Scaling limits and homogenization for some stochastic Hamilton-Jacobi equations

Benjamin Seeger

University of Chicago

LMS EPSRC Spring Durham Symposium, Durham University Homogenisation in Disordered Media August 20, 2018

 $\partial_t u^{\epsilon} + H(Du^{\epsilon}, x/\epsilon)\xi^{\epsilon}(t) = 0 \text{ in } \mathbb{R}^d \times (0, T], \ u^{\epsilon}(\cdot, 0) = u_0 \in BUC(\mathbb{R}^d)$

 $H: \mathbb{R}^d imes \mathbb{R}^d
ightarrow \mathbb{R}$ convex, coercive, locally Lipschitz,

- stationary with finite range dependence, ..., or
- periodic

 $\xi : [0, \infty) \to \mathbb{R}$ piecewise C^1 , independent of H, stationary, mean zero, uniformly bounded, and "sufficiently mixing"

$$\xi^{\epsilon}(t) := \frac{1}{\epsilon} \xi\left(\frac{t}{\epsilon^2}\right) \xrightarrow{\epsilon \to 0} dB$$
 in distribution,

B is a Brownian motion. The equation arises from scaling $\partial_t u + H(Du, y)\xi(t) = 0$ by $u^{\epsilon}(x, t) \approx \epsilon u(x/\epsilon, t/\epsilon^2)$.

$$\partial_t u^{\epsilon} + H(Du^{\epsilon}, x/\epsilon)\xi^{\epsilon}(t) = 0 \text{ in } \mathbb{R}^d \times (0, T], \ u^{\epsilon}(\cdot, 0) = u_0 \in BUC(\mathbb{R}^d)$$

Theorem

There exists convex $\overline{H} : \mathbb{R}^d \to \mathbb{R}$ such that

 $u^{\epsilon} \xrightarrow{\epsilon \to 0} \overline{u} \in BUC(\mathbb{R}^d \times [0, T])$ in distribution

where \overline{u} is the stochastic viscosity solution of

$$d\overline{u} + \overline{H}(D\overline{u}) \circ dB = 0$$
 in $\mathbb{R}^d \times (0, T]$, $\overline{u}(\cdot, 0) = u_0$.

 \overline{u} is defined in the Lions-Souganidis stochastic viscosity sense (unique extension of the solution operator to continuous paths)

Example: Front Propagation

$$\begin{cases} \Gamma_t^{\epsilon} = \partial \Omega_t^{\epsilon} \subset \mathbb{R}^d, & \text{normal velocity } \frac{1}{\epsilon} v\left(n, \frac{x}{\epsilon}, \frac{t}{\epsilon^2}\right), \\ v(n, y, t) = a(n, y) \xi(t), \ a \in C^{0,1}(S^{d-1} \times \mathbb{R}^d; \mathbb{R}_+) \\ a \text{ is stationary, finite range dependence, } p \mapsto a(p/|p|, y)|p| \text{ convex} \end{cases}$$

level set method:
$$\Omega_t^{\epsilon} = \{ u^{\epsilon}(\cdot, t) > 0 \}, \quad \partial_t u^{\epsilon} = a\left(\frac{Du^{\epsilon}}{|Du^{\epsilon}|}, \frac{x}{\epsilon}\right) |Du^{\epsilon}| \xi^{\epsilon}(t)$$

Then, for some Lipschitz, deterministic $\overline{a}: S^{d-1} \to \mathbb{R}_+$ with $p \mapsto \overline{a}(p/|p|)|p|$ convex, $u^{\epsilon} \xrightarrow{\epsilon \to 0} \overline{u}$ in distribution

$$d\overline{u} = \overline{a}\left(rac{D\overline{u}}{|D\overline{u}|}
ight)|D\overline{u}|\circ dB(t),$$

describing motion of an interface $\overline{\Gamma}_t$ with normal velocity $\overline{a}(n)dB$

Applies to more general problems:

$$u_t^{\epsilon} + H(Du^{\epsilon}, x/\epsilon) \dot{\zeta}^{\epsilon}(t) = 0,$$

 $H \in C^{0,1}(\mathbb{R}^d \times \mathbb{R}^d)$ convex, coercive
 $C^1([0, T]) \ni \zeta^{\epsilon} \xrightarrow{\epsilon \to 0} \zeta \in C([0, T])$ uniformly

Solutions of

$$\partial_t U^{\epsilon} \pm H(DU^{\epsilon}, x/\epsilon) = 0$$

converge quantifiably to solutions of

$$\partial_t \overline{U} \pm \overline{H}(DU) = 0$$

Additive noise: hyperbolic scaling

 $H \in C^{0,1}(\mathbb{R}^d)$ convex, superlinear, $f \in C^2(\mathbb{R}^d)$ stationary-ergodic, nonconstant random field, independent of Brownian motion B $0 \le \sigma \le 1$,

$$du^{\epsilon} + H(Du^{\epsilon}) dt = \epsilon^{\sigma} f(x/\epsilon) dB, \quad u^{\epsilon}(\cdot, 0) = u_0$$

Scaling critical case is $\sigma = 1/2$ (arises from hyperbolic scaling) If $\sigma < 1/2$, the oscillations are too fast, and

 $u^{\epsilon} \xrightarrow{\epsilon \to 0} -\infty$ locally uniformly in distribution

In distribution,

$$u^{\epsilon}(x,t) \lesssim \epsilon^{\sigma-1/2} \inf \left\{ \epsilon \int_0^{t/\epsilon} f(\gamma_s) dB_s : \gamma_{t/\epsilon} = x/\epsilon, |\dot{\gamma}| \leq M
ight\}.$$

There exists such paths γ for which

$$\limsup_{\epsilon \to 0} \epsilon \int_0^{t/\epsilon} f(\gamma_s) dB_s < 0 \quad \text{(law of large numbers)}$$

Future work

Goal: if u^{ϵ} solves

$$du^{\epsilon} + H(Du^{\epsilon}) dt = \epsilon^{1/2} f(x/\epsilon) dB, \quad u^{\epsilon}(\cdot, 0) = u_0,$$

then $u^{\epsilon} \rightarrow \overline{u}$ where, for some $\overline{H} > H$,

$$\partial_t \overline{u} + \overline{H}(D\overline{u}) = 0, \quad \overline{u}(\cdot, 0) = u_0.$$

If ξ is the mixing field from before,

$$\xi^\epsilon(t) = rac{1}{\epsilon^{1/2}} \xi(t/\epsilon),$$

and u^{ϵ} solves

$$\partial_t u^{\epsilon} + H(Du^{\epsilon}) = \epsilon^{1/2} f(x/\epsilon) \xi^{\epsilon}(t),$$

then such a result holds (Schwab 2009, Kosygina and Varadhan 2008, general stochastic homogenization of HJ equations in stationary ergodic spatio-temporal media)

Benjamin Seeger (University of Chicago)

Thank you!

2

< E

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A