t. $\xi(0) = y, \xi(t) = x, x, y \in \mathbb{R}^n$, i.e. $\dot{\xi}(t) = \sum_{i=1}^m \alpha_i(t)X_i(\xi(t)), \text{ a.e. } t > 0.$

α^ξ(t) is a *m*-valued measurable function which denotes the horizontal velocity of *ξ*.

(日)

Set $L = H^*$, then

$$u^{\varepsilon}(t, x, \omega) = \inf_{y \in \mathbb{R}^{N}} \left[g(y) + L^{\varepsilon}(x, y, t, \omega) \right]$$

where

$$L^{\varepsilon}(\mathbf{x},\mathbf{y},t,\omega) = \inf_{\xi} \int_{0}^{t} L\left(\delta_{\frac{1}{\varepsilon}}(\xi(\mathbf{s})), \alpha^{\xi}(\mathbf{s}), \omega\right) d\mathbf{s}$$

- $\xi \in W^{1,\infty}((0,t))$ horizontal curve s.t. $\xi(0) = y, \xi(t) = x, x, y \in \mathbb{R}^n$, i.e. $\dot{\xi}(t) = \sum_{i=1}^m \alpha_i(t)X_i(\xi(t)), \text{ a.e. } t > 0.$
- *α^ξ(t)* is a *m*-valued measurable function which denotes the horizontal velocity of *ξ*.

Set $L = H^*$, then

$$u^{\varepsilon}(t, x, \omega) = \inf_{y \in \mathbb{R}^{N}} \left[g(y) + L^{\varepsilon}(x, y, t, \omega) \right]$$

where

$$L^{\varepsilon}(\mathbf{x},\mathbf{y},t,\omega) = \inf_{\xi} \int_{0}^{t} L\left(\delta_{\frac{1}{\varepsilon}}(\xi(\mathbf{s})), \alpha^{\xi}(\mathbf{s}), \omega\right) d\mathbf{s}$$

- $\xi \in W^{1,\infty}((0,t))$ horizontal curve s.t. $\xi(0) = y, \xi(t) = x, x, y \in \mathbb{R}^n$, i.e. $\dot{\xi}(t) = \sum_{i=1}^m \alpha_i(t)X_i(\xi(t)), \text{ a.e. } t > 0.$
- *α^ξ(t)* is a *m*-valued measurable function which denotes the horizontal velocity of *ξ*.

We apply the Sub-additive Ergodic Theorem to the following minimising problem:

$$\inf_{\xi} \int_{a}^{b} L(\xi(s), \alpha^{\xi}(s), \omega) ds$$

where $\xi - I_q \in W_0^{1,+\infty}((a,b))$ and $I_q(s)$ is the horizontal curve (starting from the origin) with constant horizontal velocity $\alpha(s) = q$. We call the horizontal curves with constant horizontal velocity \mathcal{X} -lines. E.g. In Heisenberg:

$$\begin{cases} \xi_1(t) = x_1^0 + q_1 t \\ \xi_2(t) = x_2^0 + q_2 t \\ \xi_3(t) = x_3^0 + \frac{-q_1 x_2^0 + q_2 x_1^0}{2} t \end{cases}$$

Federica Dragoni (Cardiff University) Stochastic Homogenisation in Carnot groups Durham, 23/08

We apply the Sub-additive Ergodic Theorem to the following minimising problem:

$$\inf_{\xi} \int_{a}^{b} L(\xi(s), \alpha^{\xi}(s), \omega) ds$$

where $\xi - I_q \in W_0^{1,+\infty}((a,b))$ and $I_q(s)$ is the horizontal curve (starting from the origin) with constant horizontal velocity $\alpha(s) = q$. We call the horizontal curves with constant horizontal velocity \mathcal{X} -lines. E.g. In Heisenberg:

$$\begin{cases} \xi_1(t) = x_1^0 + q_1 t \\ \xi_2(t) = x_2^0 + q_2 t \\ \xi_3(t) = x_3^0 + \frac{-q_1 x_2^0 + q_2 x_1^0}{2} t \end{cases}$$

for every $q_1, q_2 \in \mathbb{R}$. Federica Dragoni (Cardiff University)

Stochastic Homogenisation in Carnot groups

イロト 不得 トイヨト イヨト

We apply the Sub-additive Ergodic Theorem to the following minimising problem:

$$\inf_{\xi} \int_{a}^{b} L(\xi(s), \alpha^{\xi}(s), \omega) ds$$

where $\xi - I_q \in W_0^{1,+\infty}((a,b))$ and $I_q(s)$ is the horizontal curve (starting from the origin) with constant horizontal velocity $\alpha(s) = q$. We call the horizontal curves with constant horizontal velocity \mathcal{X} -lines. E.g. In Heisenberg:

$$\begin{cases} \xi_1(t) = x_1^0 + q_1 t \\ \xi_2(t) = x_2^0 + q_2 t \\ \xi_3(t) = x_3^0 + \frac{-q_1 x_2^0 + q_2 x_1^0}{2} t \end{cases}$$

for every $q_1, q_2 \in \mathbb{R}$.

Federica Dragoni (Cardiff University)

Stochastic Homogenisation in Carnot groups

We apply the Sub-additive Ergodic Theorem to the following minimising problem:

$$\inf_{\xi} \int_{a}^{b} L(\xi(s), \alpha^{\xi}(s), \omega) ds$$

where $\xi - I_q \in W_0^{1,+\infty}((a,b))$ and $I_q(s)$ is the horizontal curve (starting from the origin) with constant horizontal velocity $\alpha(s) = q$. We call the horizontal curves with constant horizontal velocity \mathcal{X} -lines. E.a. In Heisenberg:

$$\begin{cases} \xi_1(t) = x_1^0 + q_1 t \\ \xi_2(t) = x_2^0 + q_2 t \\ \xi_3(t) = x_3^0 + \frac{-q_1 x_2^0 + q_2 x_1^0}{2} t \end{cases}$$

for every $q_1, q_2 \in \mathbb{R}$.

Federica Dragoni (Cardiff University)

Stochastic Homogenisation in Carnot groups

We apply the Sub-additive Ergodic Theorem to the following minimising problem:

$$\inf_{\xi} \int_{a}^{b} L(\xi(s), \alpha^{\xi}(s), \omega) ds$$

where $\xi - I_q \in W_0^{1,+\infty}((a, b))$ and $I_q(s)$ is the horizontal curve (starting from the origin) with constant horizontal velocity $\alpha(s) = q$. We call the horizontal curves with constant horizontal velocity \mathcal{X} -lines. E.g. In Heisenberg:

$$\begin{cases} \xi_1(t) = x_1^0 + q_1 t \\ \xi_2(t) = x_2^0 + q_2 t \\ \xi_3(t) = x_3^0 + \frac{-q_1 x_2^0 + q_2 x_1^0}{2} t \end{cases}$$

for every $q_1, q_2 \in \mathbb{R}$.

Federica Dragoni (Cardiff University)

 $L^{\varepsilon}(0, y, 1, \omega)$ converges as $\varepsilon \to 0^+$ locally uniformly in *y* and a.s. in ω to a deterministic function depending only on *q* where *q* is the constant horizontal velocity of the \mathcal{X} -line joining the origin to *y* at time 1. More precisely q = y in the standard (Euclidean coercive) case, while $q = \pi_m(y)$ in our Carnot groups case.

E.g. In Heisenberg $q = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$

Main Problem: The Hörmander condition does not imply that for every $y \in \mathbb{R}^N$ there exists a \mathcal{X} -line joining the origin to y!

Constrain: We need to assume that y belongs to the \mathcal{X} -plane from the origin, i.e. the set of all the points which can be reached from the origin moving on a \mathcal{X} -line. We indicate this *m*-dimensional space as V_0 . Definition of the effective Lagrangian: $\overline{\mathcal{L}} : \mathbb{R}^m \to \mathbb{R}$ defined as

 $\overline{L}(q) := \lim_{\varepsilon \to 0^+} L^{\varepsilon}(0, (q, y_q), 1, \omega),$

 $L^{\varepsilon}(0, y, 1, \omega)$ converges as $\varepsilon \to 0^+$ locally uniformly in *y* and a.s. in ω to a deterministic function depending only on *q* where *q* is the constant horizontal velocity of the \mathcal{X} -line joining the origin to *y* at time 1.

More precisely q = y in the standard (Euclidean coercive) case, while $q = \pi_m(y)$ in our Carnot groups case.

E.g. In Heisenberg $q = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$

Main Problem: The Hörmander condition does not imply that for every $y \in \mathbb{R}^N$ there exists a \mathcal{X} -line joining the origin to y!

Constrain: We need to assume that y belongs to the \mathcal{X} -plane from the origin, i.e. the set of all the points which can be reached from the origin moving on a \mathcal{X} -line. We indicate this *m*-dimensional space as V_0 . Definition of the effective Lagrangian: $\overline{L} : \mathbb{R}^m \to \mathbb{R}$ defined as

 $\overline{L}(q) := \lim_{\varepsilon \to 0^+} L^{\varepsilon}(0, (q, y_q), 1, \omega),$

 $L^{\varepsilon}(0, y, 1, \omega)$ converges as $\varepsilon \to 0^+$ locally uniformly in *y* and a.s. in ω to a deterministic function depending only on *q* where *q* is the constant horizontal velocity of the \mathcal{X} -line joining the origin to *y* at time 1. More precisely q = y in the standard (Euclidean coercive) case, while $q = \pi_m(y)$ in our Carnot groups case.

E.g. In Heisenberg $q = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$

Main Problem: The Hörmander condition does not imply that for every $y \in \mathbb{R}^N$ there exists a \mathcal{X} -line joining the origin to y!

Constrain: We need to assume that *y* belongs to the \mathcal{X} -plane from the origin, i.e. the set of all the points which can be reached from the origin moving on a \mathcal{X} -line. We indicate this *m*-dimensional space as V_0 . Definition of the effective Lagrangian: $\overline{L} : \mathbb{R}^m \to \mathbb{R}$ defined as

$\overline{L}(q) := \lim_{\varepsilon \to 0^+} L^{\varepsilon}(0, (q, y_q), 1, \omega),$

 $L^{\varepsilon}(0, y, 1, \omega)$ converges as $\varepsilon \to 0^+$ locally uniformly in *y* and a.s. in ω to a deterministic function depending only on *q* where *q* is the constant horizontal velocity of the \mathcal{X} -line joining the origin to *y* at time 1. More precisely q = y in the standard (Euclidean coercive) case, while $q = \pi_m(y)$ in our Carnot groups case.

E.g. In Heisenberg $q = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$.

Main Problem: The Hörmander condition does not imply that for every $y \in \mathbb{R}^N$ there exists a \mathcal{X} -line joining the origin to y!

Constrain: We need to assume that *y* belongs to the \mathcal{X} -plane from the origin, i.e. the set of all the points which can be reached from the origin moving on a \mathcal{X} -line. We indicate this *m*-dimensional space as V_0 . Definition of the effective Lagrangian: $\overline{L} : \mathbb{R}^m \to \mathbb{R}$ defined as

$$\overline{L}(q) := \lim_{\varepsilon \to 0^+} L^{\varepsilon}(0, (q, y_q), 1, \omega),$$

 $L^{\varepsilon}(0, y, 1, \omega)$ converges as $\varepsilon \to 0^+$ locally uniformly in *y* and a.s. in ω to a deterministic function depending only on *q* where *q* is the constant horizontal velocity of the \mathcal{X} -line joining the origin to *y* at time 1. More precisely q = y in the standard (Euclidean coercive) case, while $q = \pi_m(y)$ in our Carnot groups case.

E.g. In Heisenberg $q = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$.

Main Problem: The Hörmander condition does not imply that for every $y \in \mathbb{R}^N$ there exists a \mathcal{X} -line joining the origin to y!

Constrain: We need to assume that *y* belongs to the \mathcal{X} -plane from the origin, i.e. the set of all the points which can be reached from the origin moving on a \mathcal{X} -line. We indicate this *m*-dimensional space as V_0 . Definition of the effective Lagrangian: $\overline{L} : \mathbb{R}^m \to \mathbb{R}$ defined as

$$\overline{L}(q) := \lim_{\varepsilon \to 0^+} L^{\varepsilon}(0, (q, y_q), 1, \omega),$$

 $L^{\varepsilon}(0, y, 1, \omega)$ converges as $\varepsilon \to 0^+$ locally uniformly in *y* and a.s. in ω to a deterministic function depending only on *q* where *q* is the constant horizontal velocity of the \mathcal{X} -line joining the origin to *y* at time 1. More precisely q = y in the standard (Euclidean coercive) case, while $q = \pi_m(y)$ in our Carnot groups case.

E.g. In Heisenberg $q = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$.

Main Problem: The Hörmander condition does not imply that for every $y \in \mathbb{R}^N$ there exists a \mathcal{X} -line joining the origin to y!

Constrain: We need to assume that *y* belongs to the \mathcal{X} -plane from the origin, i.e. the set of all the points which can be reached from the origin moving on a \mathcal{X} -line. We indicate this *m*-dimensional space as V_0 .

$$\overline{L}(q) := \lim_{\varepsilon \to 0^+} L^{\varepsilon}(0, (q, y_q), 1, \omega),$$

 $L^{\varepsilon}(0, y, 1, \omega)$ converges as $\varepsilon \to 0^+$ locally uniformly in *y* and a.s. in ω to a deterministic function depending only on *q* where *q* is the constant horizontal velocity of the \mathcal{X} -line joining the origin to *y* at time 1. More precisely q = y in the standard (Euclidean coercive) case, while $q = \pi_m(y)$ in our Carnot groups case.

E.g. In Heisenberg $q = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$.

Main Problem: The Hörmander condition does not imply that for every $y \in \mathbb{R}^N$ there exists a \mathcal{X} -line joining the origin to y!

Constrain: We need to assume that *y* belongs to the \mathcal{X} -plane from the origin, i.e. the set of all the points which can be reached from the origin moving on a \mathcal{X} -line. We indicate this *m*-dimensional space as V_0 . Definition of the effective Lagrangian: $\overline{L} : \mathbb{R}^m \to \mathbb{R}$ defined as

$$\overline{L}(q) := \lim_{\varepsilon \to 0^+} L^{\varepsilon}(0, (q, y_q), 1, \omega),$$

 $L^{\varepsilon}(0, y, 1, \omega)$ converges as $\varepsilon \to 0^+$ locally uniformly in *y* and a.s. in ω to a deterministic function depending only on *q* where *q* is the constant horizontal velocity of the \mathcal{X} -line joining the origin to *y* at time 1. More precisely q = y in the standard (Euclidean coercive) case, while $q = \pi_m(y)$ in our Carnot groups case.

E.g. In Heisenberg $q = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$.

Main Problem: The Hörmander condition does not imply that for every $y \in \mathbb{R}^N$ there exists a \mathcal{X} -line joining the origin to y!

Constrain: We need to assume that *y* belongs to the \mathcal{X} -plane from the origin, i.e. the set of all the points which can be reached from the origin moving on a \mathcal{X} -line. We indicate this *m*-dimensional space as V_0 . Definition of the effective Lagrangian: $\overline{L} : \mathbb{R}^m \to \mathbb{R}$ defined as

$$\overline{L}(q) := \lim_{\varepsilon \to 0^+} L^{\varepsilon}(0, (q, y_q), 1, \omega),$$

Independence on ω

We have ergodicity on \mathbb{R}^N while we have translation invariance only for a one-parameter subgroup.

We can show that this is enough to deduce a.s. independence on ω .

Federica Dragoni (Cardiff University)

Stochastic Homogenisation in Carnot groups

odminible for boundary condition Oand Xa sderik adminible for boundary condition X = 2x (0) and gesderic energy of $\hat{s}_{\epsilon} \approx energy of \hat{s}^{\epsilon}$

Homogenization for the constrained variational problem.

Definition

Call V_x the set of all the points reachable from x with a constant horizontal velocity curve.

By using the Subadditive Ergodic Theorem, the Ergodic Theorem, uniform estimates on L^{ε} etc....

Theorem (Dirr-D.-Mannucci-Marchi 2017)

If $y \in V_x$ then, as $\varepsilon \to 0^+$, $L^{\varepsilon}(x, y, t, \omega) \to t\overline{L}\left(\frac{\pi_m(x) - \pi_m(y)}{t}\right)$, locally uniformly in x, y, t and a.s. ω (where $\pi_m(x)$ is the projection of x on the first m components).

3

イロト 不得 トイヨト イヨト

Homogenization for the constrained variational problem.

Definition

Call V_x the set of all the points reachable from x with a constant horizontal velocity curve.

By using the Subadditive Ergodic Theorem, the Ergodic Theorem, uniform estimates on L^{ε} etc....

Theorem (Dirr-D.-Mannucci-Marchi 2017)

If $y \in V_x$ then, as $\varepsilon \to 0^+$, $L^{\varepsilon}(x, y, t, \omega) \to t\overline{L}\left(\frac{\pi_m(x) - \pi_m(y)}{t}\right)$, locally uniformly in x, y, t and a.s. ω (where $\pi_m(x)$ is the projection of x on the first m components).

The constrained variational problem defines the effective Lagrangian. By proving that the effective Lagrangian \overline{L} is convex (non trivial), we can define the effective Hamiltonian $\overline{H} := \overline{L}^*$ and so deduce the effective problem.

By uniform convergence we can deduce the following result:

$$v^{\varepsilon}(x,t,\omega) := \inf_{y \in V_x} \left[g(y) + L^{\varepsilon}(x,y,t,\omega) \right] \to \inf_{y \in V_x} \left[g(y) + t\overline{L}\left(\frac{\pi_m(x) - \pi_m(y)}{t}\right) \right]$$

Note: v^{ε} do not solve the ε -problems and in general the right-hand side does not solve the limit problem either!

The constrained variational problem defines the effective Lagrangian.

By proving that the effective Lagrangian \overline{L} is convex (non trivial), we can define the effective Hamiltonian $\overline{H} := \overline{L}^*$ and so deduce the effective problem.

By uniform convergence we can deduce the following result:

$$v^{\varepsilon}(x,t,\omega) := \inf_{y \in V_x} \left[g(y) + L^{\varepsilon}(x,y,t,\omega) \right] \to \inf_{y \in V_x} \left[g(y) + t\overline{L} \left(\frac{\pi_m(x) - \pi_m(y)}{t} \right) \right]$$

Note: v^{ε} do not solve the ε -problems and in general the right-hand side does not solve the limit problem either!

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The constrained variational problem defines the effective Lagrangian. By proving that the effective Lagrangian \overline{L} is convex (non trivial), we can define the effective Hamiltonian $\overline{H} := \overline{L}^*$ and so deduce the effective problem.

By uniform convergence we can deduce the following result:

$$v^{\varepsilon}(x,t,\omega) := \inf_{y \in V_x} \left[g(y) + L^{\varepsilon}(x,y,t,\omega) \right] \to \inf_{y \in V_x} \left[g(y) + t\overline{L} \left(\frac{\pi_m(x) - \pi_m(y)}{t} \right) \right]$$

Note: v^{ε} do not solve the ε -problems and in general the right-hand side does not solve the limit problem either!

The constrained variational problem defines the effective Lagrangian. By proving that the effective Lagrangian \overline{L} is convex (non trivial), we can define the effective Hamiltonian $\overline{H} := \overline{L}^*$ and so deduce the effective problem.

By uniform convergence we can deduce the following result:

$$v^{\varepsilon}(x,t,\omega) := \inf_{y \in V_x} \left[g(y) + L^{\varepsilon}(x,y,t,\omega) \right] \to \inf_{y \in V_x} \left[g(y) + t\overline{L} \left(\frac{\pi_m(x) - \pi_m(y)}{t} \right) \right]$$

Note: v^{ε} do not solve the ε -problems and in general the right-hand side does not solve the limit problem either!

The Hörmander conditions and the unconstrained variational problem.

Heuristic idea: Assume that $\alpha(s)$ is smooth, then we can approximate by piece-wise constant functions in L^1 . This means that there exists $\alpha^{\pi} : [0, t] \to \mathbb{R}^m$ piecewise constant

functions such that as $|\pi| \rightarrow 0$

$$\int_0^t lpha^\pi(olds) dolds o \int_0^t lpha(olds) \quad ext{and} \quad \left\| \xi^\pi - \xi
ight\|_\infty o 0.$$

where ξ^{π} is the piecewise \mathcal{X} -line horizontal curve with horizontal velocity α^{π} and by π we indicate a partition of the interval [0, *t*].

Theorem (Dirr-D.-Mannucci-Marchi 2017) $L^{\varepsilon}(x, y, t, \omega) \rightarrow \inf_{\alpha} \int_{0}^{t} \overline{L}(\alpha(s)) \, ds, \quad as \ \varepsilon \rightarrow 0^{+},$

locally uniformly in x, y, t and a.s. ω and where the infimum on the right-hand side is over the admissible horizontal velocity $\alpha(s) = \alpha^{\xi}(s)$ with $\xi \in W^{1,\infty}$ joining y to x in a time t.

The Hörmander conditions and the unconstrained variational problem.

Heuristic idea: Assume that $\alpha(s)$ is smooth, then we can approximate by piece-wise constant functions in L^1 .

This means that there exists $\alpha^{\pi} : [0, t] \to \mathbb{R}^m$ piecewise constant functions such that as $|\pi| \to 0$

 $\int_0^{+} lpha^{\pi}(s) ds o \int_0^{+} lpha(s) \quad ext{and} \quad \left\| \xi^{\pi} - \xi
ight\|_{\infty} o 0,$

where ξ^{π} is the piecewise \mathcal{X} -line horizontal curve with horizontal velocity α^{π} and by π we indicate a partition of the interval [0, *t*].

Theorem (Dirr-D.-Mannucci-Marchi 2017) $L^{\varepsilon}(x, y, t, \omega) \rightarrow \inf_{\alpha} \int_{0}^{t} \overline{L}(\alpha(s)) \, ds, \quad as \ \varepsilon \rightarrow 0^{+},$

locally uniformly in x, y, t and a.s. ω and where the infimum on the right-hand side is over the admissible horizontal velocity $\alpha(s) = \alpha^{\xi}(s)$ with $\xi \in W^{1,\infty}$ joining y to x in a time t.

The Hörmander conditions and the unconstrained variational problem.

Heuristic idea: Assume that $\alpha(s)$ is smooth, then we can approximate by piece-wise constant functions in L^1 . This means that there exists $\alpha^{\pi} : [0, t] \to \mathbb{R}^m$ piecewise constant functions such that as $|\pi| \to 0$

 $\int_0^t \alpha^{\pi}(\boldsymbol{s}) \boldsymbol{ds} \to \int_0^t \alpha(\boldsymbol{s}) \quad \text{and} \quad \|\xi^{\pi} - \xi\|_{\infty} \to \boldsymbol{0},$

where ξ^{π} is the piecewise \mathcal{X} -line horizontal curve with horizontal velocity α^{π} and by π we indicate a partition of the interval [0, *t*].

Theorem (Dirr-D.-Mannucci-Marchi 2017) $L^{\varepsilon}(x, y, t, \omega) \rightarrow \inf_{\alpha} \int_{0}^{t} \overline{L}(\alpha(s)) \, ds, \quad as \ \varepsilon \rightarrow 0^{+},$

locally uniformly in x, y, t and a.s. ω and where the infimum on the right-hand side is over the admissible horizontal velocity $\alpha(s) = \alpha^{\xi}(s)$ with $\xi \in W^{1,\infty}$ joining y to x in a time t.

Federica Dragoni (Cardiff University) Stochastic Homogenisation in Carnot groups
The Hörmander conditions and the unconstrained variational problem.

Heuristic idea: Assume that $\alpha(s)$ is smooth, then we can approximate by piece-wise constant functions in L^1 . This means that there exists $\alpha^{\pi} : [0, t] \to \mathbb{R}^m$ piecewise constant functions such that as $|\pi| \to 0$

 $\int_0^t \alpha^{\pi}(s) ds \to \int_0^t \alpha(s) \text{ and } \|\xi^{\pi} - \xi\|_{\infty} \to \mathbf{0},$

where ξ^{π} is the piecewise \mathcal{X} -line horizontal curve with horizontal velocity α^{π} and by π we indicate a partition of the interval [0, *t*].

Theorem (Dirr-D.-Mannucci-Marchi 2017) $L^{\varepsilon}(x, y, t, \omega) \rightarrow \inf_{\alpha} \int_{0}^{t} \overline{L}(\alpha(s)) ds, \quad as \ \varepsilon \rightarrow 0^{+},$

locally uniformly in x, y, t and a.s. ω and where the infimum on the right-hand side is over the admissible horizontal velocity $\alpha(s) = \alpha^{\xi}(s)$ with $\xi \in W^{1,\infty}$ joining y to x in a time t.

Homogenisation for Hamilton-Jacobi eqs.

 $u^{\varepsilon}(t, x, \omega) = \inf_{y \in \mathbb{R}^{N}} \left[g(y) + L^{\varepsilon}(x, y, t, \omega) \right] \rightarrow \inf_{y \in \mathbb{R}^{N}} \left[g(y) + \inf_{\alpha} \int_{0}^{\infty} \overline{L}(\alpha(s)) \, ds \right]$ The right-hand side is called Hopf-Lax function in Carnot groups. Theorem (Balogh-Calogero-Pini 2014) If $q \rightarrow \overline{L}(q)$ is convex (and other standard assumptions), then

$$u(t,x) = \inf_{y \in \mathbb{R}^N} \left[g(y) + \inf_{\alpha} \int_0^t \overline{L}(\alpha(s)) \, ds \right]$$

is the unique viscosity solution of

 $\begin{cases} u_t + \overline{H}(\sigma(x)Du) = 0\\ u(0, x) = g(x) \end{cases}$

where $\overline{H}:=\overline{L}^{*}$.

Federica Dragoni (Cardiff University) Stochastic Homogenisation in Carnot groups

Homogenisation for Hamilton-Jacobi eqs. $u^{\varepsilon}(t, x, \omega) = \inf_{y \in \mathbb{R}^{N}} \left[g(y) + L^{\varepsilon}(x, y, t, \omega) \right] \rightarrow \inf_{y \in \mathbb{R}^{N}} \left[g(y) + \inf_{\alpha} \int_{0}^{t} \overline{L}(\alpha(s)) \, ds \right]$

The right-hand side is called Hopf-Lax function in Carnot groups.

Theorem (Balogh-Calogero-Pini 2014)

If $q
ightarrow \overline{L}(q)$ is convex (and other standard assumptions), then

$$u(t,x) = \inf_{y \in \mathbb{R}^N} \left[g(y) + \inf_{\alpha} \int_0^t \overline{L}(\alpha(s)) \, ds \right]$$

is the unique viscosity solution of

 $\begin{cases} u_t + \overline{H}(\sigma(x)Du) = 0\\ u(0, x) = g(x) \end{cases}$

where $\overline{H} := \overline{L}^*$.

Federica Dragoni (Cardiff University) Stochastic Homogenisation in Carnot groups

Homogenisation for Hamilton-Jacobi eqs.

$u^{\varepsilon}(t,x,\omega) = \inf_{y \in \mathbb{R}^{N}} \left[g(y) + L^{\varepsilon}(x,y,t,\omega) \right] \to \inf_{y \in \mathbb{R}^{N}} \left[g(y) + \inf_{\alpha} \int_{0}^{t} \overline{L}(\alpha(s)) \, ds \right]$

The right-hand side is called Hopf-Lax function in Carnot groups.

Theorem (Balogh-Calogero-Pini 2014)

If $q
ightarrow \overline{L}(q)$ is convex (and other standard assumptions), then

$$u(t,x) = \inf_{y \in \mathbb{R}^N} \left[g(y) + \inf_{\alpha} \int_0^t \overline{L}(\alpha(s)) \, ds \right]$$

is the unique viscosity solution of

 $\begin{cases} u_t + \overline{H}(\sigma(x)Du) = 0\\ u(0, x) = g(x) \end{cases}$

where $\overline{H} := \overline{L}^*$.

Federica Dragoni (Cardiff University) Stochastic Homogenisation in Carnot groups

Homogenisation for Hamilton-Jacobi eqs.

$$u^{\varepsilon}(t,x,\omega) = \inf_{y \in \mathbb{R}^{N}} \left[g(y) + L^{\varepsilon}(x,y,t,\omega) \right] \to \inf_{y \in \mathbb{R}^{N}} \left[g(y) + \inf_{\alpha} \int_{0}^{\infty} \overline{L}(\alpha(s)) \, ds \right]$$

The right-hand side is called Hopf-Lax function in Carnot groups.

Theorem (Balogh-Calogero-Pini 2014)

If $q
ightarrow \overline{L}(q)$ is convex (and other standard assumptions), then

$$u(t,x) = \inf_{y \in \mathbb{R}^N} \left[g(y) + \inf_{\alpha} \int_0^t \overline{L}(\alpha(s)) \, ds \right]$$

is the unique viscosity solution of

 $\begin{cases} u_t + \overline{H}(\sigma(x)Du) = 0\\ u(0, x) = g(x) \end{cases}$

where $\overline{H} := \overline{L}^*$.

at.

$$L^{\varepsilon}(x, y, t, \omega) = \inf_{\xi} \int_{0}^{t} L\left(\delta_{\frac{1}{\varepsilon}}(\xi(s)), \alpha^{\xi}(s), \omega\right) ds \to \inf_{\alpha} \int_{0}^{t} \overline{L}(\alpha(s)) ds$$

Convergence of minimisers:

- For the Upper bound we consider the Γ-realising sequence.
- Riemann sum for r.h.s. → piecewise X-lines approximation for limit path.
- We use the assumption on the growth in q to control the error.

See next picture!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$L^{\varepsilon}(\mathbf{x},\mathbf{y},t,\omega) = \inf_{\xi} \int_{0}^{t} L\left(\delta_{\frac{1}{\varepsilon}}(\xi(\mathbf{s})), \alpha^{\xi}(\mathbf{s}), \omega\right) d\mathbf{s} \to \inf_{\alpha} \int_{0}^{t} \overline{L}\left(\alpha(\mathbf{s})\right) d\mathbf{s}$$

Convergence of minimisers:

- For the Upper bound we consider the Γ-realising sequence.
- Riemann sum for r.h.s. \rightarrow piecewise $\mathcal X\text{-lines}$ approximation for limit path.
- We use the assumption on the growth in *q* to control the error.

See next picture!

$$L^{\varepsilon}(\mathbf{x},\mathbf{y},t,\omega) = \inf_{\xi} \int_{0}^{t} L\left(\delta_{\frac{1}{\varepsilon}}(\xi(\mathbf{s})), \alpha^{\xi}(\mathbf{s}), \omega\right) d\mathbf{s} \to \inf_{\alpha} \int_{0}^{t} \overline{L}\left(\alpha(\mathbf{s})\right) d\mathbf{s}$$

Convergence of minimisers:

- For the Upper bound we consider the Γ-realising sequence.
- Riemann sum for r.h.s. \rightarrow piecewise $\mathcal X\text{-lines}$ approximation for limit path.
- We use the assumption on the growth in *q* to control the error.

See next picture!

イロト 不得 トイヨト イヨト

$$L^{\varepsilon}(\mathbf{x},\mathbf{y},t,\omega) = \inf_{\xi} \int_{0}^{t} L\left(\delta_{\frac{1}{\varepsilon}}(\xi(\mathbf{s})), \alpha^{\xi}(\mathbf{s}), \omega\right) d\mathbf{s} \to \inf_{\alpha} \int_{0}^{t} \overline{L}\left(\alpha(\mathbf{s})\right) d\mathbf{s}$$

Convergence of minimisers:

- For the Upper bound we consider the Γ-realising sequence.
- Riemann sum for r.h.s. \rightarrow piecewise $\mathcal X\text{-lines}$ approximation for limit path.
- We use the assumption on the growth in *q* to control the error. See next picture!

$$L^{\varepsilon}(\mathbf{x},\mathbf{y},t,\omega) = \inf_{\xi} \int_{0}^{t} L\left(\delta_{\frac{1}{\varepsilon}}(\xi(\mathbf{s})), \alpha^{\xi}(\mathbf{s}), \omega\right) d\mathbf{s} \to \inf_{\alpha} \int_{0}^{t} \overline{L}\left(\alpha(\mathbf{s})\right) d\mathbf{s}$$

Convergence of minimisers:

- For the Upper bound we consider the Γ-realising sequence.
- Riemann sum for r.h.s. \rightarrow piecewise $\mathcal X\text{-lines}$ approximation for limit path.
- We use the assumption on the growth in *q* to control the error.

See next picture!

$$L^{\varepsilon}(\mathbf{x},\mathbf{y},t,\omega) = \inf_{\xi} \int_{0}^{t} L\left(\delta_{\frac{1}{\varepsilon}}(\xi(\mathbf{s})), \alpha^{\xi}(\mathbf{s}), \omega\right) d\mathbf{s} \to \inf_{\alpha} \int_{0}^{t} \overline{L}\left(\alpha(\mathbf{s})\right) d\mathbf{s}$$

Convergence of minimisers:

- For the Upper bound we consider the Γ-realising sequence.
- Riemann sum for r.h.s. \rightarrow piecewise $\mathcal X\text{-lines}$ approximation for limit path.
- We use the assumption on the growth in *q* to control the error.

See next picture!

Upper bound:

Stochastic Homogenisation in Carnot groups

Upper bound:

Stochastic Homogenisation in Carnot groups

Upper bound:

Stochastic Homogenisation in Carnot groups

Lower bound:

- Step 1 Take a sequence ξ^{ε} converging to the infimum on l.h.s., take the limit $\overline{\xi}$ of ξ^{ε} (up to subsequence)
- Step 2 Approximate $\overline{\xi}$ by piecewise \mathcal{X} -lines with error control (Nontrivial: Carnot-group version of "abs. cont. path differentiable at any Lebesgue point")
- Step 3 Show that minimisers with boundary condition on a piece of a \mathcal{X} -line and the corresponding piece of ξ^{ϵ} have almost same energy.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

25/27

See next picture!

- Step 1 Take a sequence ξ^{ε} converging to the infimum on l.h.s., take the limit $\overline{\xi}$ of ξ^{ε} (up to subsequence)
- Step 2 Approximate $\overline{\xi}$ by piecewise \mathcal{X} -lines with error control (Nontrivial: Carnot-group version of "abs. cont. path differentiable at any Lebesgue point")
- Step 3 Show that minimisers with boundary condition on a piece of a \mathcal{X} -line and the corresponding piece of ξ^{ϵ} have almost same energy.

See next picture!

- Step 1 Take a sequence ξ^{ε} converging to the infimum on l.h.s., take the limit $\overline{\xi}$ of ξ^{ε} (up to subsequence)
- Step 2 Approximate $\overline{\xi}$ by piecewise \mathcal{X} -lines with error control (Nontrivial: Carnot-group version of "abs. cont. path differentiable at any Lebesgue point")
- Step 3 Show that minimisers with boundary condition on a piece of a \mathcal{X} -line and the corresponding piece of ξ^{ϵ} have almost same energy.

See next picture!

Thanks for your attention!

æ

イロト イヨト イヨト イヨト