Large-Scale Regularity of Random Elliptic Operators on the Half-Space

Claudia Raithel

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Workshop on Homogenisation in Disordered Media

Durham, 08.22.2018

Based on a joint work with Julian Fischer.

MAX-PLANCK-GESELLSCHAFT

- We are interested in the large-scale regularity of $u\in H^1_{loc}(\overline{\mathbb{H}}^d_+)$ solving

$$\begin{split} -\nabla \cdot (a|_{\mathbb{H}^d_+} \nabla u) &= 0 \quad \text{ in } \mathbb{H}^d_+, \\ u &= 0 \quad \text{ on } \partial \mathbb{H}^d_+ \\ & \text{ or } \\ e_d \cdot a \nabla u &= 0 \quad \text{ on } \partial \mathbb{H}^d_+. \\ \uparrow \\ ``a-\text{harmonic'' on } \mathbb{H}^d_+ \end{split}$$

• Here $a|_{\mathbb{H}^d_+}$ is the restriction of a heterogeneous coefficient-field $a: \mathbb{R}^d \to \mathbb{R}^{d \times d}$, which is uniformly elliptic and bounded.

- We summarize our large-scale regularity result in terms of a first-order Liouville principle.
- For a constant coefficient-field a_{hom} ... the space of subquadratic functions that are a_{hom} -harmonic on \mathbb{H}^d_+ and vanish on $\partial \mathbb{H}^d_+$ consists of linear functions of the form $b \cdot x_d$ with $b \in \mathbb{R}$.

+

Proof:

Caccioppoli estimate

Regularity of a_{hom} -harmonic functions

 $\frac{1}{r^2} \oint_{B_r^+} |\nabla u|^2 \lesssim \frac{1}{r^4} \oint_{B_{2r}^+} |u|^2 \, dx \qquad \qquad \sup_{x \in B_{r/2}^+} |\nabla^2 u|^2 \lesssim \frac{1}{r^2} \oint_{B_r^+} |\nabla u|^2 \, dx$

· Can we show a similar statement for heterogeneous coefficient-fields?

- There is a well-known counterexample:
 - Meyers ('73): For any $\lambda \in (0, 1)$ there exists a bounded, λ uniformly elliptic coefficient-field $a : \mathbb{R}^2 \to \mathbb{R}^{2 \times 2}$ such that $u(x) = \frac{x_2}{|x|} \cdot |x|^{\sqrt{\lambda}}$ is *a*-harmonic.
 - *u* contradicts a zeroth-order Liouville principle:

 \rightarrow It is a-harmonic on \mathbb{R}^2 and sublinear \ldots but not constant.

• Take a closer look: For $\lambda \in (0,1)$ the coefficient-field in his counterexample is

$$a(x) = \begin{bmatrix} \left(\frac{x_2^2}{\lambda} + x_1^2\right) |x|^{-2} & \frac{\lambda - 1}{\lambda} x_2 x_1 |x|^{-2} \\ \frac{\lambda - 1}{\lambda} x_2 x_1 |x|^{-2} & \left(\frac{x_1^2}{\lambda} + x_2^2\right) |x|^{-2} \end{bmatrix}$$

Picture from J. Fischer

• Maybe we can show such a Liouville principle for a generic coefficient-fields...

 \rightarrow In an almost-sure sense for a stationary and $\mathit{ergodic}$ ensemble of coefficient fields.

Take inspiration from the whole-space case. (Gloria, Neukamm, and Otto, 2014)

• The corrector ϕ_i in the direction e_i is a distributional solution of

$$-\nabla \cdot (a\nabla(\phi_i + x_i)) = 0$$
 in \mathbb{R}^d .

• The flux corrector σ_{ijk} is a distributional solution of

$$abla_{ullet} \cdot \sigma_{ijullet} = e_j \cdot (a \nabla (\phi_i + x_i) - a_{hom} e_i) \quad \text{in} \quad \mathbb{R}^d$$

and is skew-symmetric in the last two indices.

- We are interested in sublinear pairs (ϕ, σ) ... which exist $\langle \cdot \rangle$ -almost surely for stationary and ergodic ensembles (Gloria, Neukamm and Otto, 2014).
- We mean "sublinearity" in an averaged L^2 -sense... A pair (ϕ,σ) is called sublinear if

$$\delta_r = \frac{1}{r} \left(\int_{B_r} \left| \left(\phi - \int_{B_r} \phi \, \mathrm{d}x, \sigma - \int_{B_r} \sigma \, \mathrm{d}x \right) \right|^2 \, \mathrm{d}x \right)^{\frac{1}{2}} \xrightarrow{r \uparrow \infty} 0$$

The heterogeneous solution u is approximated by the two-scale expansion as

$$u_{2-scale} := u_{hom} + \sum_{i=1}^{a} \phi_i \partial_i u_{hom}.$$

• The "homogenization error" $w := u - u_{2-scale}$ solves

$$-\nabla \cdot (a\nabla w) = \nabla \cdot \left(\sum_{i=1}^{d} (\phi_i a - \sigma_i) \partial_i \nabla u_{hom}\right)$$

• For a function u that is a-harmonic on \mathbb{R}^d the "excess of u on B_r " is given by

$$\operatorname{Exc}(r) = \inf_{b \in \mathbb{R}^d} \int_{B_r} |\nabla(u - b \cdot (x + \phi))|^2 \, dx.$$

"homogenization-adapted"

 \rightarrow Compare u to the space that you expect to see in the first-order Liouville principle in the squared energy norm.

Want: A large-scale $C^{1,\alpha}$ -excess decay... *i.e.* on large scales $\operatorname{Exc}(r) \lesssim \left(\frac{r}{R}\right)^{2\alpha} \operatorname{Exc}(R)$.

Main step: For all $R \ge r > 0$ there exists $b \in \mathbb{R}^d$ such that

$$\int_{B_r} \left| \nabla (u - b \cdot (x + \phi)) \right|^2 \mathrm{d}x \lesssim \left(\left(\frac{r}{R} \right)^2 (1 + \varepsilon) + \left(\frac{R}{r} \right)^d \varepsilon \right) \int_{B_R} \left| \nabla u \right|^2 \mathrm{d}x, \quad (*)$$

where $\varepsilon = \varepsilon(\delta_r, \delta_R) \xrightarrow{\delta_r, \delta_R \downarrow 0} 0.$

Post-processing the main step:

1) Since $\tilde{u}_c = u + c \cdot (x + \phi)$ is *a*-harmonic we have that (*) holds for every $c \in \mathbb{R}^d$. Letting $\theta = \frac{r}{R}$ this yields

$$\operatorname{Exc}(\theta R) \leq \left(\theta^2(1+\varepsilon) + \theta^{-d}\varepsilon\right) \operatorname{Exc}(R).$$

- 2) Choose θ and ε such that $\theta^2(1+\varepsilon) + \theta^{-d}\varepsilon \leq \theta^{2\alpha}$ for $\alpha \in (0,1)$, which gives the desired $C^{1,\alpha}$ -excess decay for large enough r, R > 0 such that $\theta = \frac{r}{R}$.
- Iterate.

R

Recall that we would like to show that... for $R \ge r > 0$ there exists $b \in \mathbb{R}^d$ such that

$$\int_{B_r} |\nabla(u - b \cdot (x + \phi))|^2 \, \mathrm{d}x \lesssim \left(\left(\frac{r}{R}\right)^2 (1 + \varepsilon) + \left(\frac{R}{r}\right)^d \varepsilon \right) \int_{B_R} |\nabla u|^2 \, \mathrm{d}x.$$

Main idea: Wolog $r \leq \frac{R}{4}.$ Choose $R' \in (\frac{R}{2},R)$ such that

$$\int_{\partial B_{R'}} |\nabla^{tan} u|^2 \, \mathrm{d}x \lesssim \frac{1}{R} \int_{B_R} |\nabla u|^2 \, \mathrm{d}x$$

and let u_{hom} solve

$$-\nabla a_{hom} \nabla u_{hom} = 0 \quad \text{in } B_{R'}$$
$$u_{hom} = u \quad \text{on } \partial B_{R'}.$$

Take the ansatz $b = \nabla u_{hom}(0)$ and apply the triangle inequality:

ightarrow To treat the homogenization error notice that $w=u-u_{hom}-\eta\partial_i u_{hom}\phi_i$ solves

$$\begin{split} -\nabla \cdot a \nabla w &= \nabla \cdot \left((1-\eta)(a-a_{hom}) \nabla u_{hom} + (\phi_i a - \sigma_i) \nabla (\eta \partial_i u_{hom}) \right) & \text{ in } B_{R'} \\ w &= 0 & \text{ on } \partial B_{R'}, \end{split}$$

where η is a smooth cut-off for $B_{R'-\delta}$ in $B_{R'}$, and then optimize the radius $\delta.$

Homogenization

Regularity theory

Idea:

Sublinear (ϕ, σ)

Campanato iteration

large-scale $C^{1,\alpha}$ - excess decay

This is inspired by:

 \rightarrow Avellaneda and Lin ('87): $C^{0,1}\text{-}$ theory up to the boundary for Dirichlet data in the periodic setting.

 \rightarrow Armstrong and Smart (2016): a large-scale $C^{0,1}$ theory for stationary ensembles satisfying a finite range of dependence assumption.

• Whole-space large-scale excess decay, (Gloria, Neukamm and Otto, 2014): Assuming that there exists a sublinear pair (ϕ, σ) , for every Hölder exponent $\alpha \in (0, 1)$ there exists a minimal radius $r^* > 0$ such that for $R \ge r \ge r^*$:

$$\operatorname{Exc}(r) \leq C(d,\lambda,\alpha) \left(rac{r}{R}
ight)^{2lpha} \operatorname{Exc}(R).$$

Corollaries:

• For $\alpha = 1/2$ this yields for $R \ge r \ge r^*(1/2)$ the mean value property:

$$\int_{B_r} |\nabla u|^2 \, dx \le C_{Mean}(d,\lambda) \int_{B_R} |\nabla u|^2 \, dx.$$

• This yields a $\langle \cdot \rangle$ - almost sure $C^{1,\alpha}$ - Liouville principle: Let u be a -harmonic and satisfy $|u(x)| \leq C(1+|x|^{1+\alpha})$ then for any $R > r > r^*(\alpha)$:

$$\operatorname{Exc}(r) \lesssim \quad \left(\frac{r}{R}\right)^{2\alpha} \int_{B_R} |\nabla u|^2 \, \mathrm{d} x \lesssim \quad \frac{r^{2\alpha}}{R^{2+2\alpha}} \int_{B_R} |u|^2 \, \mathrm{d} x \quad \xrightarrow{R\uparrow\infty} 0$$

The half-space case.

Half-space case with homogeneous Dirichlet boundary data

- We expect that $\langle \cdot \rangle$ almost surely: If u is a-harmonic on \mathbb{H}^d_+ with homogeneous Dirichlet boundary conditions and satisfies the growth condition $|u(x)| \leq C(1+|x|^{1+\alpha})$, then $u = b(x_d + \phi_{\pm}^{dD})$ for some $b \in \mathbb{R}$.
- Here, $\phi_d^{\mathbb{H}_D}$ is the Dirichlet half-space corrector in the direction e_d and solves

$$\begin{split} -\nabla\cdot (a\nabla(x_d+\phi_d^{\mathbb{H}_D})) &= 0 \quad \text{in } \mathbb{H}^d_+, \\ \phi_d^{\mathbb{H}_D} &= 0 \quad \text{on } \partial\mathbb{H}^d_+ \end{split}$$

• The plan: Prove a large-scale $C^{1,\alpha}\text{-excess}$ decay for the Dirichlet half-space excess

$$\operatorname{Exc}^{\mathbb{H}_{D}}(r) = \inf_{b \in \mathbb{R}} \oint_{B_{r}^{+}} |\nabla(u - b(x_{d} + \phi_{d}^{\mathbb{H}_{D}}))|^{2} dx.$$

Need: A sublinear pair $(\phi_d^{\mathbb{H}_D}, \sigma_d^{\mathbb{H}_D})$.

$$\nabla_{\bullet} \cdot \sigma_{dj \bullet}^{\mathbb{H}_D} = e_j \cdot (a \nabla (x_d + \phi_d^{\mathbb{H}_D}) - a_{hom} e_d) \text{ on } \mathbb{H}^d_+$$

This choice of boundary data is helpful in the proof of the excess-decay because... in our setting the homogenization error on $B^+_{p\prime}$ is of the form

$$w^{\mathbb{H}D} = u - u_{hom} - \eta \partial_i u_{hom} \phi_i^{\mathbb{H}D}$$

which has Dirichlet boundary data on $B_{B'}^+$.

• Existence of a sublinear $(\phi_d^{\mathbb{H}_D}, \sigma_d^{\mathbb{H}_D})$, (Fischer and R., (2017)) : Assuming that there exists a whole-space pair (ϕ, σ) satisfying

$$\sum_{m=0}^{\infty} m \cdot \left(\frac{1}{2^m} \left(\oint_{B_{2^m}} |(\phi, \sigma)|^2 \, dx \right)^{1/2} \right)^{1/3} < \infty, \qquad \text{(quant. sublin.)}$$

we may construct a pair $(\phi_d^{\mathbb{H}_D}, \sigma_d^{\mathbb{H}_D})$ that is sublinear.

For (φ, σ) to satisfy the quantified sublinearity condition it suffices that δ_r ≲ 1/log r|6+ε for large r.
 → To obtain this relation a.s. one can impose various quantified versions of the ergodicity assumption:

1) (Gloria and Otto, (2015)) Stationary ensembles with a finite range of dependence.

- 2) (Fischer and Otto, (2016) or GNO, (2014)) Let $a(x)=\psi(\tilde{a}(x)),$ where:
 - $\tilde{a}(x) =$ matrix valued stationary Gaussian random field satisfying a decorrelation estimate
 - $\psi : \mathbb{R}^{d \times d} \to \Omega$ is Lipschitz.

- We construct the Dirichlet half-space corrector pair inductively:
 - 1) We construct a sublinear intermediate Dirichlet half-space corrector pair up to a certain scale.
 - 2) We obtain a large-scale $C^{1,\alpha}$ excess decay up to that scale.
 - We use this to construct another sublinear intermediate Dirichlet half-space corrector pair on a larger scale.
 - 4) We then pass to the limit in this construction.
- \rightarrow This strategy mimics the construction used to build *higher order correctors* (Fischer and Otto, (2016)).

Previously...

 \rightarrow In their '87 work Avellaneda and Lin have already used Dirichlet boundary correctors, but theirs are adapted locally and differently for every scale.

 \rightarrow In the almost periodic case Armstrong and Shen (2016) have shown a $C^{0,1}\text{-}$ regularity theory up the boundary for both the Dirichlet and Neumann case.

Construction of the Dirichlet half-space corrector

- The main idea is to "correct" the whole-space corrector: $\phi_d^{\mathbb{H}_D}=\phi_d-\varphi.$

• We must construct the correction φ such that it solves:

$$\begin{aligned} -\nabla \cdot (a \nabla \varphi) &= 0 & \text{ in } & \mathbb{H}^d_+ \\ \varphi &= \phi_d & \text{ on } & \partial \mathbb{H}^d_+ \end{aligned}$$

and is sublinear.

 \rightarrow But $\nabla \phi_d \notin L^2(\mathbb{H}^d_+)$

• Let $\{\eta_m\}$ be a radial dyadic partition of unity and $\{L_m\}$ be vertical cut-offs of height $2l_m$:

• Consider the solutions to

$$-\nabla \cdot (a\nabla\varphi_m) = \nabla \cdot (a\nabla(\eta_m \mathbf{L}_m \phi_d)) \qquad \text{in } \mathbb{H}^d_+,$$
$$\varphi_m = 0 \qquad \text{on } \partial \mathbb{H}^d_+.$$

- The correction is then given by $\varphi = \sum_m (\varphi_m + \eta_m {\pmb L}_{\pmb m} \phi_d)$

• The crucial step: There exists $r_0 > 0$ such that for all m the bound

$$\left(\int_{B_r^+} |\nabla \varphi_m|^2 \, dx \right)^{1/2} \leq 8^d C_1(d,\lambda) C_{Mean}(d,\lambda) \min\left\{ 1, \left(\frac{r_0 2^{m+1}}{r}\right)^{d/2} \right\} \\ \times \left(\frac{1}{r_0 2^{m+1}} \left(\int_{B_{r_0 2^{m+1}}^+} |(\phi,\sigma)|^2 \, dx \right)^{1/2} \right)^{1/3}$$

$$(**)$$

holds for all $r \ge r_0$.

• For any $r \ge r_0$ we split the φ_m into two groups: near-field and far-field terms.

- After optimizing the heights l_m the energy estimate for the φ_m gives that for any r>0;

$$\left(\int_{B_r^+} |\nabla \varphi_m|^2 \, dx \right)^{1/2} \le C_1(d,\lambda) \left(\frac{r_0 2^{m+1}}{r} \right)^{d/2} \\ \times \left(\frac{1}{r_0 2^{m+1}} \left(\int_{B_{r_0 2^{m+1}}^+} |(\phi,\sigma)|^2 \, dx \right)^{1/2} \right)^{1/3}$$

• For the near-field contributions (of $r \ge r_0$) we have that $r \ge r_0 2^{m-3}$, which turns the above energy estimate into:

$$\begin{split} \left(\int_{B_r^+} |\nabla \varphi_m|^2 \, dx \right)^{1/2} \leq & 8^d C_1(d, \lambda) \min\left\{ 1, \left(\frac{r_0 2^{m+1}}{r}\right)^{d/2} \right\} \\ & \times \left(\frac{1}{r_0 2^{m+1}} \left(\int_{B_{r_0 2^{m+1}}^+} |(\phi, \sigma)|^2 \, dx \right)^{1/2} \right)^{1/3} \end{split}$$

 \rightarrow So, (**) holds for φ_m for all $r \geq r_0$ for which it is a near-field contribution.

An inductive procedure:

- 1) Notice that (**) holds for φ_m for $m \in \{-1, 0, 1, 2, 3\}$ for any $r \ge r_0$.
- 2) Obtain a intermediate half-space corrector pair, which gives us access to the mean-value property up to the scale $r_0 2^2$: $\rightarrow i.e.$ if u is a-harmonic function on $B^+_{r_0 2^2}$ and vanishes on $\partial \mathbb{H}^d_+ \cap B_{r_0 2^2}$ then for $r_0 2^2 \ge R \ge r \ge r_0$: $\int_{B^+_r} |\nabla u|^2 dx \le C_{Mean}(d, \lambda) \int_{B^+_P} |\nabla u|^2 dx.$
- 3) φ_4 is a near-field term unless $r \in [r_0, 2r_0)$.
- 4) When $r \in [r_0, 2r_0)$ then φ_4 is a far-field term. For this case, notice that φ_4 is *a*-harmonic on $B^+_{r_02^3}$ and vanishes on the flat part of the boundary. Therefore, the mean value property from Step 2 applied to φ_4 gives

$$\int_{B_r^+} |\nabla \varphi_4|^2 \, dx \leq C_{Mean}(d,\lambda) \int_{B_{r_02^2}^+} |\nabla \varphi_4|^2 \, dx$$

and (**) follows from the energy estimate.

- 5) So, (**) holds for φ_m for $m \in \{-1, 0, 1, 2, 3, 4\}$ for any $r \ge r_0$.
- \rightarrow Must choose r_0 large enough for Step 2.

- We expect that $\langle \cdot \rangle$ -almost surely: If u is a-harmonic on \mathbb{H}^d_+ with no-flux boundary data and satisfies the growth condition $|u(x)| \leq C(1+|x|^{1+\alpha})$, then $u = b \cdot x + \phi_b^{\mathbb{H}_N} + c$ for some $c \in \mathbb{R}$ and $b \in B$, where

$$B := \left\{ b \in \mathbb{R}^d \, | \, e_d \cdot a_{hom} b = 0 \right\}.$$

• Let $\{b_1, ..., b_{d-1}\}$ be a basis for B. For i = 1, ..., d-1 we construct $\phi_{b_i}^{\mathbb{H}_N}$, the Neumann half-space corrector in the direction b_i , which solves

$$\begin{split} &-\nabla\cdot (a\nabla (b_i\cdot x+\phi_{b_i}^{\mathbb{H}_N}))=0 \qquad & \text{in} \quad \mathbb{H}^d_+,\\ &e_d\cdot a\nabla (b_i\cdot x+\phi_{b_i}^{\mathbb{H}_N})=0 \qquad & \text{on} \quad \partial\mathbb{H}^d_+. \end{split}$$

• The plan: Prove a large-scale $C^{1,\alpha}\text{-excess}$ decay for the Neumann half-space excess

$$\operatorname{Exc}^{\mathbb{H}_{N}}(r) = \inf_{b \in B} \oint_{B_{r}^{+}} |\nabla(u - b \cdot x + \phi_{b}^{\mathbb{H}_{N}}))|^{2} dx.$$

Need: For i = 1, ..., d - 1 a sublinear pair $(\phi_{b_i}^{\mathbb{H}_N}, \sigma_{b_i}^{\mathbb{H}_N})$.

$$\nabla_{\bullet} \cdot \sigma_{b_i j \bullet}^{\mathbb{H}_N} = e_j \cdot (a \nabla (x + \phi_{b_i}^{\mathbb{H}_N}) - a_{hom} b_i) \text{ on } \mathbb{H}^d_+$$

- \bigtriangleup
- Existence of sublinear $(\phi_{b_i}^{\mathbb{H}_N}, \sigma_{b_i}^{\mathbb{H}_N})$ for i = 1, ..., d 1, (R., (2017)): Assuming that there exists a whole-space pair (ϕ, σ) satisfying the same quantified sublinearity condition as in the Dirichlet case we may construct pairs $(\phi_{b_i}^{\mathbb{H}_N}, \sigma_{b_i}^{\mathbb{H}_N})$ that are sublinear.
- The general idea is essentially the same as in the Dirichlet case. In particular, one constructs a sublinear correction φ_{b_i} to the whole-space corrector such that

$$-\nabla \cdot (a \nabla \varphi_{\boldsymbol{b}_{\boldsymbol{i}}}) = 0 \qquad \qquad \text{in} \quad \mathbb{H}^d_+,$$

$$e_d \cdot a \nabla \varphi_{b_i} = -e_d \cdot a(\phi_{b_i} + b_i)$$
 on $\partial \mathbb{H}^d_+$

and then defines $\phi_{b_i}^{\mathbb{H}_N} = \phi_{b_i} + \varphi_{b_i}.$

• This construction of φ_{b_i} relies on the same inductive procedure used for the Dirichlet case. The only difference is in the treatment of the near-field terms, which in the Neumann case relies on the identity

$$\nabla_{\bullet} \cdot \sigma_{b_i d \bullet} = e_d \cdot a \nabla (\phi_{b_i} + b_i \cdot x),$$

which holds distributionally on \mathbb{H}^d_+ .

Thanks for your attention!

M. Avellaneda and F-H. Lin,

Compactness methods in the theory of homogenizationn

Comm. Partial Differential Equations, 40(6):803-847, 1987

S. Armstrong and C. Smart,

Quantitative stochastic homogenization of convex integral functionals,

Ann. Sci. Éc. Norm. Supér. 48:423-481, 2016

S. Armstrong and Z. Shen,

Lipschitz estimates in almost-periodic homogenization,

Comm. Partial Differential Equations 69:1882-1923, 2016

J. Fischer and F. Otto,

A higher-order large-scale regularity theory for random elliptic operators,

Comm. Partial Differential Equations, 41(7):1108-1148, 2016.

J. Fischer and F. Otto

Sublinear growth of the corrector in stochastic homogenization: Optimal stochastic estimates for slowly decaying correlations, Stochastics and Partial Differential Equations: Anal. Comp., 4, 2016

A. Gloria, S. Neukamm, and F. Otto,

A regularity theory for random elliptic operators,

arXiv Preprint, 2014. arXIV: 1409.2678

A. Gloria and F. Otto

The corrector in stochastic homogenization: Optimal rates, stochastic integrability, and flucuations,

arXiv Preprint, 2015. arXiv: arXiv:1510.08290

J. Fischer and C. Raithel,

Liouville principles and a large-scale regularity theory for random elliptic operators on the half-space,

SIAM J. Math. Anal. 49 (1): 82-114, 2017