Homogenization on supercritical percolation cluster

Paul Dario Université Paris-Dauphine and École Normale Supérieure joint work with S. Armstrong

August, 2018

Paul Dario

Supercritical percolation

August, 2018 1/14

The model

Model: percolation on the hypercubic lattice

- lattice \mathbb{Z}^d , $d \ge 2$.
- V set of vertices: $V \coloneqq \mathbb{Z}^d$.
- E_d set of edges: $E_d := \{(x, y) : x, y \in \mathbb{Z}^d, |x y|_1 = 1\}.$
- Fix $p \in [0, 1]$.
- $(\mathbf{a}_e)_{e \in E_d}$ be a sequence of i.i.d Bernouilli random variables s.t

$$\mathbb{P}(\mathbf{a}_e=1)=1-\mathbb{P}(\mathbf{a}_e=0)=p.$$

• We assume $p > p_c(d)$ so that

 $\mathbb{P}(\mathsf{There \ exists \ an \ infinite \ cluster}) = 1.$

Harmonic functions

Definition

Given a function $u: \mathcal{C}_{\infty} \to \mathbb{R}$, we denote by

$$\Delta_{\mathcal{C}_{\infty}} u(x) = \sum_{y \sim x} \mathbf{a}_{(x,y)} \left(u(y) - u(x) \right).$$

Remark: This operator is the generator of the continous random walk on the infinite percolation cluster.

Harmonic functions

Definition

Given a function $u: \mathcal{C}_{\infty} \to \mathbb{R}$, we denote by

$$\Delta_{\mathcal{C}_{\infty}} u(x) = \sum_{y \sim x} \mathbf{a}_{(x,y)} \left(u(y) - u(x) \right).$$

Remark: This operator is the generator of the continous random walk on the infinite percolation cluster.

- Barlow 2003: Estimates on the transition kernel.
- Sidoravicius-Sznitman 2004: Invariance principle in $d \ge 4$
- Berger-Biskup 2007 and Mathieu-Piatnitski 2007: Invariance principle in every dimension.

A notation for integrability. Let X ≥ 0 be a random variable, a constant C > 0 and an exponent s > 0, we write

$$\mathcal{X} \leq \mathcal{O}_s(C)$$
 if and only if $\mathbb{E}\left[\exp\left(\left(\frac{\mathcal{X}}{C}\right)^s\right)\right] \leq 2$.

Homogenization on percolation cluster

Theorem

Fix p > 2. There exist two exponents $\alpha > 0$, s > 0, a constant $C < \infty$ and a random variable \mathcal{X} satisfying

 $\mathcal{X} \leq \mathcal{O}_{s}(C)$

such that for each $u: \mathcal{C}_{\infty} \to \mathbb{R}$ solution of

$$\Delta_{\mathcal{C}_{\infty}} u = 0$$

and each $R \geq \mathcal{X}$, there exists an harmonic function u_{hom} such that

$$\|u-u_{\text{hom}}\|_{L^{2}(B_{R})} \leq CR^{1-\alpha} \|\nabla u\|_{L^{p}(B_{R})}.$$

Two sets of interest

For each $k \in \mathbb{N}$, we define

$$\mathcal{A}_k \coloneqq \left\{ u : \mathcal{C}_{\infty} \to \mathbb{R} \ : \ \Delta_{\mathcal{C}_{\infty}} u = 0 \text{ and } \lim_{R \to \infty} \frac{1}{R^{d/2+k+1}} \|u\|_{L^2(B_R)} = 0 \right\}$$

and

 $\overline{\mathcal{A}}_k \coloneqq \{ \text{Harmonic polynomials of degree } k \}.$

Paul Dario

3

Regularity theory

Theorem

There exist an exponent $\alpha > 0$ and a random variable $\mathcal X$ satisfying

$$\mathcal{X} \leq \mathcal{O}_{s}(C)$$

such that

• for each $k \in \mathbb{N}$ and each $u \in A_k$ there exists $p \in \overline{A}_k$ such that for each $R \ge \mathcal{X}$

$$\left\| u - p \right\|_{L^{2}(\mathcal{C}_{\infty} \cap B_{R})} \leq C R^{-\alpha} \left\| u \right\|_{L^{2}(\mathcal{C}_{\infty} \cap B_{R})}.$$

• Conversly, for each $k \in \mathbb{N}$ and each $p \in \overline{\mathcal{A}}_k$ there exists $u \in \mathcal{A}_k$ such that for each $R \ge \mathcal{X}$

$$\|u-p\|_{L^2(\mathcal{C}_{\infty}\cap B_R)} \leq CR^{-\alpha} \|p\|_{L^2(\mathcal{C}_{\infty}\cap B_R)}.$$

Regularity theory

Corollary

• For each $k \in \mathbb{N}$,

$$\dim \left(\mathcal{A}_{k} \right) = \dim \left(\overline{\mathcal{A}}_{k} \right).$$

• With k = 0, we obtain the following Liouville-type theorem

$$\dim (\mathcal{A}_0) = 1 \implies \mathcal{A}_0 = \{constant\}.$$

Paul Dario

A⊒ ▶ < ∃

Regularity theory

Corollary

With k = 1, we obtain that each $u \in A_1$ can be written, for some $p \in \mathbb{R}^d$,

$$u = c + p \cdot x + \chi_p(x)$$

where the function $\chi_{\mathcal{P}}$ is the corrector and satisfies, for each $R \geq \mathcal{X}$

$$\operatorname{osc}_{B_R} \chi_p \le CR^{1-\alpha}$$

Pau	Dario
i au	

Optimal bounds for the corrector

Theorem

There exist an exponent s > 0 and a constant $C < \infty$ such that for each $x, y \in \mathbb{R}^d$ and each $p \in \mathbb{R}^d$

$$|\chi_{p}(x) - \chi_{p}(y)| \mathbf{1}_{\{x, y \in \mathcal{C}_{\infty}\}} \leq \begin{cases} \mathcal{O}_{s}\left(C|p|\log^{\frac{1}{2}}|x-y|\right) & \text{if } d = 2, \\ \mathcal{O}_{s}\left(C|p|\right) & \text{if } d \geq 3. \end{cases}$$

A renormalization structure for the infinite cluster

Definition

We say that a cube \Box is good if

- There exists a unique crossing cluster in \Box , denoted by $\mathcal{C}(\Box)$.
- All open paths of size larger than $\frac{\text{size}(\Box)}{10}$ is connected to $\mathcal{C}(\Box)$ within

 \Box .

Figure 1: A good box

Paul	Dario

A notion of good cubes

Theorem (Penrose-Pisztora, 1996) Let \Box be a cube in \mathbb{Z}^d , then there exists a constant $C := C(d, p) < \infty$, $\mathbb{P}(\Box \text{ is a good cube}) \ge 1 - C \exp(-C^{-1} \operatorname{size}(\Box)).$

A partition of good cubes

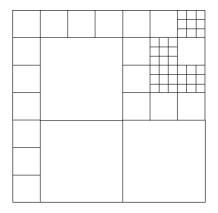


Figure 2: A partition of good cubes.

∃ ⊳

3

Thank you!

Paul Dario	

3

・ロト ・ 四ト ・ ヨト ・ ヨト